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A practical solution of the Bethe 
equation in the energy range 
applicable to radiotherapy and 
radionuclide production
D. M. Martinez1, M. Rahmani2, c. Burbadge3 & c. Hoehr4*

While the dose deposition of charged hadrons has received much attention over the last decades 
starting in 1930 with the publication of the Bethe equation, there are still practical obstacles in 
implementing it in fields like radiotherapy and isotope production on cyclotrons. This is especially 
true if the target material consists of non-homogeneous materials, either consisting of a mixture of 
different elements or experiencing phase changes during irradiation. While Monte-Carlo methods have 
had great success in describing these more difficult target materials, they come at a computational 
cost, especially if the problem is time-dependent. this can greatly hinder optimal advancement in 
therapy and isotope targetry. Here, a regular perturbation method is used to solve the Bethe equation 
in the limit of small relativistic effects. Particular focus is given to incident energy level relevant to 
radionuclide production and radiotherapy applications, i.e. 10–200 MeV. We present a series solution for 
the range and dose distribution in terms of elementary functions, as opposed to special functions which 
will aid in uptake by practitioners.

Charged hadrons, like ions or more commonly protons, are an increasingly important tool in both radiotherapy, 
to treat cancer, and in radioisotope production for use in nuclear medicine applications. Currently there are 94 
hadron-therapy centers in operation worldwide, with 66 more under construction or in the planning stages1, and 
more than 1270 cyclotrons are currently used for the production of radioisotopes2. Understanding the interaction 
of protons with matter is therefore not restricted to the understanding of fundamental mechanisms, but has also 
wide-ranging implications for health care3,4. Protons differ from photons in how they lose energy while traveling 
through matter. Charged protons lose energy continuously, mainly through ionization of the atoms of the mat-
ter they are traversing. The energy loss per unit distance in the non-relativistic regime was described by Bethe5. 
At the end of their range, before the protons come to rest, the interaction cross–section increases as the proton 
velocity decreases. This results in the Bragg peak whose position is defined, primarily, by the initial energy of the 
protons. Knowing this position accurately is crucial when treating cancer to avoid excessive dose to neighboring 
healthy tissue and to take full advantage of the cell-killing properties of the protons. It is also important when 
designing targets for medical isotope production, as the Bragg peak coincides with the largest heat deposition. 
This large localized power deposition, if not properly controlled, can increase the temperature and, in a closed 
system, the pressure in the target to the point of rupture, leading to the release of radioactivity. While the range of 
protons in matter is tabulated for several materials6,7, it is still difficult to handle for mixed materials, for example 
non-homogeneous tissue in patients or phase changes in targets. In these situations Monte-Carlo packages like 
SRIM8, FLUKA9,10, Geant411, MCNP12 and others, are often employed with great success but also significant com-
putational cost and time delay, slowing down development or clinical implementation.

The average energy E lost by the protons per unit distance x while traversing through matter is given by the 
Bethe equation5 as reported by Grimes et al.13

1Department of Chemical & Biological Engineering, University of British Columbia, Vancouver, V6T 1Z4, Canada. 
2Department of Mathematics, University of British Columbia, Vancouver, V6T 1Z4, Canada. 3Department of Physics, 
University of Guelph, Guelph, N1G 2W1, Canada. 4Life Sciences Division, TRIUMF, Vancouver, V6T 2A3, Canada. 
*email: choehr@triumf.ca

open

https://doi.org/10.1038/s41598-019-54103-3
mailto:choehr@triumf.ca


2Scientific RepoRtS |         (2019) 9:17599  | https://doi.org/10.1038/s41598-019-54103-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

π
β πε

β
β

β− =


















 −






−






dE
dx

nz
m c

e m c
I

4
4

ln 2
(1 ) (1)e o

e
2

2 2

2 2 2 2

2
2

where n is the electron density of the target material; e is the electron charge; me is the electron mass; I is the mean 
excitation potential of the target material; z is the multiple of the electron charge of the projectile; β ≡ u c/  is the 
ratio of the projectile velocity to the speed of light in vacuum, c; and ε0 is the vacuum permittivity. The Bethe 
equation is a result of a first-order Born approximation with the projectile being faster than the bound electrons 
in the target atoms.

