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Thromboinflammatory changes 
in plasma proteome of pregnant 
women with PCOS detected by 
quantitative label-free proteomics
R. K. Arffman   1,6, M. Saraswat2,3,6, S. Joenväärä2,3, M. Khatun1, R. Agarwal4, T. Tohmola2,3, 
I. Sundström-Poromaa   5, R. Renkonen2,3 & T. T. Piltonen   1*

Polycystic ovary syndrome (PCOS) is the most common endocrinological disorder of fertile-aged 
women. Several adverse pregnancy outcomes and abnormalities of the placenta have been associated 
with PCOS. By using quantitative label-free proteomics we investigated whether changes in the plasma 
proteome of pregnant women with PCOS could elucidate the mechanisms behind the pathologies 
observed in PCOS pregnancies. A total of 169 proteins with ≥2 unique peptides were detected to be 
differentially expressed between women with PCOS (n = 7) and matched controls (n = 20) at term of 
pregnancy, out of which 35 were significant (p-value < 0.05). A pathway analysis revealed that networks 
related to humoral immune responses, inflammatory responses, cardiovascular disease and cellular 
growth and proliferation were affected by PCOS. Classification of cases and controls was carried out 
using principal component analysis, orthogonal projections on latent structure-discriminant analysis 
(OPLS-DA), hierarchical clustering, self-organising maps and ROC-curve analysis. The most significantly 
enriched proteins in PCOS were properdin and insulin-like growth factor II. In the dataset, properdin had 
the best predictive accuracy for PCOS (AUC = 1). Additionally, properdin abundances correlated with 
AMH levels in pregnant women.

Polycystic ovary syndrome (PCOS) is a complex, heterogeneous and often underdiagnosed endocrine disorder. 
According to the International PCOS Guideline, the syndrome can be diagnosed if at least two of three of the 
following criteria are fulfilled after exclusion of other etiologies: oligo- or anovulation, clinical and/or biochem-
ical hyperandrogenism and polycystic ovaries1. The estimated prevalence varies from 8–12% depending on the 
study population and applied criteria2–4. As PCOS has a strong metabolic and inflammatory side, it should be 
considered more than a mere gynaecological problem. Indeed, affected women are at increased risk for metabolic 
syndrome, type II diabetes and cardiovascular diseases5. Moreover, low-grade chronic inflammation is commonly 
detected in women with PCOS, and it has been linked to the development of insulin resistance and accelerated 
atherosclerosis6.

Due to the vast scientific interest in PCOS, it has become evident that affected women also present with high 
pregnancy- related morbidity and adverse offspring outcomes7,8. Affected women have a 3 −4- fold increase in 
the risk of pregnancy-induced hypertension and pre-eclampsia and a 2-fold higher risk for preterm delivery 
independent of BMI9. Structural alterations of placentae from women with PCOS have been reported, even in 
uncomplicated pregnancies, possibly indicating abnormal placentation and defective placental function10,11.

Proteomic technologies have been used to study PCOS-related alterations in protein expression in the plasma, 
ovarian tissue, follicular fluid, adipose tissue and T cells12–16. A list of proteomic biomarkers for PCOS has also 
been published, showing an association with networks related to the coagulation system, cell cycle regulation, 
metabolism, apoptosis, immune system/inflammation, cell signalling, oxidative stress, insulin, adipose tissue 
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regulation, cholesterol and cell structure17. Interestingly, the proteomics biomarkers detected in women with 
PCOS overlap with those detected in women with pre-eclampsia, a disorder defined by hypertension and pro-
teinuria, often related to placental dysfunction18. It is important to note that all the previous proteomic analyses 
in women with PCOS have been conducted using samples from non-pregnant women, and to date, no proteomics 
studies have been published for pregnant women with PCOS. Given that the women with PCOS are at risk for 
adverse gestational outcomes, a proteomic analysis during pregnancy could clarify the mechanisms leading to 
these conditions. In general, pregnancy can be considered a stress test as well as a window of opportunity to esti-
mate health risks in women later in life19. For PCOS, it could be possible to identify the affected women, especially 
those at risk for adverse health outcomes later in life, by discerning the differences in circulating proteins.

By adopting a quantitative label-free proteomics approach, plasma proteomes of samples from uncomplicated 
term pregnancies of non-obese women with PCOS were compared with those of controls matched for age and 
BMI. A total of 169 proteins with two or more unique peptides were differentially expressed between cases and 
controls, from which 35 passed the cut-off Mann-Whitney p-value of 0.05. These proteins formed protein-protein 
interaction networks related to humoral immunity, inflammation and cardiovascular disease. The data were fur-
ther analysed by the principal component analysis (PCA). To determine how well the proteomic analysis could 
classify the women with PCOS and controls and to identify possible biomarkers for PCOS, three parallel methods 
were used: orthogonal projections to latent structure-discriminant analysis (OPLS-DA), hierarchical clustering 
(HCA) and self-organizing maps (SOMs). We also found that the detected proteins correlated with several circu-
lating hormones. It was also of interest to identify novel biomarkers that could be utilized in PCOS diagnostics. 
A ROC-curve analysis revealed that in the data set, complement factor properdin (properdin) was able to classify 
cases and controls with very high accuracy. Interestingly, properdin abundances correlated with AMH levels at 
the end of pregnancy.

