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Multivariate nonparametric chart 
for influenza epidemic monitoring
Liu Liu   1, Jin Yue3, Xin Lai2*, Jianping Huang4 & Jian Zhang5

Control chart methods have been received much attentions in biosurvillance studies. The correlation 
between charting statistics or regions could be considerably important in monitoring the states 
of multiple outcomes or regions. In addition, the process variable distribution is unknown in most 
situations. In this paper, we propose a new nonparametric strategy for multivariate process monitoring 
when the distribution of a process variable is unknown. We discuss the EWMA control chart based on 
rank methods for a multivariate process, and the approach is completely nonparametric. A simulation 
study demonstrates that the proposed method is efficient in detecting shifts for multivariate processes. 
A real Japanese influenza data example is given to illustrate the performance of the proposed method.

Control charts are useful tools for fault detection1. Shewhart chart, CUSUM chart and EWMA chart are most 
popular tools in statistical process control. These control charts are efficient and fruitful for fault diagnosis in 
practical applications. Most control charts that need observations are univariate and usually assume that the 
observation follows a known gaussian distribution.

In real life, we usually process multivariate or high-dimensional variables rather than univariate variables. The 
monitoring of high–dimensional data in a timely manner has become increasingly important in quality control. 
Hotelling2 proposed a T-squared control chart for multivariate process, which assumes that the dataset distribu-
tions are multivariate normal distribution. Both the parameters of mean vector and variance matrix are known. 
Based on T2 statistics, Lowry et al.3 proposed a multivariate CUSUM chart. Furthermore, Sullivan and Woodall4 
provided a change–point chart for detecting a shift of the location parameter, the scale parameter.

However, statistical process control is a challenge when the underlying distribution and the magnitude of 
changes are both totally unknown. For the situation of a multivariate process with an unknown distribution, Yue 
and Liu5, from the point of Mahalanobis data depth, introduced a chart for monitoring processes for multivariate 
process. Data depth is efficient and totally nonparametric. However, the computational complexity is high as the 
number of variables grows and may influence the performance of detection of a chart. In addition, the covariance 
matrix of the data depth method is constant5. Therefore, the method may be unsuitable when the covariance 
matrix in a process is not stable. Zou and Tsung6 proposed a new multivariate EWMA chart to detect location 
parameters. The chart is affine-invariant, and its controlled run length distribution is the same for the class of 
distributions with elliptical directions.

Some strictly distribution–free rank–based methods have been developed to increase the efficiency in detect-
ing a nonparametric process7–9. The computation speed of these rank–based methods is fast, and the methods 
are easy to implement. However, all of these methods focus on a univariate process. In our article, we introduce 
a new nonparametric multivariate EWMA chart based on rank method, which is combined with the Hotelling 
T2 statistic for a multivariate process. This method is completely distribution–free, and it is easy to implement in 
applications. Moreover, the covariance matrix of observations keeps being updated as new observations arrive. 
Additionally, the computation load is very light.

For multivariate or high-dimensional statistical process control, location parameter shifts sometimes occur 
in only one or a few characteristics in a process. We want to detect these shifts quickly, accurately and to identify 
the shifted location parameter components. Consider this issue, fruitful nonparametric control charts have been 
introduced in the literature. Qiu and Hawkins10 and Hawkins11 constructed a new multivariate statistical process 
control chart and indicated that proposed chart was more efficient than the T2 control chart when a shift occurred 
in only one characteristic. However, the shift of a process is usually unknown and may occur in several highly 
correlated variables. To address this issue, in the context of a process where the location parameter often changes 
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in a few number of variables, Zou and Qiu12 proposed a useful multivariate statistical process control chart by 
using the LASSO tool. In addition, inspired by Zou and Tsung, Liang et al.13 came up with a new multivariate 
EWMA chart to monitor sparse mean changes. In our paper, the proposed method is designed to detect sparse 
mean changes, and the results shows that this method performs relatively better in applications.

Previous studies showed that the multivariate control chart could be useful for biosurveillance. Rogerson 
and Yamada14 proposed a multivariate cumulative sum approach to detect the change in spatial patterns and 
applied it to a county-level breast cancer datasets. Their results suggested that the proposed chart for multivar-
iate process performed relatively better compared with the univariate method when shifts occurred in many 
regions. Abdollahian and Hayati Rezvan15 applied a multivariate EWMA control chart to monitor patient’s pro-
gress after cardiac surgery, in which the proposed multivariate EWMA chart can detect an out-of-control signal 
that was missed by the univariate EWMA charts. This is because that the correlations between charting statistics 
are ignored in univariate chart. Then the univariate chart may give a misleading indication when such correlation 
is considerably high.

