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Histopathology Feature Mining 
and Association with Hyperspectral 
Imaging for the Detection of 
Squamous Neoplasia
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Amy Y. Chen4, Georgia Chen3 & Baowei Fei   1,3,6,7*

Hyperspectral imaging (HSI) is a noninvasive optical modality that holds promise for early detection 
of tongue lesions. Spectral signatures generated by HSI contain important diagnostic information 
that can be used to predict the disease status of the examined biological tissue. However, the 
underlying pathophysiology for the spectral difference between normal and neoplastic tissue is not well 
understood. Here, we propose to leverage digital pathology and predictive modeling to select the most 
discriminative features from digitized histological images to differentiate tongue neoplasia from normal 
tissue, and then correlate these discriminative pathological features with corresponding spectral 
signatures of the neoplasia. We demonstrated the association between the histological features 
quantifying the architectural features of neoplasia on a microscopic scale, with the spectral signature of 
the corresponding tissue measured by HSI on a macroscopic level. This study may provide insight into 
the pathophysiology underlying the hyperspectral dataset.

More than half a million patients are diagnosed worldwide with squamous cell carcinoma (SCC) of the head and 
neck each year1. Only half of the people diagnosed with oral SCC live for five years2. The gold standard for cancer 
diagnosis remains tissue biopsy with pathological assessment made by pathologists using visual examination of 
haematoxylin and eosin (H&E) stained sections under the microscope3. However, the effectiveness of cancer 
diagnosis is highly dependent on the attention and experience of the pathologists. This technique is considered 
invasive, expensive, and time-consuming. The diagnosis and grading of oral epithelial dysplasia is based on a 
combination of architectural and cytological changes3, but evaluation of these changes is subjective and known 
to be inconsistent due to considerable inter- and intra-observer variations in the grading of lesions4. Digital 
pathology, which leverages the power of whole slide imaging and computer-aided diagnosis, holds great promise 
to providing rapid, consistent, and quantitative cancer diagnosis from histopathology images. Furthermore, non-
invasive alternatives, such as various kinds of optical imaging techniques, have been sought to avoid the pain and 
discomfort of the biopsy procedures. Recent advancements in hyperspectral cameras, image analysis methods, 
and computational power have led to the development of hyperspectral imaging (HSI) system as a promising 
diagnostic tool for early cancer detection5.

HSI is an emerging optical modality that combines spectroscopy and wide-field imaging, which can rapidly 
interrogate large tissue surfaces and do not require tissue removal. Although spectroscopy has been explored for 
probing molecular, cellular, and tissue properties and characterizing correlation of tissue parameters with disease 
state, such fundamental research has not been investigated vigorously in HSI. Many existing studies have been 
focused on developing new hardware systems5. Very few efforts have been dedicated to investigate the underlying 
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biological rationale of HSI for cancer detection, and the biological origins of differences in the measured reflec-
tance signals of normal and neoplastic tissue are not well understood.

HSI provides an indirect measurement of the underlying tissue biochemical and morphological properties. 
The spectral characteristics of diffuse reflectance from heterogeneous biological tissue are the result of a complex 
interplay of the intrinsic absorption and scattering properties of the tissue6,7, the distribution of chromophores 
and scatterers, together with the source-tissue-detector geometry8. Thus, the biochemical and/or structural char-
acteristics of the biological tissue determine the intrinsic absorption and scattering properties of the tissues, which 
in turn generate the measured reflectance signature. In the field of diffuse reflectance spectroscopy, researchers 
have reported a variety of modeling methods9–13 to inversely estimate the absorption and scattering coefficients 
μa and μs, respectively, from the diffuse reflectance to characterize tissue properties. Palmer et al.10 developed a 
fast Monte Carlo-based inverse model of diffuse reflectance to extract the concentration of absorbers and the size 
and density of scatters present in human breast tissue samples, however, this model is limited in that it requires a 
priori knowledge of the absorbers and scatterers present in the tissue of interest. These modeling methods provide 
a way to connect the spectral features with the underlying biochemistry and morphology. However, they generally 
rely on the assumption of simplified tissue composition and structure, and specific source-detector settings.

To meaningfully interpret the hyperspectral dataset, there is a requirement to relate tissue architecture and 
morphology that occur with neoplasia to the bulk optical signal measured. On a microscopic scale, the architec-
tural and cytological changes in neoplastic tissue can be quantified by a variety of histological features extracted 
from digitized pathological images for computer-aided diagnosis. Meanwhile, the spectral signature at each image 
point reflects the macroscopic features of corresponding tissue. Thus, we hypothesize that the spectral signature 
measured by HSI has significant association with histological features which quantify the tissue architectural 
and morphological alterations during neoplastic transformation. To validate this hypothesis, a predictive model 
is developed to combine multiple pathological features, including color, texture, morphometry, and topology 
features from epithelium tissue and its constituent nuclei and cytoplasm, for computer-aided diagnosis of tongue 
neoplasia. Next, an optimal feature subset is selected from these original histological features to best distinguish 
normal tissue from neoplastic tissue in histological images. The predictive performance of the optimal feature set 
is validated in histological images of both mouse tongue and human tongue. Finally, the correlation coefficients 
between the spectral signature of both in vivo and fresh ex vivo mouse tongues and the optimal histological fea-
tures of the corresponding histological images are calculated and interpreted.