Results
Metadata.  Label-free quantitative proteomics was performed on seven plasma samples from pregnant 
women with PCOS at term and on 20 plasma samples from pregnant control women matched for age and BMI. 
All plasma samples were collected at the delivery ward when the women arrived to give birth. A schematic rep-
resentation of the entire analysis process is depicted in Fig. 1. Patient demographics are presented in Table 1. 
Furthermore, plasma Anti-Müllerian hormone (AMH) and steroid hormone analysis results from the authors’ 
previous study20 were added in the analyses as additional variables.

Proteomics in cases and controls.  A total of 169 proteins with two or more unique peptides were iden-
tified, from which 35 passed the cut-off Mann-Whitney p-value of 0.05. The fold-changes of the proteins with 
a p-value < 0.05 ranged from 13,3 to −3.81. The proteins with two or more unique peptides detected and a 
Mann-Whitney p-value < 0.05 as well as their mean abundances are listed in Table 2. The exact standardized 
protein abundances for each individual are listed in Supplementary Table 1.

Pathway analysis.  The Ingenuity pathway analysis (IPA) network module was used to identify the protein 
interaction networks of proteins differentially expressed in pregnant women with PCOS compared to pregnant 
control women. Only the proteins passing the cut-off p-value of 0.05 from the Mann-Whitney analysis were used. 
Network analysis reveals shared functional and biological aspects between the proteins which makes it easier to 
interpret how the proteomic changes affect the body as a whole. The networks that were identified were related to 
humoral immune responses, inflammatory responses, cardiovascular disease and cellular growth and prolifera-
tion. Full lists of proteins in these two networks can be found in Supplementary Tables 2 and 3.

Principal component analysis (PCA).  A PCA was done using Progenesis QI Proteomics to determine 
the principal axes on protein abundance variations in PCOS cases and controls. PCA reduces the data to its basic 
components so that patterns and clusters can be detected. The analysis with all the proteins with two or more 
unique peptides did not show distinct clustering (Fig. 2b), however, when PCA was carried out with only the 
proteins with two or more unique peptides and a Mann-Whitney p-value < 0.05 the cases and controls mostly 
separated along the X-axis (Fig. 2a), revealing that the proteomes of pregnant women with PCOS resemble each 
others.

Hierarchical clustering and SOM clustering.  Protein abundance data of PCOS vs control (top 35 
Mann-Whitney Passing proteins only) were used for hierarchical clustering (HCA) and self-organizing map 
(SOM) clustering analyses to determine which samples cluster together. Clustering analyses are unsupervised 
methods, so the only information provided is the protein abundance data, based on which the process clusters 
the individuals whose proteomes most resemble each other. In hierarchical clustering analysis 6/7 cases of PCOS 
clustered together (Fig. 3). In SOM clustering, however, all cases cluster next to each other (Fig. 4). This shows 
that based on only the protein abundances, unsupervised methods find enough similarities in proteomes of preg-
nant women with PCOS to cluster them together.

Orthogonal projections to latent structure-discriminant analysis (OPLS-DA).  OPLS-DA mod-
elling was used to identify proteins that can differentiate the cases from controls. OPLS-DA is a modelling tech-
nique that can perform binary comparisons. The modelling provides two values: (p) is the magnitude of change 
of a given marker, and (p(corr)) depicts significance of the marker in binary comparison. Any experiment with 
a large number of measured variables can be modelled with OPLS-DA to filter out the most differing mark-
ers among the two groups. OPLS-DA can separate predictive and uncorrelated variance in binary comparisons. 
According to OPLS-DA, two proteins that passed the cutoff value of +0.65 or −0.65 for p(corr) were enriched in 
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the plasma of pregnant women with PCOS: properdin (CFP) (p(corr) value = −0.850) and insulin-like growth 
factor II (IGF-II) (p(corr) = −0.691), indicating them as potential discriminant markers in our dataset.

ROC curve analysis.  To identify the proteins that could be used to distinguish the cases from controls, 
a ROC curve analysis was performed using Metaboanalyst analysis tool21. The top 35 plasma proteins and 
AMH-levels were used for calculating ROC curves for individual markers as well as combination ROC curves for 

Figure 1.  Quantitative Proteomics Analysis Workflow (see Methods for further information). Lithium-heparin 
plasma samples were depleted of the 12 most abundant proteins and digested with trypsin. Nanoflow ultrahigh 
performance liquid chromatography – Ultra-Definition Mass-spectrophotometry (nUPLC-UDMSE) was 
performed in triplicates. After acquisition, the data analysis was performed with Progenesis QI. Differences 
in protein abundances between groups were assessed by the Mann-Whitney U-test with a cut-off level set to 
p < 0.05. A network analysis by IPA was used to build protein interaction networks of proteins that differed 
between cases and controls and to provide a broader scope for interpretation regarding how the changes may 
affect the functions of the body. The Principal Component Analysis (PCA) was used to visualise the principal 
axes of protein abundance variations in cases and controls in order to define how much variation the sample 
classes has when compared and whether the cases and control separate from each others. A clustering analysis 
is an alternative technique to analyze the differences between groups as well as similarities within a group. 
Self-organizing maps (SOM) is an unsupervised data visualization technique that reduces the dimensions of 
data through the use of self-organising neural networks. Hierarchical clustering analysis (HCA) calculates the 
dissimilarity between individuals and builds a hierarchy of clusters. OPLS-DA was used to define differences 
between the groups and to identify the proteins with the highest discriminative power. These proteins were then 
used for the ROC-curve analysis to calculate AUC-values.