The structure of this paper is organized as follows: in Section 2, the rank–based method is given, and a non-
parametric chart for online monitoring is provided. A simulation of this control chart is presented in Section 
3. Real data are studied to illustrate the performance of the proposed control chart in Section 4. Finally, some 
conclusions are presented in Section 5.

Model
EWMA control chart.  The EWMA control chart has good properties for control applications. Lucas and 
Saccucci16 studied the performance of EWMA and CUSUM charts. In their paper, the EWMA chart has relatively 
better performance for small shifts with an appropriate smoothing parameter. The EWMA control chart is first 
introduced for univariate variables. The EWMA control chart is easy to construct and implement, and it is based 
on the following statistic:

λ λ λ= + − < ≤−Z X Z(1 ) , 0 1,i i i 1

Zi is the EWMA statistic, where the starting value is Z0 = 0, and λ is a smoothing parameter. Xi represents 
the observations in a process. The EWMA chart corresponds to a Shewhart control chart when λ = 1. The 
weight of the historical data is decided by the magnitude of the smoothing parameter. A process is considered 
out-of-control (OC) whenever Zi falls outside the range of the control limits.

Rank–based methods.  A rank–based method is first given for a one–dimensional process. Liu et al.9 intro-
duced the rank–based method and assumed that independent observations, Xi, follow the model below:
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where μ0 is the in-control (IC) location parameter, and μ1 is the OC location parameter. τ is the unknown change 
point. F is an unknown continuous distribution function. Let Ri denote the i th sequential rank; Liu et al.9 pre-
sented the formula for the rank of Xi among X1, X2, …, Xi, …, Xn as follws:
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Therefore, the distribution of Ri
* is defined in the interval

− − + − + .i i i i[ 3(( 1)/( 1) , 3(( 1)/( 1) ]

The asymptotic distribution of Ri
* is U(− 3, 3) as i → ∞.

In the context of a multivariate process, it is supposed that there are m independent observations from an 
unknown multivariate continuous distribution with dimensionality p. That is, Yi = (Y1,i,Y2,i, …, Yp,i)′, i = 1, 2, …, 
m. There are p characteristics to be examined that we are interested in. For a set of variables, Yj,1, Yj,2, …, Yj,m, j = 1, 
2, …, p, which represents the j th characteristic with m observations, the rank–based method can be used to con-
struct statistics. When the observations are p-dimensional, the i th observations are Yi = (Y1,i, Y2,i, …, Yp,i)′. For 
the j th component, Yj,i, Rj,i

* denote the i th standardized sequential rank with the arrival of the j th component 
Yj,i. Therefore, the vectors Qi = (R1,i

*, R2,i
*, …, Rp,i

*)′ can be obtained. In addition, each component Rj,i
* follows the 

same uniform distribution as Ri
*. Then, the EWMA statistics can be constructed, which are based on T2 statistics. 

The EWMA statistics are given by

δX

RMI0.25 0.5 1 1.5 2 2.5 3 4

τ = 100

EWMA1 210.9 91.4 25.8 15.9 11.6 10.4 10 9.6 0.04

EWMA2 325.7 154.9 39.8 19.6 12.9 10.1 8.9 8 0.27

τ = 200

EWMA1 108.7 63.2 33.3 20 12.3 11 10.7 9.5 0.16

EWMA2 314 147.7 34.9 17.2 11.2 8.7 7.6 6.1 0.41

τ = 400

EWMA1 137.3 76.1 37.4 20.2 15.2 12.7 11.8 10.3 0.24

EWMA2 347.7 145.4 38.1 18.1 11.3 9 7.7 6.9 0.31

Table 1.  ARL comparisons for the EWMA control chart under N(μ0,Σ0) with a zero–state ARL = 500.