Results
Image analysis pipeline.  To identify the correlation between pathological features of tongue neopla-
sia and the corresponding spectral signatures, we developed an automatic image analysis pipeline (Fig. 1). The 
image analysis pipeline was validated the pipeline on pathological dataset from both mouse tongues and human 
tongues. Tissue slides of mouse tongues were obtained from a chemically-induced tongue carcinogenesis animal 
experiment, and corresponding hyperspectral images of the mouse tongue both in vivo and ex vivo were acquired 
with a hyperspectral imager as described in a previously published article14. Tissue slides of human tongues were 
obtained from surgical specimens of patients with tongue cancer in a clinical study15. Images of size 1472 × 922 
were cropped from the whole-slide image at 20 × magnification using the Aperio ImageScope software (Leica 
Biosystems). A total of 1157 pathology images from 10 mouse tongue were generated (Table 1) and a total of 60 
pathology images from 6 patients were generated (Table 2).

The first step of the pipeline involved demarcating tumor regions on whole-slide pathology images of tongue 
lesions (Fig. 1a). To do this, an experienced pathologist specialized in head and neck cancer outlined the regions 
of normal, dysplasia, carcinoma in situ, and carcinoma on the epithelium of the tongue on whole-slide digital 
images of H&E stained tissue slides (Fig. 1b). The second step was to identify the most discriminative pathological 
features for differentiating neoplasia from non-neoplastic tongue tissue through pathological feature mining and 
machine learning (Fig. 1c). This was done by first segmenting epithelium from the histological RGB image. In 
clinical practices, the diagnosis of precursor lesions is based on the altered epithelium with an increased likeli-
hood for progression to squamous cell carcinoma16. Next, the generated epithelium image was further segmented 
into nuclei, cytoplasm and background. Then, a large number of image features were extracted from different his-
tological components of each pathological tissue type, and an optimal feature subset was selected based on super-
vised learning to best distinguish between neoplastic and non-neoplastic tissue. The third step was to reconstruct 
the pathological tumor map for hyperspectral images of the tongue (Fig. 1d). Since each mouse tongue specimen 
were sectioned into a series of 5 µm slices with 200 µm interval (Fig. 1d), each H&E slide of the tongue (as shown 
in Fig. 1b) corresponded to a straight line on the dorsal surface. Regions of distinct pathology on each whole-slide 
image were mapped onto its corresponding straight line on top of the dorsal surface of the tongue to generate a 
color-coded pathology map for the corresponding tongue hypercube. As for human tongue, pathology tissue slice 
was in the same orientation as the specimen and affine registration was performed to directly map tumor region 
onto the patient tongue. Next, the reflectance spectra of individual pixels within each pathological category along 
each line were averaged to generate the spectral signature of normal, dysplasia, carcinoma in situ, and carcinoma 
tissue. Figure 1e showed representative spectral signatures of normal and neoplastic tissue (dysplasia/CIS/carci-
noma) measured by HSI from mouse tongues in vivo. The overall shapes of these spectra appeared similar for all 
the pathology types, which were generally smooth and broad in the visible and near-infrared region. The charac-
teristic dips around 540 nm coincided with hemoglobin’s absorption peaks. The reflectance intensity was generally 
weaker for healthy tissues than for neoplastic tissue including dysplasia, CIS, and carcinoma in both in vivo and 
ex vivo mouse tongues. Finally, the most discriminative pathological features were correlated with the spectral 
signatures from the same tongue to decipher the potential meaning of the spectral signatures. More details about 
the image analysis procedures were described in Methods section.
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Feature selection and predictive modeling.  Multiple features were extracted from both the entire epi-
thelial image and its constituent components including nuclei and cytoplasm. To quantify these abnormal tissue 
changes during carcinogenesis, 71 color and 149 texture features are extracted from each epithelium image and 
each cytoplasm image, respectively. To quantify these changes, 71 color, 149 texture, 44 morphometric, and 8 top-
ological features were extracted from each nuclei image. The color and texture features were the same as extracted 
from the epithelium and cytoplasm image. In total, we extracted 712 features from each epithelium image and its 
constituent nuclei and cytoplasm images. A detailed summary of these features can be found in Supplementary 
Table 1.