Variable

PCOS (N = 7) Control (N = 20)

p-valueMean/Median SD/IQR Mean/Median SD/IQR

Age, years 32 4.7 32 3.8 0.802

Pre-pregnancy BMI, kg/m2 21.79 3.98 23.36 3.50 0.310

Gestational weight gain (kg) 11.0 4.3 12.5 3.1 0.497

Gestational length,days 279 11 286 6 0.045*

Systolic BP, mmHg 123 11 125 10 0.7567

Diastolic BP, mmHg 76 7 77 6 0.871

Birthweight, g 3430 421 3863 573 0.161

Cesarean section (%) 14,3 — 25 — 0.656

AMH (ng/mL) 1.60 0.93–3.54 0.91 0.49–1.14 0.013*

Testosterone (nmol/L) 3.48 2.77–5.08 2.54 1.68–3.74 0.166

Estradiol (nmol/L) 80.59 17.76 71.35 39.7 0.302

Table 1.  Clinical characteristics of the study subjects. BMI, body-mass index; BP, blood pressure; SD, standard 
deviation; IQR, inter-quartile range; N, number of participants; AMH, Anti-Müllerian hormone.
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Protein name UniProt ID
Peptide 
count

Unique 
peptides

Mann- 
Whitney 
P-value

Max fold 
change

Normalized abundance Raw abundance

Control 
(mean ± SD)

PCOS 
(mean ± SD)

Control 
(mean ± SD)

PCOS 
(mean ± SD)

Properdin (CFP) P27918 4 3 6,02E-05 13,3 9871 ± 8885 131111 ± 60591 8907 ± 7368 81473 ± 41346

Actin_ cytoplasmic 1 
(ACTB) P60709;P63261 12 3 6,91E-03 3,1 2019 ± 1857 6287 ± 6080 1747 ± 1199 3588 ± 2964

Insulin-like growth factor 
II (IGF2) P01344 2 2 4,97E-04 2,6 38381 ± 23687 100387 ± 34863 34863 ± 17388 64047 ± 30921

Platelet factor 4 (PF4) P02776;P10720 6 6 2,19E-03 2,0 96379 ± 83088 193262 ± 86578 89987 ± 54166 121068 ± 65809

F-box/LRR-repeat protein 
6 (FBXL6) Q8N531 2 2 3,64E-03 1,8 163796 ± 81585 297700 ± 135684 151970 ± 69540 192129 ± 120097

Protein SAA2-SAA4 
(SAA2-SAA4)

A0A096LPE2; 
P35542;P0DJI9 11 8 1,84E-03 1,8 94904 ± 30973 166255 ± 61245 88176 ± 28302 106182 ± 50352

Platelet basic protein 
(PPBP) P02775 8 7 9,35E-03 1,6 126680 ± 61697 207258 ± 69378 114575 ± 40132 129752 ± 60820

Coagulation factor XII 
(F12) P00748 15 11 4,97E-04 1,6 168494 ± 49967 266963 ± 58132 164621 ± 67246 163966 ± 46991

Fibulin-1 (FBLN1) P23142 24 19 6,91E-03 1,5 186638 ± 76342 283480 ± 90281 177325 ± 73434 178048 ± 73724

Thrombospondin-1 
(THBS1) P07996 9 6 6,91E-03 1,5 40101 ± 11892 60276 ± 25891 38058 ± 12812 41024 ± 30970

Ensconsin (MAP7) Q14244 3 3 2,17E-02 1,4 140935 ± 43737 191963 ± 55106 134780 ± 49697 119405 ± 44316

Clusterin (CLU) P10909 41 34 1,28E-03 1,4 104524 ± 182056 1411565 ± 233890 996799 ± 265839 899511 ± 341864

Complement factor 
H-related protein 4 
(CFHR4)

Q92496 2 2 4,07E-02 1,3 6025 ± 3254 8120 ± 3551 5561 ± 2350 5138 ± 2453

Apolipoprotein A-IV 
(APOA4) P06727 56 54 2,48E-02 1,3 1342773 ± 378828 1787655 ± 541403 1259649 ± 367488 1165558 ± 577026

Apolipoprotein C-III 
(APOC3) P02656 26 23 2,48E-02 1,3 779875 ± 355305 1019474 ± 264894 739388 ± 350789 627452 ± 207791

Alpha-1B-glycoprotein 
(A1BG) P04217 94 83 2,17E-02 1,3 5953838 ± 1342139 7716950 ± 1858329 5646416 ± 1498040 4962091 ± 2219956

Inter-alpha-trypsin 
inhibitor heavy chain H2 
(ITIH2)

P19823 94 82 3,64E-03 1,3 3229720 ± 548599 4100130 ± 965612 3087860 ± 821714 2685395 ± 1383517

Hemopexin (HPX) P02790;Q2M389 
Q8N987;Q9NZ08 122 111 1,44E-02 1,3 7363912 ± 1596736 9221228 ± 2118666 7115877 ± 2417683 5933958 ± 2625698

Inter-alpha-trypsin 
inhibitor heavy chain H1 
(ITIH1)

P19827 79 70 3,19E-02 1,2 3496796 ± 808572 4264955 ± 1024208 3322647 ± 963914 2795958 ± 1499041

Apolipoprotein E (APOE) P02649 48 45 2,48E-02 1,2 1265005 ± 264966 1521778 ± 301299 1207847 ± 350338 960169 ± 347148

Apolipoprotein C-IV 
(APOC4) P55056 9 8 2,48E-02 1,2 89509 ± 50207 107081 ± 28316 81235 ± 31210 66879 ± 24291

Plasminogen (PLG) P00747;Q15195; 
Q02325;P35900 103 93 3,19E-02 1,2 3257229 ± 949755 3823210 ± 676537 3098101 ± 1041808 2449869 ± 996846