δX

RMI0.25 0.5 1 1.5 2 2.5 3 4

τ = 100

EWMA1 239.1 177.5 28.1 16.5 12.9 11.5 10.3 9.1 0.02

EWMA2 345.2 281.5 47 24.3 15.7 11.3 9.6 8.4 0.3

τ = 200

EWMA1 211.6 127.4 27.6 16 12.8 10.5 9.6 7.9 0.04

EWMA2 260.5 163.5 45.8 23.7 15.1 10 8.3 7 0.23

τ = 400

EWMA1 190 94 26.3 15.5 12.9 9.8 8.9 7.5 0.04

EWMA2 236.9 149.6 41.3 21.6 14.7 9.1 7.5 6.9 0.24

Table 2.  ARL comparisons for the EWMA control chart under N(μ0,Σ1) with a zero–state ARL = 500.

δX

RMI0.25 0.5 1 1.5 2 2.5 3 4

τ = 100

EWMA1 132.7 62.1 24.2 16.7 13.9 12.9 11.8 10.6 0.1

EWMA2 156 94.9 40 19 12.3 10.1 9.9 9 0.19

τ = 200

EWMA1 116.2 42.9 23.7 16.2 13.9 12.8 11.8 10.3 0.11

EWMA2 134 62 31.9 21 11.2 10 9.6 8.9 0.16

τ = 400

EWMA1 93.3 39.3 21.7 16.2 13.1 11.9 11.5 10.1 0.1

EWMA2 107.7 55.4 26 18.1 11 10.2 9.7 8.1 0.11

Table 3.  ARL comparisons for the EWMA control chart under LBVW(1, 1, 1, 0.5) with a zero–state ARL = 500.
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where R = diag(λ1, λ2, …, λk, …, λp), <λk ≤ 1 represents the smoothing parameter. I represents the p-dimensional 
identity matrix. If there is no a priori information given, different smoothing parameters are needed for different 
components; then, λ1 = λ2 = ··· = λk = ··· = λp are used, and the starting value is Z0 = (0, 0, …, 0)′. The process is 
considered to be OC if a manufacturing or business process is in a state of uncontrollable (i.e. Zi

ΤΣZi
−1Zi > L), 

where L is the upper control limit. And the covariance matrix of Zi is as follows:

R I R I R R( ) ( )Z
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i
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1
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In particular, ΣZi = (1−(1−λ)2i)λ/(2−λ)Σ when λ1 = λ2 = ··· = λk = ··· = λp = λ. λ is a fixed value. Usually, we 
take the limit form, ΣZi = λ/(2−λ)Σ. Σ, the covariance matrix of Qi, is estimated from samples in practice.

Simulation
In the art of research, fruitful distribution–free control charts have been introduced. If a chart IC run–length dis-
tributions are the same to every continuous distribution17, we call this chart is nonparametric or distribution-free. 
We discuss the choice of parameter by using the multivariate normal distribution. This indicates that the deter-
mine of parameters are still valid when a series of observations obey other distributions. Therefore, we consider 
the i th observation, Xi, is collected as time goes by using the following relational model:
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And α is the probability of a type I error and β is the probability of a type II error. For a fair comparison, we 
usually fix α and compare β. A small β is considered better. The average run length (ARL) is the number of points 
that, on average will be plotted on a control chart before an OC signal. If a manufacturing or business process is IC:

ARL 1/0 α= .

δX

RMI0.25 0.5 1 1.5 2 2.5 3 4

τ = 100

EWMA1 135.4 37.4 15.3 12.8 9.4 8.9 8 7.6 0.04

EWMA2 175.2 61.5 24 13.3 8.7 8.2 7.6 7 0.19

τ = 200

EWMA1 85 28.4 15 11.2 9 8.1 7.5 7.1 0.03

EWMA2 106.5 43.5 19.9 12.7 8.1 7.5 7.3 7 0.16

τ = 400

EWMA1 70.9 21.7 13.5 10.9 8.6 7.5 7.3 7 0.03

EWMA2 89.9 38.6 16.3 11.6 8 7.1 7 6.8 0.12

Table 4.  ARL comparisons for the EWMA control chart under N(μ2,Σ2) with a zero–state ARL = 500.

δX

RMI0.25 0.5 1 1.5 2 2.5 3 4

τ = 100

EWMA1 114.9 31.1 13.7 11.3 9.9 8.9 8.6 7.9 0.01

EWMA2 341 122 31.6 14.5 11.7 8.8 8.4 7.5 0.83

τ = 200

EWMA1 78.9 29.3 13.4 10.4 9.3 8.5 7.1 7.1 0.02

EWMA2 198.7 98.3 28.7 13.8 10.5 8.5 7.1 6.1 0.68

τ = 400

EWMA1 67.6 26.3 12.9 9.3 8.7 8.1 7.1 7.1 0.02

EWMA2 110.6 68 21.9 11.6 8.5 7.9 6.8 6.8 0.4

Table 5.  ARL comparisons for the EWMA control chart designed to detect a shift under N(μ3,Σ3) with a zero–
state ARL = 500.
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5Scientific Reports |         (2019) 9:17472  | https://doi.org/10.1038/s41598-019-53908-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

If the process is considered OC:

ARL 1/(1 )1 β= − .