Next, feature selection and supervised classification with nested cross validation was conducted to build pre-
dictive models for cancer diagnosis. The image set used for normal/neoplastic classification consisted of a total 
of 1157 images (735 neoplastic and 422 normal images) from 10 mouse tongues. To identify a compact and 
distinctive feature subset from the 721 features extracted from each histology image, we performed feature selec-
tion and built predictive models through nested cross validation (CV) consisting of leave-one-out outer CV and 

Figure 1.  Method overview of the correlation analysis between spectral signature and histological features. (a) 
Summary of the quantitative image analysis pipeline. (b) An example of a whole-slide digital image of a tongue 
slice segmented into carcinoma, carcinoma in situ, dysplasia, and normal regions by an experienced pathologist. 
(c) Flowchart for pathological feature mining. (d) An example of the reconstructed pathology map color-coded 
and overlaid on a mouse tongue. (f) Reflectance spectral signature from hyperspectral images of a mouse tongue 
in vivo.
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leave-one-out inner CV. The outer CV loop was used to estimate the classification performance; and the inner CV 
loop was used to tune the optimal parameters for the model development. Each run of the ten-fold outer CV algo-
rithm consisted of training models on image set from nine tongues and testing on image set from the remaining 
tongue. A nine-fold inner CV was conducted to select the optimal feature numbers from the subsets of the train-
ing data from eight tongues and to validate the model using the remaining subset. Support vector machine with 
Gaussain Radial Basis (RBF) function was used as the classifier. Parameters were optimized via grid search over a 
pre-defined range. We considered the feature dimension m over the range of [1, 5, 10, 30, 50, 70, 90, 100, 200, 300, 
342], and the cost values c ∈ 2[−5, −3,−1, 1, 3, 5] and kernel parameters γ ∈ 2[−5, −3, −1, 1, 3, 5]. The model performance was 
evaluated with accuracy, sensitivity, and specificity.

Figure 2a plotted the mean CV accuracy of all samples as a function of feature dimension. We can see that 
when the number of features reached 30, classification accuracy reached the maximum. Since mRMR method 
worked by incrementally adding features according to maximal relevance and minimal redundancy criterion, 
we can further look at which feature was the most frequently selected to be the first, second, up until the 30th 
feature during the cross validation. In Fig. 2b, the horizontal axis was the feature rank, and the vertical axis was 
feature categories. Bright color means the feature was highly selected. Among the best 30 features, texture fea-
tures extracted from epithelium and its constituent components: cytoplasm and nuclei were the most frequently 
selected feature type across all the 30 ranks for the distinction of normal tissue from neoplasia. Mathematically, 
texture features characterize differences in the spatial arrangement of gray values of neighboring pixels, which 
have been shown to be effective at quantifying the tissue structural changes for oral cancer grading in [193]. 
Figure 2c showed the confusion matrix for neoplasia detection, which had a sensitivity of 92.7% and a specificity 
of 82.7%. To further validate the method performance in human patients, we extracted the best 30 features found 
in mouse tongue from pathological images of six human tongue cancer patients, and ran leave-one-out cross 
validation. Figure 2d displayed the confusion matrix for human tongue dataset with a sensitivity of 100% and 
specificity of 84.2%. This demonstrated that the discriminative pathology features extracted from mouse tongue 
is also highly discriminative in classifying human tongue lesions.

Correlation between spectral signature and pathological features.  Figure 3 illustrated the cor-
relation heatmap of pairwise association between the optimal histological feature subsets which were found to 
have the best distinguishing power for neoplasia detection and spectral signature from hyperspectral imagers of 
mouse tongues in vivo and ex vivo. The average and standard deviation of the correlation coefficients for each 
row were listed next to the corresponding heatmap. We had three major observations from the heatmaps. Firstly, 
spectral signature from HSI was significantly associated with the optimal histological feature set, which suggested 
that HSI captures the key diagnostic information reflecting the tissue architectural and morphological changes 
during neoplastic transformation. Secondly, the strengths of the correlation between each histology feature and 

Mouse ID Normal Dysplasia CIS Carcinoma
Total Number 
of Images

M1 45 68 25 20 158

M2 79 56 51 4 190

M3 49 51 21 0 121

M4 18 40 9 0 67

M5 80 92 10 0 182

M6 26 38 8 0 72

M7 29 56 0 0 85

M8 70 53 0 0 123

M9 13 52 0 0 65

M10 13 81 0 0 94

Total Number 
of Images 422 587 124 24 1157

Table 1.  Summary of Pathological Images from a Mouse Tongue Carcinogenesis Model.

Patient ID Normal CIS Cancer
Total Number 
of Images

P1 3 8 4 15

P2 2 0 10 12

P3 1 0 4 5

P4 4 0 4 8

P5 9 0 3 12

P6 3 0 5 8

Total Number 
of Images 22 8 30 60

Table 2.  Summary of Pathological Images of Tongues from Human Patients.
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reflectance intensities over all the wavelengths were very similar, which suggested that the diagnostic importance 
of the whole spectral information for cancer detection. Lastly, the spectral signature of in vivo tongues exhibited 
stronger association with histological features than that of ex vivo tongues, which suggests that hyperspectral 
images of in vivo tongues capture more diagnostic information than those of ex vivo tongues.

Table 3 summarized all the nine histology features which were highly and significantly associated with spectral 
signature (average correlation coefficients rs ≥ 0.5 or rs ≤ −0.5). Seven out of the nine features are quantifying the 
textural changes in tissue. Fractal dimension extracted from the epithelium, nuclei, and cytoplasm were the most 
frequently selected features with strong and significant correlation with spectral signature. Only one histology 
feature had strong enough negative correlation: the mean perimeter of the Delaunay Triangulation constructed 
from the segmented nuclei image.