Vitronectin (VTN) P04004 79 62 3,19E-02 1,2 2833870 ± 532068 3299916 ± 652184 2721551 ± 767587 2111094 ± 875460

Complement component 
C8 alpha chain (C8A) P07357 29 25 4,58E-02 −1,2 471877 ± 74769 409700 ± 99288 458636 ± 142589 266387 ± 142378

Complement component 
C8 beta chain (C8B) P07358 30 25 3,61E-02 −1,2 673193 ± 146055 574634 ± 243926 649089 ± 200788 389647 ± 289951

Carboxypeptidase B2 
(CPB2) Q96IY4 13 11 1,66E-02 −1,2 210142 ± 48905 174108 ± 43031 200478 ± 61439 114195 ± 61836

Serum paraoxonase/
arylesterase 1 (PON1) P27169 27 23 2,81E-02 −1,3 1370720 ± 411430 1070315 ± 482501 1335219 ± 518580 722929 ± 570982

Zinc-alpha-2-glycoprotein 
(AZGP1) P25311 18 16 4,07E-02 −1,3 262328 ± 64339 199592 ± 56997 256660 ± 92476 129727 ± 64001

Prostaglandin-H2 
D-isomerase (PTGDS) P41222 3 2 4,29E-03 −1,5 7234 ± 1724 4701 ± 1943 6932 ± 2207 2910 ± 1249

Glyceraldehyde-3-
phosphate dehydrogenase 
(GAPDH)

P04406 4 4 4,58E-02 −1,8 12975 ± 14276 7261 ± 2383 11191 ± 8804 4770 ± 3123

Complement factor 
H-related protein 5 
(CFHR5)

Q9BXR6 4 2 2,81E-02 −1,8 9172 ± 4751 5084 ± 2454 9080 ± 5239 3449 ± 2385

Cystatin-C (CST3) P01034 3 2 5,04E-03 −1,9 24739 ± 10617 13244 ± 4178 24523 ± 13612 8542 ± 4398

Granzyme M (GZMM) P51124 2 2 2,19E-03 −3,3 171820 ± 102607 52349 ± 80914 165486 ± 97526 41860 ± 75989

Embryonic growth/
differentiation factor 1 
(GDF1)

P27539 2 2 2,17E-02 −3,8 35570 ± 90017 9334 ± 6358 27475 ± 55416 6343 ± 6445

Table 2.  List of proteins that were differentially abundant (p < 0.05) in the plasma of pregnant women at term 
with PCOS compared with age and BMI matched controls.
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sets of biomarkers by a support vector machine algorithm (Fig. 5a and Suppl. Table 4). Properdin alone had the 
best predictive accuracy (AUC-value = 1, Fig. 5c) but IGF-2 also performed well (Fig. 5b). Of note, properdin was 
also the top protein found by OPLS-DA in the dataset. This serves as the orthogonal statistical validation of the 
OPLS-DA modelling and non-parametric testing.

Correlation analysis.  In order to see which clinical parameters correlated with protein abundances meas-
ured with LC-MS, we used clinical data as well as steroid hormone and AMH values form our previous study20. 
All significant correlations are listed in Table 3. Interestingly, properdin levels correlated positively with AMH 
levels (r = 0.417, p = 0.0383). As AMH can be considered a marker for antral follicle count, high properdin lev-
els may be linked with polycystic ovarian morphology. The strongest correlation was detected between inactive 
dipeptyl peptidase 10 (DPP10) and testosterone (r = 0.700, p < 0.001).

Discussion
PCOS affects around 8–12% of the female population, making it one of the most common endocrinological dis-
orders worldwide2–4. Although the affected women suffer from reproductive and metabolic dysfunction, the syn-
drome often remains undiagnosed22. PCOS is a risk factor for adverse pregnancy outcomes, such as pregnancy 
induced hypertension, pre-eclampsia, prematurity and gestational diabetes, but the underlying mechanisms 
remain unclear7,9. During pregnancy major metabolic and inflammatory changes occur in the female body. To 
determine whether these responses are affected by PCOS, plasma samples from uncomplicated term pregnancies 
from non-obese women with PCOS and matched controls were compared using label-free quantitative proteom-
ics. To the authors’ knowledge, this is the first study to assess the plasma proteome of pregnant women with PCOS.

The analysis indicated that 35 proteins were significantly differentially expressed between the cases and the 
controls. Most of the proteins were associated with networks related to inflammation, humoral immunity and 
cardiovascular disease. Amongst these were some proteins previously detected in non-pregnant women with 
PCOS, but proteins that have not been associated with PCOS previously were also identified. SOM clustering 
and hierarchical clustering analyses revealed that the PCOS cases cluster close to each other. The support vector 
machine based ROC analysis was used to identify individual or combinations of proteins that could best classify 
cases from controls, and it revealed that properdin (CFP) alone provided the best prediction for PCOS diagnosis 
in thedataset.