Therefore, we fix IC ARL, ARL0 and compare OC ARL, ARL1. A small ARL1 is considered better.
Meanwhile, inspired by Han and Tsung18, we consider the relative mean index (RMI) values to evaluate the 

average performance of these charts for detecting a range of parameter changes, which are given as following:

m
ARL MARL

MARL
RMI 1 ,i

m
1

X X

X

∑=
−δ δ

δ
=

where m is the number of shifts that we considered. When detecting a certain shift δX, ARLδX denotes as the OC 
ARL of these given charts. And MARLδX is the smallest OC ARL among all the OC ARL values of these charts 
when detecting a certain shift δX. The RMI calculates the average of all the detection efficiency values18. A control 
chart with a relatively smaller RMI value is regarded as relatively better detection efficiency.

We suppose that there are 1000 independent and identically distributed historical (reference) observations. X1, 
X2, …, X1000 are 1000 random observations from N(μ0,Σ0). To make a fair comparison, all of these control charts 
have the same IC zero–state ARL, which is equal to 500. It should be note that zero-state run lengths refer to the 
run lengths of control charts initialized at the target value16. When the process goes OC, a chart is considered as 
a better detection efficiency with a small ARL. The ARLs of these EWMA methods with λ = 0.03 for a range of 
shifts are presented in Table 1. EWMA1 represents the rank-based EWMA scheme, and EWMA2 represents an 
EWMA control chart based on the Mahalanobis depth method5. We also provide simulation studies with the 
non-diagonal covariance matrix

Σ =












9 8 8
8 9 8
8 8 9

,1

The ARLs of the EWMA scheme with λ = 0.03 for a range of shifts under N(μ0,Σ1) are presented in Table 2. In 
addition, the detection performance of these charts under a bivariate Weibull distribution, LBVW(θ1, θ2,α,ρ) are 

δX

RMI0.25 0.5 1 1.5 2 2.5 3 4

τ = 100

EWMA1 105.2 29.7 13.6 12.2 10.9 9.3 8.9 8.1 0.02

EWMA2 111.7 31.2 16 12.7 10.6 8.5 8.5 7.9 0.04

τ = 200

EWMA1 66.4 25 13.3 10.3 9 8.6 8.1 7.9 0.03

EWMA2 71.7 27.9 14.4 10.6 9.1 8.1 7.3 7.2 0.04

τ = 400

EWMA1 52.6 24.9 13.1 10.7 8.6 8.3 8.1 7.7 0.02

EWMA2 61.8 25.5 14.1 10.9 8.3 8.3 7.6 7.3 0.04

Table 6.  ARL comparisons for the EWMA control chart designed to detect a shift under multivariate 
Poisson(θ1 + δX, θ2, θ0) with a zero–state ARL = 500, where (θ1, θ2, θ0) = (0.5, 0.6, 0.2).

Figure 1.  Computing time of the EWMA1 and EWMA2 charts for a range of shifts.

https://doi.org/10.1038/s41598-019-53908-6
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shown in Table 3. θ1 and θ2 are the scale parameter. α is the shape parameters. ρ is the correlation coefficient. 
When a process is IC, θ θ α ρ~X X LBVW( , ) ( , , , )1 2 1 2 . θ θ α δ ρ+~X X LBVW( , ) ( , , , )X1 2 1 2  when the process is 
OC. Tables 1–3 provide the ARL of the EWMA1 and EWMA2 control charts for a range of shifts δX. Tables 1–3 
show that the EWMA1 control chart has a relatively better performance for detecting small shifts. EWMA2 has a 
better performance for detecting large shifts. On the whole, EWMA1 has a relatively small RMI.

Table 4 presents the simulation results under N(μ2,Σ2), where μ2 = (0, 0, 0, 0, 0, 0) and Σ2 is 6 × 6 indentity 
matrix. Table 4 shows that EWMA1 still performs better. Sometimes, we encounter the case that observations 
follow block-diagonal correlation structures. Therefore, we provided ARL comparisons for observations follow a 
block-diagonal correlation structures, which presented in Table 5. Where μ3 = (0, 0, 0, 0) and

1 1 0 0
1 3 0 0
0 0 1 1
0 0 1 2

3Σ =












.