Furthermore, we plotted the distribution of two representative histology features with significant and strong 
positive and negative correlation with spectral signatures as shown in Fig. 4a,c. As the degree of tissue malig-
nancy increases, the fractal dimension of the epithelium tends to increase (Fig. 4a), which reflects the abnormal 
structural and morphological changes of tissue during neoplastic transformation, such as the loss of cellular 
organization, increase atypical nuclei3, etc. In the meanwhile, as the fractal dimension of the epithelium increases, 
the reflectance intensities also tends to increase as shown in Fig. 4b, which shows positive correlation between 
histology feature and spectral signature. On the other hand, the mean perimeter of the Delaunay triangles tends 

Figure 2.  Feature selection and predictive modeling for the distinction of tongue neoplasia from non-
neoplastic tissue. (a) The average CV accuracy of all samples as a function of feature dimensions. (b) Feature 
ranking frequency as a color heatmap. (c) Confusion matrix of prediction on mouse tongue pathology dataset. 
(d) Confusion matrix of prediction on human tongue pathology dataset.
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to decrease as tissue transform from benign to malignancy (Fig. 4c), which is consistent with the fact that nuclei 
have proliferated and become more crowded in malignant tissue. As shown in Fig. 4d, the reflectance inten-
sity tends to increase while the mean perimeter of Delaunay triangles decreases, exhibiting negative association 
between the two.

Discussion
The major contribution of this study was the successful validation of the hypothesis that the spectral signature 
has significant association with histologic features that reflect the tissue architectural changes during malignant 
transformation. Multiple quantitative histologic features were extracted and selected from the epithelium and 
its constituent components-nuclei and cytoplasm, which best distinguished normal from neoplastic tissue for 
both mouse tongue and human tongue. The selected optimal feature subset was a combination of color, texture, 
morphometry, and topology features, which quantified the architectural and morphological changes during tissue 
malignant transformation. We noted that the average reflectance intensities of neoplasia were stronger than that 
of normal tissue in both in vivo and ex vivo mouse tongues. This observation is consistent with the representative 
in vivo reflectance spectra of nonmalignant and malignant tissue from patients with head and neck cancers17, and 

Figure 3.  Correlation heatmap showing Spearman’s correlation coefficient between spectral signature 
(horizontal axis) and the selected optimal histology feature subset (vertical). Green = positive correlation, 
red = negative correlation, white = no correlation or correlations that are not statistically significant.

Location Feature Name rs Feature Explanation

Epithelium

Fractal dimension (edge) 0.59 Quantitative description of complex, irregularly shaped objects in epithelium

Fractal dimension (skeleton) 0.59  Quantitative description of complex, irregularly shaped objects in epithelium

Pixel number (edge) 0.58  Quantitative description of complex, irregularly shaped objects in epithelium

Nuclei

Fractal dimension (edge) 0.59 Quantitative description of complex, irregularly shaped nuclear objects

Local binary pattern 0.5 Rotation-invariant texture feature characterizing spatial structure and 
contrast of nuclei

Minor axis length (max) 0.45 Quantify the variations in nuclear size and shape

Cytoplasm
Fractal dimension (edge) 0.57 Quantitative description of complex, irregularly shapes in cytoplasm

Gabor texture (entropy) 0.57 Characterize the randomness in texture of Gabor magnitude of cytoplasm 
image

Nuclei Perimeter of Delaunay triangulation 
(mean) −0.49 Describe the distances between individual nuclei

Table 3.  Summary of Representative Histological Features ( ≥ .r 0 5s ).
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is also consistent with the ex vivo reflectance spectra of malignant and adjoining normal tissue from the tongue 
cancer patients18.

Furthermore, we also observed for the first time that reflectance intensity would increase with increased frac-
tal dimension and other texture features throughout neoplastic progression. The increase of fractal dimension 
is associated with the structural changes in epithelium, such as increased nuclear size, atypical nuclear shape, 
increased DNA content, and hyperchromasia with coarse and irregular chromatin clumping. So one possible 
explanation for the spectral difference between normal and neoplastic tongue tissue could be that light scattering 
events inside the epithelium tissues change significantly with the progressive development of squamous lesions, 
thus leading to the alterations in the diffuse reflectance spectrum and forming a potential physiologic basis for 
cancer detection with hyperspectral imaging. More specifically, the scattering coefficient μs (in units of mm−1) is 
a quantitative measure of radiant energy loss caused by tissue scattering8. Qualitatively, for a given tissue volume 
and fixed absorption conditions, the diffuse reflectance increases as tissue scattering μs increases8. Therefore, the 
alteration of the scattering density and distribution in the epithelium is likely to be contributing to the increased 
reflectance in neoplastic tissue. The scattering is relatively homogeneous across all the wavelengths, which may 
explain the homogeneous association between spectral signature and individual histological features.