Several of the proteins now identified in pregnant women with PCOS have been reported to be differen-
tially expressed in non-pregnant women with PCOS as well, including increased levels of insulin growth fac-
tor II (IGF2), platelet factor 4 (PF4), serum amyloid A (SAA), fibulin-1 (FBL1), apolipoprotein A4 (APOA4) 
and alpha-1B-glycoprotein (A1BG) and decreased levels of zinc-alpha-2-glycoprotein (AZGP1) and serum 
paraoxonase/arylesterase 1 (PON1)23–27. In contrast to this finding, for non-pregnant women with PCOS, serum 
thrombospondin-1 (THBS1) levels have been reported to be lower28. Some of the proteins that were shown to be 

Figure 2.  Principal component analysis. Purple dots represent PCOS cases (circled in red) and blue dots the 
controls (circled in blue). (a) All differentially expressed proteins with ≥2 unique peptides are presented (b) 
Only proteins passing the cut-off of p < 0.05 for Mann-Whitney test are depicted. The cases and controls mostly 
cluster separately along the x-axis.
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increased in the plasma of pregnant women with PCOS in the present study have been detected to be decreased 
in the follicular fluid of women with PCOS14. Interestingly, all these proteins are involved in thrombosis, inflam-
mation and/or metabolism.

Indeed, the network analysis revealed that a vast majority of the differentially expressed proteins belonged to 
networks related to humoral responses, inflammatory responses, cardiovascular disease, lipid metabolism and 
cellular growth and proliferation. Even a normal pregnancy is an acquired hypercoagulable and inflammatory 
state29,30. The concentrations of coagulation factors increase and fibrinolysis and anticoagulatory factors decrease 
during gestation29. Furthermore, insulin sensitivity decreases by 50–60%31. All these changes are mandatory for 
the mother to adapt to pregnancy and on the other hand, a rigorous control of these factors is critical for a healthy 
pregnancy. Conditions that predispose to thrombosis, inflammation or insulin resistance may affect this fine bal-
ance, leading to suboptimal implantation and placentation and possibly complications during pregnancy.

The protein levels of IGF-2 were significantly higher in women with PCOS in our dataset. IGF-2 has been 
linked to placental function in several studies: Igf2 overexpression in mice leads to overgrowth of both the pla-
centa and the fetus32 and deletion of the placental-specific Igf2 leads to reduction in placental and fetal weight and 
decreased transport of nutrients and reduced diffusion capacity33,34. In quinea pigs, administration of IGF-II to 
the mother in early-pregnancy increases placental functional capacity and weight of the fetus and the placenta35. 
Women with PCOS have a higher risk for large for large for gestational age (LGA) infants in general8, which could 
be partly explained with higher IGF-2 levels in their circulation. In our dataset, IGF-2 protein levels at the end 
of pregnancy did not correlate with fetal weight, however, we did not have any LGA infants in the PCOS group. 
Unfortunately, we did not have the information for placental weight to correlate with the IGF-2 levels.

Women with PCOS have a 3–4-fold higher risk for developing pre-eclampsia (PE) during pregnancy9. 
Pre-eclampsia is characterised by hypertension (≥140/90 mmHg) and proteinuria (>300 mg/day) after the 20th 

Figure 3.  Hierarchical clustering analysis (HCA) of the 35 differentially expressed proteins in cases and 
controls. 5/6 of the cases clustered together.
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7Scientific Reports |         (2019) 9:17578  | https://doi.org/10.1038/s41598-019-54067-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

week of gestation. PE is assumed to stem from defective vascular function and placentation leading to hypoxia of 
the placenta, the release of soluble factors and over time, to generalised inflammation and progressive endothelial 
damage36. It has been reported that the proteomic markers of PCOS overlap with those identified in pre-eclamptic 
patients18, however, none of the PCOS studies utilised in the systematic review included data of pregnant women. 
Like PCOS, pre-eclampsia is a multi-systemic syndrome, where complex pathophysiological changes, includ-
ing endothelial dysfunction, inflammation, activation of coagulation and metabolic changes are prominent fea-
tures. Taking all this into account, it is not surprising that many of the proteins that were differentially expressed 
between pregnant PCOS cases and controls in the dataset have also been linked to pre-eclampsia, e.g. proper-
din, insulin-like growth factor 2 (IGF2), PF4, coagulation factor XII (F12), FBL1, apolipoprotein C3 (APOC3), 
hemopexin (HPX), apolipoprotein E (APOE), PLG, vitronectin (VTN), ZAG1, prostaglandin-H2 D-isomerase 
(PTGDS) and the complement component C8 alpha chain (C8A)18. It is interesting to note that these differences 
in circulating proteins were detected even though the women with PCOS included in our study had no signs of 
pre-eclampsia and a histological examination of their placentas revealed no abnormalities. Whether the presence 
of these markers can explain the increased risk of pregnancy complications or can be used to predict cardiomet-
abolic risk later in life requires further research.

Complement factor properdin is a positive regulator of the alternative pathway but it can also act as an inde-
pendent complement activator37. Properdin also seems to control platelet aggregation by exacerbating thrombo-
inflammation38. In this dataset, properdin was enriched in the plasma of pregnant women with PCOS compared 
with controls. Disturbances in complement activation have been detected in women with PCOS previously, as 
complement factor C3 has been reported to correlate with traditional cardiovascular disease risk factors in these 
women, most importantly with insulin resistance39,40. Excessive complement activation during pregnancy has 
been linked to many pregnancy complications, such as pre-eclampsia, preterm birth and pregnancy-induced 
hypertension41. Properdin also had the highest p(corr)-value according to the OPLS-DA analysis, and the 
ROC-curve analysis showed that properdin alone could classify the cases and controls with high accuracy. 
Interestingly, properdin levels correlated with AMH levels, indicating a possible link between these two proteins. 
Unfortunately, the increase in properdin levels could not be confirmed using commercially available ELISAs (data 
not shown). This is most likely due to the fact that upon a freeze-thawing process properdin forms tight aggre-
gates that resist even highly reducing conditions38. Due to the harsh sample reducing steps of LC/MS, it is well 
suited for the detection of properdin, unlike ELISA which preserves the structure of the antigen.