Table 5 shows the proposed methods performs relatively better. In addition, the proposed control chart based 
on ranks of data is a nonparametric method without assuming normal or Poisson distribution for the data. To 
investigate the performance of the proposed method for Poisson data, we conducted an additional simulation 
study under multivariate Poisson distribution. Results in Table 6 showed that the proposed methods (EWMA1) 
still had a better performance in terms of the OC ARL and RMI.

In addition, we also provide the computing time of the EWMA1 and EWMA2 control charts. From Fig. 1, 
EWMA1 has relatively shorter computing time compared to that of EWMA2. Therefore, the proposed EWMA 
control chart is chosen, which is based on rank methods, for monitoring in this paper.

Analysis of Japanese Data
Data source.  That is the case, with the Japanese influenza data19, which cover 6 regions in Japan. These 
regions include Gunma, Chiba, Tokyo, Ishikawa, Nagano, and Osaka. Influenza data analysis is a very important 
issue today20,21. Simultaneous monitoring of flu break–outs in multiple regions is an important topic in epide-
miology. Influenza is an acute contagious disease caused by a virus19. The Japanese influenza data are used to 
illustrate the proposed control chart. Time–series data of the weekly incidence of influenza in Japan are used from 
January 2000 through December 2011. To evaluate the incidence data (see “Influenza Dataset” in Supplementary 
Information), we conduct spectral analysis, which is useful for investigating the periodicities of shorter time 
series, such as that of the incidence data used in the present study.

Figure 2.  The Japanese influenza data.

https://doi.org/10.1038/s41598-019-53908-6
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The Japanese influenza data are presented in Fig. 2. A quantile–quantile (Q–Q) plot of each region that 
includes 782 historical observations is presented in Fig. 3. Figure 3 suggests that the normality assumption for the 
influenza data is invalid.

The correlation of six regions as shown in Fig. 4, for a total of C6
2 = 15 lines. Figure 4 shows that the 

cross-correlation is not stable. Therefore, we update the covariance matrix with the arrival of new observations. It 
should be noted that the covariance matrix Σ is updated, as presented in section 2.2.

Data analysis.  In this section, a multivariate control chart is used to monitor the incidence of influenza in 
six regions which may have a certain correlation. Ignoring the correlation and using several univariate charts 
could lead to biased conclusions. For example, the univariate chart statistic may result in unnecessarily frequent 

Figure 3.  The corresponding normal Q-Q plot.

Figure 4.  Correlation of six regions.
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out-of-control signals when the process is actually in control and may not detect the change when the process 
becomes out of control3.

In the past few decades, many researchers have studied spectral analysis22. In addition to the obvious annual 
cycle of influenza epidemics, the longer–term incidence patterns are important for interpreting the mechanism of 
influenza epidemics. The method proposed by Sawada et al.23 is a combination of spectral analysis and non–linear 
least squares fitting (LSF) for fitting analysis. Spectral analysis is a useful tool to investigate the periodicities of a 
short time series, and the formulations of the LSF curve are related to the research of Sawada et al.

Spectral analysis is used identify the interepidemic period of influenza epidemics in Japan (see “Computing 
Code” in Supplementary Information). Based on spectral analysis, the trend of the incidence data is determined. 
The procedure comprises the following 3 steps. In step I, the influenza data (standardized datasets) are preproc-
essed. In step II, the temporal behavior of the interepidemic period is investigated. Then, LSF is used for the fitting 
analysis. This trend is then removed by subtracting the LSF curve from the data, thereby yielding the residual 
time–series data. In step III, the obtained residual time–series datasets are analysed.

Figure 5.  Spectral analysis of the influenza data series.

Gunma Chiba Tokyo Ishikawa Nagano Osaka

Shapiro-Wilk test

W 0.95738 0.962 0.98165 0.93915 0.95504 0.94605

p−value 2.752e-14 2.271e-13 2.464e-08 <2.2e-16 1.002e-14 2.809e-16

Kolmogorov-Smirnov test

D 0.075224 0.12162 0.17872 0.10759 0.071647 0.10472

p−value 0.0002868 1.796e-10 <2.2e-16 2.747e-08 0.000652 7.112e-08

Table 7.  Shapiro-Wilk test and Kolmogorov-Smirnov test for normality.