To better understand the scattering origin in tongue, we further looked into the histological structures of the 
tongue (Fig. 5). Our study shows that mouse tongues have layered structures similar to human tongues, which 
consists of an outer stratified squamous epithelial tissue that is linked to a dense connective tissue (i.e. lamina 
propria) and deep skeletal muscle fibers. According to19, the epithelium generally consists of several cellular layers 
of epithelial cells: it starts from the innermost basal layers of undifferentiated cells, then moves to suprabasal cell 
layers, and ends at the outermost keratinized layers of the mature cells. The tissue components in lamina propria 
mainly include fibroblasts, collagen fibers, and blood vessels (capillaries). The skeletal muscle mainly includes 
bundles of striated muscles with many blood vessels and nerves between them.

In the therapeutic window from about 600 to 1300 nm, biological tissue have relatively low absorption and 
scattering, thus allowing maximum depth of penetration into biological tissue and high reflectance out of tissue8. 
Biological tissue is highly scattering, because cell membranes and various organelles have different refractive indi-
ces compared to the cytoplasm, and the extracellular matrix is also highly scattering. The total tissue reflectance 
can be from two sources: one is the single backscattering mainly from the epithelium and the other is the multiple 
scattering events arising from the deeper tissue structures. As tissue transform from benign to malignant tumors, 
a series of cytological and architectural changes occur progressively, which in turn alters the distribution, density, 

Figure 4.  Distribution of histological features and corresponding scatter plots with spectral signature at 
selected wavelengths. In (a,b), the histology feature is fractal dimension extracted from epithelium, which has 
strong and significant correlation coefficients with spectral signature at 715 nm. In (c,d), the histology feature 
is the mean perimeter of Delaunay triangles extracted from nuclei image, which exhibits significant negative 
correlation with spectral signature at 745 nm.
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size, and shape of major light scatters such as collagen, keratin, cell nuclei, mitochondria, and other cytoplas-
mic organelles during cancer progression. All these architectural and cytological changes could affect the tissue 
scattering properties and thus change the reflectance measured by HSI. In the dysplastic tissue, the loss of cell 
maturation from the basement membrane to the surface is a major morphological change20. This study suggested 
that the structural changes of the neoplastic tongue such as increased epithelium thickness and increased nuclear 
density may increase the backscattering of light, and the increased scattering may lead to the spectral difference 
between neoplastic and healthy tissue. These hypotheses remain to be investigated by future studies.

In summary, we have demonstrated that the spectral difference between normal and neoplastic tissue of 
mouse tongues, as measured by HSI in a macroscopic scale, is associated with the histological features that can 
quantify the tissue architectural alterations during neoplastic transformation. This study provided some insights 
into the interpretation of cancer data acquired with hyperspectral imaging.

Methods
Hyperspectral image acquisition.  Instrumentation.  A CRI Maestro hyperspectral imaging camera sys-
tem (PerkinElmer Inc., Waltham, Massachusetts) was used to collect reflectance images from 450 nm to 900 nm 
with 5 nm increments in this study. This instrument is comprised of a flexible fiber-optical light system with a 
Xenon light source, a solid-state liquid crystal tunable filter (LCTF) as the wavelength dispersion device, a spec-
trally optimized lens, and a 12-bit charge-coupled device (CCD) as the area detector.

Animal data collection.  Animal data was collected using our protocol that was previously described14. Briefly, 
female CBA/J mice purchased from Jackson Laboratory (Bar Harbor, Marine) were treated with drinking water 
mixed with 4-nitroquinoline-1-oxide (4NQO) powder (Sigma Aldrich, Saint Louis, Missouri) for 16 consecutive 
weeks (concentration: 100 μg/mL) in order to induce tongue carcinogenesis. These mice were monitored weekly 
for body weight and water consumption, and the experiment was terminated at 24 weeks. All of the animal pro-
cedures were conducted in accordance with the Guidelines for the Care and Use of Laboratory Animals and were 
approved by the Institutional Animal Care and Use Committee (IACUC) of Emory University. All methods were 
performed in accordance with relevant guidelines and regulations.

Before imaging these mice, we first acquired white and dark reference hypercubes. White reference image 
cubes are acquired by placing a standard white reference board in the field of view. The dark reference cubes 
are acquired by keeping the camera shutter closed in absence of light. Next, we anesthetized the mice with ket-
amine and acquired hyperspectral images of the mouse tongues in vivo in a supine position. Then, we eutha-
nized the mouse by cervical dislocation and procured the tongue specimen for ex vivo hyperspectral imaging. 
Immediately after ex vivo imaging, each dissected tongue was formalin fixed and paraffin embedded and then cut 
into a series of 5 μm tissue slices across the entire tongue. These tissue slides were H&E stained and digitized for 
pathology diagnosis. A clinically experienced pathologist (SM) reviewed the H&E slides and graded the dorsal 
surface of each tongue slice as regions of normal (including healthy and hyperplastic tissue), dysplasia, CIS, and 
SCC3. Finally, we reconstructed the pathology map of the tongue by mapping the histology slides of the tongue 
cross-sections back to the tongue surface. In this way, the tissue position where the spectrum was captured can be 
matched with specific pathological diagnosis.