Correlation analysis of the identified protein abundances with clinical parameters, steroid hormones or AMH 
revealed several significant correlations. The most significant correlations were observed with testosterone, such 
as between testosterone and inactive dipeptidyl peptidase (DPP10; r = 0.700). DPP10 genes have previously been 

Figure 4.  Self-organizing map (SOM) clustering of the 35 differentially expressed proteins in cases and 
controls. All cases clustered together.
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reported to be enriched in patients with autism42, a condition which incidence has been reported to be higher 
in women with PCOS and their offspring43. Androstenedione levels correlated negatively with sex-hormone 
binding globulin, cardiovascular protective factors (e.g. kallistatin44) and lipolytic factors (e.g. zinc-alpha
-2-glycoprotein45), and both androstenedione and testosterone correlated with several complement factors, indi-
cating that androgens affect plasma proteome of pregnant women.

Figure 5.  ROC-curve analysis using individual or a combination of proteins. (a) Combination ROC-curves 
calculated by MetaboAnalyst 4.0. The best AUC-value was reached using all the identified 35 proteins and AMH 
(yellow, AUC: 0.97). See Suppl. Table 4 for proteins used for creation of the curves. (b) AUC-curve of IGF-2 
AUC: 0.937. c. An AUC-curve of properdin alone can classify cases and controls perfectly, AUC: 1.
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Protein Accession AMH Androstenedione Testosterone Progesterone Estradiol Estriol Estrone
Estrone-3-
sulphate

Granzyme M P51124 −0.574 (0.0027) −0.444 (0.0262) −0.424 (0.0349)

Unknown H0YCG3 −0.541 (0.0053) −0.505 (0.0101) −0.486 (0.0138) −0.500 (0.0109)

Unknown H0YJW9 −0.498 (0.0113) −0.589 (0.0020) −0.483 (0.0144) −0.403 (0.0455)

Complement component 
C8 gamma chain P07360 −0.431 (0.0317) −0.530 (0.0065) −0.436 (0.0292) −0.403 (0.0455)

Properdin P27918 0.417 (0.0383)

Serum amyloid P P02743 −0.405 (0.0443)

Fanconi associated 
nuclease Q9Y2M0 −0.404 (0.0452)

Heparin cofactor 2 P05546 −0.402 (0.0463) −0.410 (0.0416) −0.430 (0.0319)

Fetuin-B Q9UGM5 −0.397 (0.0493) −0.404 (0.0451) −0.435 (0.0298)

C4b-binding protein 
alpha chain P04003 −0.583 (0.0022)

Apolipoprotein C-III P02656 0.525 (0.0071) 0.645 (4.96E-04) 0.430 (0.0319) 0.507 (0.0097)

Insulin-like growth 
factor-binding protein 
complex acid labile 
subunit

P35858 −0.523 (0.0073) −0.459 (0.0209)

Ficolin-3 O75636 −0.466 (0.0190) −0.442 (0.0270)

Keratin type I 
cytoskeletal 9 P35527 −0.434 (0.0304) −0.526 (0.0070)

Phosphatidylinositol 
4.5-bisphosphate 
3-kinase catalytic subunit 
alpha

P42336 −0.430 (0.0317)

Prostaglandin-H2 
D-isomerase P41222 −0.422 (0.0357) −0.399 (0.0483)

Pregnancy-specific beta-
1-glycoprotein 3 Q16557 −0.417 (0.0379) −0.513 (0.0088)

Kallistatin P29622 −0.416 (0.0384)

Sex hormone-binding 
globulin P04278 −0.416 (0.0388) −0.406 (0.0442)

Tetranectin P05452 −0.413 (0.0402) −0.555 (0.0040) −0.412 (0.0407) −0.424 (0.0347)

Complement C3 P01024; 
Q96MT0 −0.411 (0.0415)

Zinc-alpha-2-
glycoprotein P25311 −0.400 (0.0474) −0.477 (0.0158)

Inactive dipeptidyl 
peptidase 10 Q8N608 0.700 (9.96E-05) 0.646 (0.0005) 0.479 (0.0155)

Attractin O75882 0.566 (3.17E-03)

Inter-alpha-trypsin 
inhibitor heavy chain H4 Q14624 0.560 (3.62E-03)

Complement factor 
H-related protein 5 Q9BXR6 0.404 (4.52E-02)

Pappalysin-1 Q13219 0.568 (0.0031)

Platelet factor 4 P02766 −0.530 (0.0064)

Vitamin K-dependent 
protein C P04070 −0.460 (0.0207) −0.430 (0.0318)

Vitamin D-binding 
protein

P02774; 
Q5VZM2 −0.448 (0.0248)

HLA class II 
histocompatibility 
antigen DP beta 1 chain

P04440 −0.447 (0.0252)

Extracellular matrix 
protein 1 Q16610 −0.438 (0.0286)

Ceruloplasmin P00450 −0.437 (0.0289)

Beta-Ala-His dipeptidase Q96KN2 −0.425 (0.0341)

Keratin type II 
cytoskeletal 1 P04264 −0.409 (0.0422)

Thyroxine-binding 
globulin P05543 −0.574 (0.0027) −0.509 (0.0093) −0.463 

(0.0197)

Pregnancy-specific beta-
1-glycoprotein 9 Q00887 0.483 (0.0145) 0.475 (0.0164)

ADP-ribosyl cyclase/
cyclic ADP-ribose 
hydrolase 2

Q10588 0.433 (0.0308) 0.588 (0.0020)