The energy of a proton beam E is related to the mass mp and velocity of a proton via

γ γ β= − = − −E m c ( 1) (1 ) , (2)p
2 2 1/2

and, with the use of the chain-rule, we find
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from which we may express the Bethe equation as
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Here, A m s( / )3 4  and B s m( / )2 2  are defined as
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with representative values for common materials given in Table 1. The reduction given by Eqs. 2–5 was advanced 
by Grimes et al.13, which we use directly in this work.

Using the continuous-slowing-down-approximation (CSDA), Eq. 4 has been integrated from the projectiles’ 
initial velocity to its resting state using a number of different techniques in order to determine its range R, defined 
as the root of =u R( ) 08,14–16. Of note is a recent solution of the Bethe equation advanced by Grimes et al.13 who 
show that in the non-relativistic limit (ε ≡ →u c/ 0o )

ε= − − + ≡ >
RA
u b

E b O b Bu b1
2

( 2ln( )) ( ) ( with 1)
(6)o
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where E1 is the exponential integral; uo is the initial velocity of the particles; b is dimensionless and related to the 
ratio of the incident energy to the mean excitation potential; and the big-O notation is used to describe the error 
term in the approximation. It indicates that the absolute value of the error is approximately ε2. We also note that 
the grouping on the left-hand side of the equation is dimensionless indicating that the characteristic length c for 
this problem is ≡ u A/c o

4 , as R has units of length. The third dimensionless group that governs this problem is ε, 
the ratio of the particle velocity to the speed of light. This solution indicates that the (dimensionless) range R/ c 
may be uniquely expressed as a function of b and ε, and to lowest order is independent of relativistic effects. More 

A (×1028) (m3/s4) B (×10−13) (s2/m2)

H2 2.20 5.92

He 2.20 2.72

Be 21705 1.79

Camorphous 26472 1.4

Cgraphite 22501 1.46

N2 15.44 1.39

O2 17.65 1.20

Ne 10.98 0.83

Ar 19.81 0.61

Kr 39.54 0.32

Xe 59.69 0.21

Ga 6970 0.3

H2O 1470 1.5

CO2 24.43 1.34

CH4 11.02 2.73

Table 1. Estimated values for A and B for the passage of protons using material property values given by7.
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importantly, this solution methodology may be extended and used to estimate the dose distribution. However, to 
do so one requires the use of an inverse exponential integral function, a non-standard function, which Grimes  
et al.13 indicate that no closed-form expression exists which hinders the utility of this expression. Overcoming this 
difficulty motivates this work.

In this work, we present a solution of the Bethe equation using a regular perturbation method. Using a solu-
tion methodology different to that performed by Grimes et al.13, we are able to create a reasonable solution which 
avoids the use of the exponential integral. We present our solution in the small relativistic limit and then extend 
the number of terms to cover the energy range up to ~200 MeV for protons. We find that with this novel solution 
the complexity of using the Bethe equation has been reduced dramatically, without significant loss of precision. 
Because of this, we anticipate uptake of these expressions by the radioisotope and radiotherapy communities17 for 
optimization purposes, for example target design.

Model Derivation
Our methodology is inspired by Grimes et al.13 who demonstrate that the problem can be approximated by a 
series solution. Here, we present an alternative methodology in creating the series and begin our solution by 
scaling Eq. 4 with

= =


u x Ru
u

x R( , ) 1 ( , )
(7)o c

and then switch the roles of the dependent and independent variables to avoid divergence of the velocity gradient 
near the Bragg peak. This yields
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where F u( ) can be approximated by a Taylor series about ε = 0, i.e.
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If we seek a solution of the form
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and reduce the complexity of the notation by transforming the dependent variable using
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we find that
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when terms of equal order are equated. Under this transform, we note that at the stopping distance the trans-
formed variable is unbounded, i.e. → ∞z , as →u 0. Indeed, when the beam first enters the target = −z b2ln( )o  
as =u(0) 1.