Gunma Chiba Tokyo Ishikawa Nagano Osaka

Coefficients 0.9086 0.9105 0.9364 0.8854 0.9039 0.9111

Table 8.  The coefficients of AR(1) for residuals data.

Gunma Chiba Tokyo Ishikawa Nagano Osaka

Coefficients −0.1249 −0.1813 −0.1563 −0.2178 −0.0699 −0.2118

Table 9.  The coefficients of AR(1) for residuals data after the first order difference.
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The vertical coordinates of Fig. 5 represents the power spectral density (PSD). Figure 5 indicates that the num-
bers of the maximum entropy method (MEM) spectral periods. From Fig. 5 and the processed data, we find that 
the power has a large magnitude at a frequency of 0.035 (1/week), and there is a second peak at a frequency of 
0.019 (1/week). A large magnitude indicates that a large portion of the amplitude of the incidence data is expressed 
as a wave that repeats itself every year. Spectral analysis has enabled us to identify multiple periodicities for the 
interepidemic period of influenza epidemics (1- and 0.5-year periods). The residual time–series data are relevant.

For residuals data, Table 7 presents the results of Shapiro-Wilk test and Kolmogorov-Smirnov test for nor-
mality. The p-values are smaller than 0.05, indicating that the data are non-normally distributed. Therefore, a 
nonparametric control chart could be more appropriate than those based on normality assumption. Moreover, a 
first order autoregressive model (AR(1)) is used to analyze the sequence correlation. Table 8 shows that sequences 
are highly correlated. Thus, the first order difference is employed to reduce the sequence correlation (see results 
in Table 9). Then the differential data can be used to illustrate the proposed method.

The EWMA1 control chart of the residual data series is presented in Fig. 6. Figure 6 shows that EWMA statis-
tics fall outside the range of the control limits in 2003, 2006, 2009. SARS jumped simultaneously from a village in 
China to two cities on opposite sides of the world, Singapore and Toronto, in 2003. H5N1 outbreaks in poultry 
peaked in 2006, and the highly pathogenic H5N1 avian influenza virus spread to affect wild or domestic birds 
in 17 new countries in Africa, Asia, Europe, and the Middle East. The H1N1 influenza pandemic continued to 
spread in 2009. From Fig. 7, the four peaks occurred at approximately the 160th case (2003-1-19), 366th case 
(2006-12-31), 509th case (2009-9-27), and 596th case (2011-5-29), respectively. The signal of alarm appeared for 
the 159th case (2003-1-12), 363th case (2006-12-10), 502th case (2009-8-9), suggesting that the proposed method 
can provide early detection of influenza epidemics.

We provide the performance of EWMA2 by using Japanese influenza data (Fig. 7). It can be observed that the 
EWMA2 chart shows an inconsistent trend with the result in practice (the charting statistics indicate that the six 
regions are almost at the epidemic level after 32 cases). This may be caused by the constant covariance setting in 
EWMA2. Hence, updating the covariance between the six regions could be important in correctly detecting an 
epidemic of influenza.

Figure 6.  EWMA1 control chart.

Figure 7.  EWMA control chart based on data depth.
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We also presented six single univariate control charts for Japanese influenza data in Fig. 8. The univariate chart 
statistic gave unnecessarily frequent out-of-control signals when the process is actually in control. Specifically, the 
first out-of-control signal of six regions occurred approximately at the 30th case, the 61th case, the 42th case, the 
24th case, the 27th case, and the 17th case, respectively. However the multivariate chart may suggest a in-control 
state, indicating that ignoring the correlation between regions in biosurveillance may give an unexpected high 
rate of false alarm.

Conclusions
This paper provides a new EWMA control chart based on rank methods for a multivariate process. The perfor-
mance of an EWMA control chart based on rank methods and Mahalanobis depth are compared. The EWMA 
control chart based on rank methods has a relatively better performance for detecting small shifts. Finally, 
Japanese influenza data are also provided to illustrate the proposed control chart. Spectral analysis is first con-
ducted to investigate the periodicities of shorter time series, and then non–linear least squares fitting is used for 
fitting analysis. The residual data series are obtained, and the residual data series are monitored. The Japanese 
influenza data example shows that the proposed control chart has relatively better performance for detecting 
process changes.

Data availability
The datasets analyzed during the current study are available from the corresponding author on reasonable 
request.
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