Continued
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In this study, data independent acquisition in the UDMSE mode analysis of clinical samples by LC-MS was 
used. Some of the reasons it was chosen it over ELISA- type orthogonal methods include the superior selectiv-
ity, reproducibility and multiplexing of mass spectrometric methods. Other reasons include higher through-
put, cost-per-sample and sensitivity compared to immunoassays. However, due to very high dynamic range of 
serum/plasma proteome, it becomes necessary to deplete high-abundant proteins before processing samples for 
MS analysis. It introduces a confounding factor when considering validation by orthogonal methods due to the 
non-selective partial depletion of other proteins; however, current commercially available kits for high-abundant 
protein depletion are robust enough to maintain high inter-assay reproducibility. The same cannot be said for 
concordance between immunoassay and LC-MS assays. Regarding the statistical data analysis, reproducibility 
of selecting biomarkers for differentiating cases from controls is best achieved by a combination of unsuper-
vised and supervised methods. A balanced combination of both of these method types in the form of the PCA, 
OPLS-DA and ROC curve analysis has been used. Whether a proteomic signature can separate the clinical groups 
in question is best determined using unsupervised methods, such as the PCA, but to identify important features 
of interest, supervised methods, such as the OPLS-DA are more suitable. Unsupervised methods serve as a guide 
regarding whether to use supervised methods or not because using supervised methods alone produces the risk 
of over-fitting the model.

In addition to the strengths, the study has some limitations. The pilot nature of the study is acknowledged as 
only seven women with PCOS were included in the analysis. Analyses of larger sample sets are thus warranted 
in the future. The cases were identified based on hospital records retrospectively and thus we had no contact 
with them before pregnancy. This population based approach does, however, also reduce selection bias, as the 
study population is not selected from patients from fertility clinics. The information collected during pregnancy 
was limited to the data collected from public health care and thus no data were available on insulin sensitivity of 
the subjects or weight of the placentas, for example. Placental samples were not available for in vitro studies and 
thus it was not possible to investigate how factors identified in this study affect placental function. In addition, 
all samples were from term uncomplicated pregnancies of non-obese women. Whether changes similar to the 
ones detected can be observed in obese women with PCOS or in samples obtained from early pregnancy requires 
further investigation.

Finally, it is hypothesized that the increased plasma levels of properdin and other circulating thromboin-
flammatory factors may indicate defective placental function or by themselves induce pathological changes that 
lead to increased incidence of pregnancy-related hypertensive disorders in women with PCOS. The finding that 
healthy pregnant women with PCOS display altered plasma proteome even during uncomplicated pregnancies 
may also reflect an increased risk for metabolic morbidity later in life. Future studies comparing systemic and 
placental expression of the biomarkers are essential for confirmation of these hypotheses.

Methods
Patients.  The plasma samples were obtained from women who participated in the ‘Biology, Affect, Stress, 
Imaging, and Cognition in pregnancy and the puerperium’ (BASIC) cohort20,30,46,47. In Uppsala County, Sweden, 
all pregnant women are invited to participate in the population based BASIC cohort during their routine ultra-
sound at gestational week 16–18. The eligibility criteria are: 1.) ability to communicate in Swedish, 2.) age > 18 
years and 3.) free from blood-borne diseases. The BASIC cohort covers around 23% of the women in the Uppsala 
county area. Brief demographic data are collected upon inclusion (e.g. on chronic disorders, ongoing medication, 
smoking in early pregnancy, height and weight). The samples used in this study were collected during years 2010–
2012. The women with PCOS were identified from the cohort from the hospital register by the ICD-10 diagnosis 
of polycystic ovary syndrome (E282). The women were diagnosed according to the Rotterdam criteria, meaning 
that at least two of the following criteria were present: (1) polycystic ovaries by ultrasonography, (2) oligo- or 
amenorrhoea and (3) hyperandrogenism, either biochemical (elevated testosterone, androstenedione or elevated 
free androgen index) or clinical (hirsutism, Ferriman-Gallwey score > 8). The controls were healthy pregnant 
women matched for age and pre-pregnancy BMI and they had no records for PCOS diagnosis, menstrual irregu-
larities or ovulatory infertility. Placental sample slides from the pregnancies were examined by a pathologist and 
no abnormalities were detected in either group.

Protein Accession AMH Androstenedione Testosterone Progesterone Estradiol Estriol Estrone
Estrone-3-
sulphate

Complement component 
C8 beta chain P07358 −0.411 (0.0414)

Complement C1r 
subcomponent-like 
protein

Q9NZP8 0.440 (0.0278)

Actin cytoplasmic 1 0.406 (0.0442)

Alpha-1-
antichymotrypsin P01011 −0.463 

(0.0198)

Pregnancy-specific beta-
1-glycoprotein 1 P11464 0.449 (0.0242)

Pregnancy-specific beta-
1-glycoprotein 5 Q15238 0.477 

(0.0158)

Table 3.  Correlation analysis results for clinical parameters and protein abundances detected by LC-MS. 
Presented as correlation coefficient (p-value).
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The women provided written informed consent for inclusion and the study has been approved by the Regional 
Ethical Review Board (Uppsala, Sweden) and the Regional Ethical Committee of Northern Osthrobothnia 
Hospital District (Oulu, Finland). The study is compliant with the Declaration of Helsinki.

Plasma sample collection.  Upon admission to the delivery ward at the Uppsala county hospital, the only 
delivery ward in the area, a venous blood sample was drawn into a Lithium-Heparin tube. The plasma samples 
were stored at −70 °C.