Applications
estimating range. We estimate the range by solving Eq. 12 as an example. Following this we simply report 
the solution for the higher order terms, i.e. Eqs. 13 and 15. We begin by integrating Eq. 12 by parts to give
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In an unmotivated trick, we do so so again and find that
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With this we postulate that the solution of the problem may be expressed as a series in 1/zo as the magnitude 
of zo is large. When this integration procedure is repeated, we find that

∑= −





− + + …





= − −
−− −

=

+R
b

e
z z z

e
b

n
z

1
2

1 1 2
2

( 1) ( 1)!

(18)

z

o o o

z

n

N
n

o
n2 2 2

1

1o o

For insight into this series, we estimate the magnitude of the three first terms using helium as the target mate-
rial and 100 MeV protons as the projectiles. We estimate = . ×b 4 5 103 and = − .z 16 80 , giving i.e. − = .z1/ 0 060  
and = .z2/ 0 0070

2 ; hence < − <z z1 1/ 2/0 0
2, implying a convergent series. This solution may be expressed in a 

more convenient form by using Eq. 11. Indeed, we find that
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when truncated after three terms, representing an error of ~1% at 100 MeV. We extend the leading-order solution 
by repeating the procedure given above and solve Eqs. 13–15 using the same procedure to find that
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We demonstrate the usefulness of this solution in Fig. 1 where excellent agreement is found when compared 
to literature values7 and a numerical solution of the Bethe equation using Romberg integration by applying 
Richardson extrapolation on a trapezoidal rule for a select number of materials - a gas, liquid, a solid and a com-
plex material; a larger selection of material is shown in Figs. 2, 3 and 4. These calculations were performed using 
the parameters given in Table 1. At εO( )2  the solution is fairly reasonable to 50 MeV; at εO( )8  the expression yields 
reasonable estimates to ~200 MeV. The immediate benefit of Eq. 20 is that we are able to estimate the stopping 
distance without use of the exponential integral. Increasing the number of terms does not improve the fit below 
1 MeV as the Barkas and Bloch corrections are not included. Interestingly, we find that the empirical 
expression18,19

α=R E (21)p
0

behaves similarly to our solution. Here, α is a material dependent constant and p depends on the proton velocity 
which typical ranges from 1.5 to 2. As can be seen in Fig. 5, in the region < <b10 101 3, R varies only weakly 
implying that over small energy intervals, R may be taken as constant, yielding ∝R E0

2. This is also evident if we 
solve the Bethe equation without including the logarithmic term.

estimating dose distribution. To estimate the dose distribution u(x), we proceed in an analogous manner 
to that given above. Here, we examine the solution to the leading order equation, i.e. Eq. 12 and then report the 
solution to the higher order terms. As Eq. 12 is separable, we are in a position to integrate this expression by parts, 
repeatedly, to generate a series in 1/z. We abandon the initial condition ( =x z( ) 0o ) and in its place, use the stop-
ping condition defining the range,( → ∞ =x Rz( )o ). By doing so, this dramatically aids in the evaluation of the 
integral and allows for the development of the series. To highlight this procedure, we rewrite Eq. 12 as
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This is directly analogous to the problem solved previously and allows us to write
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Figure 1. A comparison of solution of the numerical and analytical solutions of Bethe Eq. 20 to literature data7 
for four different materials: gas (Ne), liquid (H2O), solid (Mo), and a complex solid (bone). The results are 
presented in dimensional form R as defined in Eq. 7.

Figure 2. A comparison of solution of the numerical and analytical solutions of Bethe equation Eq. 20 to 
literature data7 for four different materials: Hydrogen (H2), Helium (He), Beryllium (Be), and amorphous 
carbon (C). The results are presented in dimensional form R as defined in Eq. 7.
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Figure 3. A comparison of solution of the numerical and analytical solutions of Bethe Eq. 20 to literature data7 
for four different materials: graphite (C), Nitrogen (N2), Oxygen (O2), and Argon (Ar). The results are presented 
in dimensional form R as defined in Eq. 7.