Figure 5.  Interpretation of the association between HSI and histological features.

https://doi.org/10.1038/s41598-019-54139-5
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Human sample collection.  Human samples were collected using our clinical protocol that was previously 
described15. Briefly, surgical specimens were collected from patients (n = 6) with head and neck cancers who 
were consented for our study under the Head and Neck Satellite Tissue Bank (HNSB, IRB00003208) protocol 
approved by the Emory University Institutional Review Board (IRB). The human subjects of the surgical spec-
imens provided the written, informed consent before the study. The samples were de-identified before being 
released to our laboratory. During the surgery, resected specimens were sent to the pathology room for margin 
assessment. Three tissue samples including clinically visible tumor, clinically normal tissue, and tumor-normal 
interface (tumor with adjacent normal tissue), were procured from the main specimen of each consented patient. 
Specimen collection and imaging did not affect the procedure time in the operating room (OR) or the content and 
verification of the final pathology report.

Before imaging the tissue sample, white and dark reference hypercubes were acquired as described above. 
Next, the specimens were placed on a non-reflective blackboard on the imaging stage. Reflectance hyperspectral 
images of the specimen from the side-view (not vertically from epithelium to deeper tissue as in mouse tongue) 
were obtained from 450–900 nm with 5-nm intervals. After all the imaging procedures were finished, tissue spec-
imen were formalin-fixed overnight and then sent to the Pathology Department for standard histologic process-
ing. Two to three serial sections with 5 µm thickness from the imaging surface were cut and H&E. These tissue 
sections were then digitally scanned for the pathology diagnosis. A clinically experienced pathologist examined 
the histology slides and outlined the tumor boundary on the digitized slides as the gold standard. All methods 
were performed in accordance with relevant guidelines and regulations.

Hyperspectral image pre-processing.  The acquired hyperspectral data was converted into relative reflectance by a 
white reference image and a dark reference image with the following equation:

λ
λ λ
λ λ

=
−
−

I x y I x y I x y
I x y I x y

( , , ) ( , , ) ( , , )
( , , ) ( , , )

,ref
raw dark

white dark

where Iref(x, y, λ) is the normalized reflectance value at the pixel location (x, y) and the wavelength band λ. (x, y, 
λ) is the raw intensity value of a sample pixel (x, y). Iwh(x, y, λ) and Idark(x, y, λ) are the corresponding pixels from 
the white and dark reference images at the same wavelength as the sample image.

Histological image segmentation.  Segmentation of epithelium.  To pre-process histological images for 
feature extraction, we first segment the epithelium tissue from the connective tissue, muscle, and background (see 
Supplementary Fig. 1). The grayscale image extracted from the red color channel exhibits the best contrast for 
separating epithelial layer from the underlying connective tissue, as compared with the luminescence image of 
the HSV color space, and green and blue channel images from the RGB color space. Therefore, to segment out the 
epithelial layer, the red channel image is smoothed with edge-preserving filters21 and then binarized with global 
thresholding. Finally, morphological post-processing was conducted to fill the holes in the epithelium and remove 
small spurious background regions with morphological opening.

Segmentation of nuclei and cytoplasm.  H&E staining of a tongue tumor histological image enhances three 
colors: blue-purple, pink, and white. These colors correspond to specific cellular structures. Basophilic structures 
containing nucleic acids-ribosome and nuclei-tend to stain blue-purple; eosinophilic intra- and extracellular 
proteins in cytoplasmic regions tend to stain bright pink; empty spaces do not stain and tend to be white. The 
colors consisting of blue-purple, pink, and white in the histological image allows a clear distinguishing between 
different cellular components within the epithelium. Therefore, k-means clustering using the Euclidean distance 
is applied on RGB color image of the epithelial layer to segment the epithelium into its three constituent compo-
nents: nuclei, cytoplasm, and background.

The initial nuclear masks generated by k-means clustering suffer from the problems of small spurious back-
ground noise, small holes within the nuclei region due to nuclear inhomogeneity, and nuclear clusters with over-
lapping nuclei. To address the first two problems, a series of morphological operations are conducted: First, the 
holes on nuclei mask are filled; Second, the filled nuclear mask is dilated with a disk radius of 2. Third, mor-
phological opening with a disk radius of 4 is applied and connected components with fewer than 50 pixels are 
discarded. After the morphological processing, pure nuclei images are generated, but some nuclei are still over-
lapping, including large and small nuclear clusters. To obtain the mask for individual nuclei, our strategy is to first 
break down large nuclear clusters into smaller nuclear clusters, and then segment smaller nuclear clusters into 
individual nuclei.

To break down the large nuclear clusters, we first conduct repeated k-means clustering with 3 steps: The first 
step is to identify the large nuclear clusters with solidity lower than 0.9, and with more than 500 pixels. The second 
step is to apply k-means clustering on the large nuclear clusters to generate individual nuclei and small nuclear 
clusters, with fewer large nuclear clusters left. The third step is to repeat the first two steps until all the individual 
nuclei were segmented. Since nuclei color is dominated by blue, any nucleus with red to blue ratio larger than 
1.2 is considered as false nucleus detection and thus is removed from the nuclear image. Finally, morphological 
operation is applied to fill the holes within the nuclear mask, and areas with less than 25 pixels were discarded.