Plasma sample processing.  Plasma samples were processed essentially as described previously48,49. Briefly, 
the top 12 most abundant proteins of plasma were depleted by a TOP 12 depletion kit (Pierce, Thermo Fisher) 
from 10 µL plasma according to the manufacturer’s instructions. Depleted plasma was used for estimating the 
protein amount by a BRADFORD MX reagent (EXPEDION) and an equal amount of protein per sample was 
dried and resuspended in 50 mM Tris buffer containing 6 M urea (pH 7.8). Dithiothreitol (DTT) was added to 
final concentration of 10 mM and sample tubes shaken for 1 h at RT. Iodoacetamide was then added to final con-
centration of 40 mM and tubes shaken for 1 h at RT. DTT (40 mM) was then used to quench excess IAA for 1 h at 
RT with shaking. Trypsin was the added to the protein mixtures at a trypsin:protein ratio of 1:50 and the samples 
were incubated at 37 °C overnight. Resulting tryptic peptides were cleaned with C18 spin columns according to 
the manufacturer’s instructions.

UDMSE and data analysis.  A total of 500 ng of peptides per samples were injected into the nano Acquity 
UPLC (Ultra Performance Liquid Chromatography) ‐ system (Waters Corporation, MA, USA). TRIZAIC nano-
Tile 85 μm × 100 mm HSS‐T3u wTRAP was used for the on-line liquid chromatographic separation of the pep-
tide mixture before being analysed by a mass spectrometer. Samples were loaded, trapped and washed for 2 min 
with 8.0 μL/min with 1% B. The analytical gradient used was as follows: 0–1 min 1% B, at 2 min 5% B, at 65 min 
30% B, at 78 min 50% B, at 80 min 85% B, at 83 min 85% B, at 84 min 1% B and at 90 min 1% B with 450 nL/min. 
Buffer A: 0.1% formic acid in water and Buffer B: 0.1% formic acid in acetonitrile.

Data were acquired in data independent acquisition mode using UDMSE with Synapt G2‐Si HDMS (Waters 
Corporation, MA, USA). The data were collected for 100–2000 m/z, with a scan time of one‐second, and a IMS 
wave velocity of 650 m/s, and collision energy was ramped in trap between 20 and 60 V. Calibration was per-
formed using Glu1‐Fibrinopeptide B MS2 fragments and as a lock mass, the Leucine-Enkephaline ion (m/z 
556.2771) was used during the runs. The samples were run as triplicates, and further analyses were done using 
Progenesis QI for Proteomics software (Nonlinear Dynamics, Newcastle, UK).

The data analysis was performed as previously described48,49. Briefly, the raw files were imported to Progenesis 
QI for Proteomics software (Nonlinear Dynamics, Newcastle, UK) using lock mass correction. Default parame-
ters for peak picking and the alignment algorithm were used. Progenesis software facilitated peptide identification 
with Protein Lynx Global Server and label‐free quantification50. Peptide identification was done against Uniprot 
human FASTA sequences (UniprotKB Release 2017_03, 20183 sequence entries) with (CLPB_ECOLI (P63285)), 
and the ClpB protein sequence was inserted for label‐free quantification. The modifications used included fixed 
modification of cysteine (carbamidomethyl) and variable modification of methionine (oxidation). Trypsin was 
the digesting agent with two missed cleavages allowed. Fragment and peptide error tolerances were set to auto, 
and the FDR to less than 1%. One or more ion fragments per peptide, three or more fragments per protein and 
one or more peptides per protein were needed for ion matching.

The identified proteins were grouped based on the parsimony principle, and unique peptides to the pro-
tein are reported. The parsimony principle governs the rule that protein hits are reported as the minimum set 
that explains all observable peptides. Progenesis QI for Proteomics software does not take a strict parsimonious 
approach due to the over‐stringency as described previously51; however, for the resolution of conflicts, if two pro-
teins contain some common peptides, the protein with fewer peptides is grouped with the protein with a higher 
number of peptides which are a superset of the subsumed protein’s peptides. The lead protein is the one with the 
greatest coverage or the highest score when the coverages of two or more proteins are the same. Lead identity pep-
tide data are always used for quantitation, and further details regarding this approach are given on the software 
website (www.nonlinear.com).

Statistics.  Hierarchical clustering and self-organising maps (SOM) clustering were performed by R program-
ming as described previously52,53. Briefly, SOM clustering was performed on data consisting of X number of 
samples using R package SOM with parameters (.xdim = 5, ydim = 6, topol = “hexa”, neigh = “gaussian”). Data 
were centred and scaled before performing the clustering. The hclust function in R was used for generating the 
heatmaps. MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/) was used for generating individual and combined 
ROC curves and calculating area under the curve (AUC) values21. A non-parametric Mann-Whitney test was 
performed on cases vs. controls and 0.05 was set as the cut-off for p-value. Principal component analysis was 
performed using Progenesis QI for Proteomics (v4.0). Orthogonal projections for latent structures-discriminant 
analysis (OPLS-DA) giving S-Plot was generated by the EZInfo 3.0 software with default parameters. Proteomics 
data were pareto scaled prior to OPLS-DA modelling. The script that was used to calculate Pearson correlation 
coefficients and p values to demonstrate the correlation between hormone values and protein expression can be 
found in supplementary information. Calculations were performed in R programming language.

Data availability
The mass spectrometry proteomics data have been deposited into the ProteomeXchange Consortium via the 
PRIDE54 partner repository with the dataset identifiers PXD012034 and 10.6019/PXD012034.
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