Figure 4. A comparison of solution of the numerical and analytical solutions of Bethe equation Eq. 20 to 
literature data7 for four different materials: Krypton (Kr), Xenon (Xe), Carbon Dioxide (CO2), and Methane 
(CH4). The results are presented in dimensional form R as defined in Eq. 7.
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Finally, we apply the solution methodology to the higher order terms as
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A representative comparison is given in Fig. 6 where the numerical and approximate solution are compared to 
SRIM8 of the dose distribution of 100 MeV protons impinging in four different materials. The data points are aver-
age energy results of protons intersecting the individual depth and the error bars are the corresponding standard 
deviations of the individual energy spreads. Again, very good agreement is observed between the analytical and 
our approximate solution and with SRIM simulations.

Robustness of the Solution. In this work we present a series solution to approximate the solution of the 
Bethe equation. We have tested the error in this approximation by comparison to a numerical solution, tab-
ulated data, and SRIM calculations. We find excellent agreement over a defined proton energy range appli-
cable to radiotherapy and radionuclide production. One immediate benefit of this solution is that estimate 
water-equivalent-thickness for radiotherapy applications can be improved, over the empirical Bragg-Kleemann 
law19.

Care must be given in interpretation of our solution. In essence, we advance a simpler solution to the Bethe 
equation. Although the Bethe equation is routinely used, there are limitations in its use. In practice, there are a 
number of physical mechanisms which cause deviations from the range predicted by Eq. 6. As is evident in our 
results, the first type of deviations occurs at low incident energy, where the first-Born approximation reaches its 
limit. Here we find corrections to the form of the Bethe equation by Barkas or Bloch6. In this energy regime the 
Barkas, Bloch and Shell correction need to be applied. In addition, at high projectile energies, relativistic and 
density effects and radiative losses need to be taken into account6.

In the second category, we find that the distance travelled by the particle along its initial direction is slightly 
reduced by small deflections caused by scattering. The impact of this is minimal for low Z materials, with the 

Figure 5. A comparison of solution of the numerical and analytical solutions of Bethe Eq. 20 to literature data7. 
The data is presented in dimensionless form R as defined in Eq. 7.
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‘detour factor’ of the projected range greater than 99.87% for protons of energy >100 MeV in water6 or for metals 
where the stopping distance is small. Outside of this range, the detour factor becomes substantial, especially for 
gases16 where Schlyer et al.20 shows that the standard deviation of the probability distribution in scattering angle 
is related in a complex manner to the local energy of the beam.

In the third category, we find a number of works highlighting the effect of a two-way coupling between the 
beam and the absorbing material on the irradiation profile. In perhaps the most widely cited series of work, 
Heselius and his co-workers21,22 demonstrate experimentally symmetry-breaking in the beam profile when 
density of the gas target is stratified due to localized heating. Indeed, this problem is relatively unexplored on 
the theoretical front with most authors de-coupling the temperature effects23–26. In perhaps the most com-
prehensive study, O’Brien and her co-workers25,27,28 couples Monte-Carlo simulation of the beam profile with 
Reynolds-Averaged Navier-Stokes (RANS)29 modelling of the transport equations to estimate the temperature, 
density and beam profile. Interestingly, with these latter two categories, these deviations are not evident in our 
result in this range, even with gas.

conclusion
We present a simple and easy to implement approximate solution of the Bethe equation with good agreement 
in the proton energy range of 10 MeV to approximately 200 MeV, applicable for the energy range of proton radi-
otherapy and medical isotope production. Although tabulated values are available for uniform materials, this 
solution methodology dramatically reduces the effort to estimate the range in or the dose distribution for mixed 
media, i.e. composite bodies or multi-layer materials, or estimating water equivalent thickness. Within solid 
target design, it is now possible to combine computational fluid dynamics codes with our method to estimate 
internal heating; instead of coupling these with Monte-Carlo packages. Our approach can also easily be cou-
pled with fluid materials for reduced-order modeling of the interaction caused by irradiation and consequent 
fluid-dynamic effects. This in turn simplifies and accelerates the solution finding and is therefore a potentially 
convenient tool to advance radiotherapy and medical isotope-production targetry.
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