To further segment the small nuclear clusters into individual nuclei, the following five-step procedure is 
repeated twice: The first step is to identify small nuclear clusters more than 150 pixels and lower than 0.9 solidity. 
The second step is to convert the RGB image of these small nuclear clusters into a blue ratio image with the fol-
lowing equation: + +

+ + +
Blue Rlue Green

Red Green Blue
/(1 )

(1 )
. The third step is to smooth the blue ratio image with edge-preserving filter-

ing. The fourth step is to run marker-controlled watershed segmentation on the smoothed blue ratio image to 
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separate the touching nuclei. The final step is to fill the holes within the nuclear mask, and areas with less than 50 
pixels were discarded.

After all the touching nuclei are segmented, the single nuclear masks from all previous steps are combined to 
form a mask for all the nuclei. Nuclear regions with average red to blue ratio higher than 1 are removed from the 
nuclear mask. Ellipse fitting is then conducted to get smooth contour of individual nuclei.

Feature extraction.  Multiple features were extracted from the epithelium, nuclei, and cytoplasm image to 
quantify the abnormal tissue changes during carcinogenesis as described below:

Color features.  Visual examination of histological images reveals noticeable color changes during neoplastic 
transformation, which may be attributed to the invasion of cancer cells from epithelium layer where nuclei stains 
blue-purple into the stroma tissue which stains pink22. The pattern of color changes due to the proliferation 
and abnormal distribution of epithelial nuclei may be captured by the color channel histogram of the image. As 
a pre-processing step, we first transform the image from the RGB color space into the YCbCr space and then 
applying a threshold value of 180 to the luminance (Y) component. This is because it has been shown in previous 
study that removing white pixels could improve the classification performance22. Next, we extract the following 
color features:

Transformed RGB histogram: RGB histogram itself is sensitive to photometric variations. However, 
scale-invariance and shift-invariance with respect to light intensity can be achieved by normalizing the pixel 
value distribution as follows23:
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where μX is the mean and σX is the standard deviation of the distribution in color channel X (X = R, G, B) over the 
area under consideration. Transformed RGB histogram was obtained using 16 bins per color channel, yielding 48 
features each indicating the proportion of pixels in the corresponding bin.

Red-Blue channel difference: we extracted a 16-bin histogram of the red-blue intensity difference, and 7 sta-
tistical measures (mean, median, standard deviation, minimum, maximum, skewness, kurtosis) of the red-blue 
intensity difference.

Texture features.  Texture features characterize differences in the spatial arrangement of gray values of neigh-
boring pixels. Here, we constructed a texture feature set including Gray Level Co-Ocurrence matrices (GLCM) 
feature, Gabor filters, Local binary pattern24, and Fractal textures25.

GLCM features: The gray-level co-occurrence matrix can reveal certain properties about the spatial distribu-
tion of the gray levels in the image26. For example, if the entries in the GLCM diagonal data are large, the regions 
are contiguous and the texture is coarse. With a small offset and the large concentrated entries, each diagonal 
element represents an image area of the corresponding gray-level region of interest. GLCM is an N-dimensional 
square matrix square, where N is the number of gray levels in the image. Element [i, j] of the matrix is generally 
by counting the number of times a pixel with value i is adjacent to a pixel with value j and then dividing the entire 
matrix by the total number of such comparisons made. Each entry is therefore considered to be the probability 
that a pixel with value i will be found adjacent to a pixel of value j.

To represent a grayscale image by GLCMs, we first scale the intensity values in the original image into 64 gray 
levels to reduce computational cost. Next, offsets need to be set to define pixel relationship of varying direction 
and distance. We generate 16 GLCMs with an array of offsets that specify four directions (horizontal, vertical, left 
and right diagonals), and four distances between pixels. Then we average all the GLCMs over each grayscale his-
tology image and extract the 13 Haralick texture features27 and 6 other features28 (autocorrelation, cluster prom-
inence, cluster shape, dissimilarity, inverse difference, and maximum probability) from the averaged GLCMs.

Gabor filter features: It is known that the human visual system processes visual information by decomposing 
the retinal image into a number of filtered images, each of which contains intensity variations over a narrow range 
of frequency (size) and orientation. Gabor filters utilize a multi-channel filtering approach to decompose the 
original image into several filtered images, and are therefore a useful model for texture discrimination29. A 
two-dimensional Gabor function is composed of a sinusoidal signal of some frequency and orientation, modu-
lated by a Gaussian envelope. According to the parameter setting in29, we designed 28 Gabor filters by varying an 
orientation parameter θ = π π π{ }0, , ,

4 2
3
4

 and a radial frequency parameter ∈ …u {2 2 , 4 2 , , 128 2 }0 . Next, 
we apply the Gabor filter array on each histological image, and extract gabor magnitude response from the filtered 
image. Finally, the entropy and energy of the gabor magnitude image are calculated as the Gabor texture 
features.

Local binary patterns (LBP): LBP is a robust and efficient texture descriptor for a wide range of applications in 
texture discrimination30. Here we use a unifosssrm rotation-invariant LBP with a neightborhood of 8 sampling 
points.
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Fractal textures: Fractal geometry provides a tool for quantitative description of complex, irregularly shaped 
objects in pathological images22. A common fractal property of an object is its fractal dimension. The fractal 
dimension provides a quantitative measure of the space-filling capacity of an object. For instance, the fractal 
dimension of a straight line is the same as its topological dimension, i.e., 1, since it can only fill a one-dimensional 
subspace. In this study, we propose a modified segmentation-based fractal texture analysis (mSFTA) based on the 
SFTA method in31. The mSFTA is a two-step method. The first step is to decompose the input image into a set of 
binary images which the fractal dimension of the resulting regions are computed in order to describe segmented 
texture patterns. The set of threshold values is obtained by utilizing the multi-level Otsu algorithm32 to generate 
the first set of binary images until the desired number of thresholds nt is obtained. Next, generate the second set of 
binary images by selecting nt pairs of contiguous thresholds. After this step, the number of resulting binary images 
is 2nt. Here, nt is set to be 4, so a total of 8 binary images were generated. This multi-threshold method allows the 
extraction of region information with different brightness levels. The second step is to extract fractal features that 
measure the complexity, size, and brightness of the 2nt thresholded images. We first extract the boundary and 
skeleton of the binary images, and generate 2nt binary images. Next we calculate the fractal dimension and the 
pixel size of all the binary images, as well as the mean intensity level and entropy of the corresponding grayscale 
boundary and skeleton image.

Morphometric features.  Morphometric features are extracted from each segmented nuclei image, including the 
statistical measures (mean, median, std, min, max, skewness, kurtosis) of 7 size and shape features (area, major 
and minor axis length, nuclei solidity, eccentricity, compactness, and neighborhood radius), and the nucleus to 
cytoplasm ratio.

Topology features.  The Delaunay graph is constructed based on the centroids of connected components seg-
mented in the nuclei image33. We measure the statistics (mean, maximum, minimum, and disorder) of the area 
and perimeter of Delaunay triangles to characterize the distribution of individual nuclei.

Feature selection.  The goal of feature selection is to find a feature set S with n feature {λi}, that “optimally” 
characterize the difference between cancerous and normal tissue. To achieve the “optimal” condition, we used the 
maximal relevance and minimal redundancy (mRMR)34 framework to maximize the dependency of each feature 
on the target class labels (tumor or normal), and minimize the redundancy among individual features simultane-
ously. Relevance is characterized by mutual information I (x; y), which measures the level of similarity between 
two random variables x and y:

= ∬ p x yI(x; y) ( , )log p(x, y)
p(x)p(y)

dxdy
(1)

where p(x, y) is the joint probability distribution function of x and y, and p(x) and p(y) are the marginal probabil-
ity distribution functions of x and y respectively.

We represent the feature of each pixel with a vector λ = λ λ … λ[ , , , ]1 2 i , i = 738 and the class label (tumor or 
normal) with c. Then the maximal relevance condition is:

∑= λλ ∈maxD(s, c), D 1
S

I( , c)
(2)S ii

The feature set selected by maximal relevance is likely to have redundancy, so the minimal redundancy condi-
tion is used to select mutually exclusive features:

∑= λ λλ λ ∈R smax ( ), R 1
S

I( , )
(3)2 , S i ji j

So the simple combination (Eq. (5) and (6)) of these two conditions forms the criterion “minimal-redundancy- 
maximal-relevance” (mRMR).

−max(D R) (4)

i.e.

∑ ∑





λ − λ λ



λ ∈ λ λ ∈max I( , c) 1

S
I( , )

(5)S i , S i ji i j

Correlation analysis between spectral signature and histological features.  Spearman’s rank cor-
relation coefficient is a nonparametric approach for evaluating the degree of monotonic association or correlation 
between two independent variables. It assesses how well an arbitrary monotonic function can describe the rela-
tionship between two variables, without making any assumption about the frequency distribution of the variables. 
It is similar to Pearson’s product moment correlation coefficients except that it operates on the ranks of the data 
rather than the raw data. Spearman’s rank correlation has two major advantages over Pearson’s correlation. First, 
it has no assumption of normality for the dataset and is unaffected by the distribution of the population. Second, 
it is robust to outliers since it operates on the ranks of the data. Therefore, we use Spearman’s rank correlation 
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coefficient to assess the association between spectral signatures and the selected optimal histology feature subset 
from all pathological tissue types. To test the significance of each pairwise correlation, we assume that there is 
no correlation between the two variables and reject the null hypothesis when p value is less than or equal to the 
significance level α = 0.05. The resulting matrix of pairwise correlation coefficients is visualized as a heatmap, 
where the positive and negative correlation coefficients are displayed in green and red, respectively. Correlation 
coefficients that are not statistically significant are displayed in white. All statistical analysis were performed in 
Matlab R2015b.

Data availability
Images and data are anonymized and may be available for research upon request.
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