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Optimization of the performance of flat optical components, also dubbed metasurfaces, is a crucial step 
towards their implementation in realistic optical systems. Yet, most of the design techniques, which rely 
on large parameter search to calculate the optical scattering response of elementary building blocks, do 
not account for near-field interactions that strongly influence the device performance. In this work, we 
exploit two advanced optimization techniques based on statistical learning and evolutionary strategies 
together with a fullwave high order Discontinuous Galerkin time-Domain (DGtD) solver to optimize 
phase gradient metasurfaces. We first review the main features of these optimization techniques and 
then show that they can outperform most of the available designs proposed in the literature. Statistical 
learning is particularly interesting for optimizing complex problems containing several global minima/
maxima. We then demonstrate optimal designs for Gan semiconductor phase gradient metasurfaces 
operating at visible wavelengths. our numerical results reveal that rectangular and cylindrical nanopillar 
arrays can achieve more than respectively 88% and 85% of diffraction efficiency for TM polarization 
and both TM and TE polarization respectively, using only 150 fullwave simulations. To the best of our 
knowledge, this is the highest blazed diffraction efficiency reported so far at visible wavelength using 
such metasurface architectures.

Metasurfaces have been studied extensively in the past few years due to their exceptional abilities in achieving 
arbitrary light control in a very short propagation distance, and due to their simplified fabrication procedures 
with respect to bulk metamaterials1–5. Metasurfaces consist of assemblies of nanoresonators with spatially varying 
geometrical parameters and separated by subwavelength distances, made of plasmonic6 and/or high dielectric 
refractive index materials5,7. Unlike the conventional optical components that provide a full control of the light 
properties over long propagation distances, metasurfaces can introduce highly resolved phase, amplitude, and 
polarization changes on the incoming wavefront over very short propagation distances, typically in the order of 
the wavelength3–8. Owing to the versatility and the capabilities of metasurfaces, many exotic and peculiar optical 
phenomena ranging from negative refraction9, sub-diffraction optical microscopy10, and broadband achromatic 
lenses11,12 have been demonstrated recently using ultrathin and compact devices. Most of these designs have 
been engineered by considering a brute force approach. The latter consists in performing an extensive and costly 
parametric search to obtain the optical response of individual building blocks. Although simulations are gener-
ally performed considering array of nanostructures, this direct approach does not properly consider potential 
coupling effects between neighboring elements having different shapes. Remarkably, complex designs such as 
broadband and multiplexed interfaces exclusively rely on sub-units of near-field coupled antennas to achieve the 
required scattering responses.The inherent complexity of the latter designs result in poorly efficient components, 
indicating that direct modelling approaches are becoming substantially insufficient and are failing to achieve 
designs of realistic devices13,14. New and advanced methods, such as inverse design techniques, are becoming 
mandatory to further exploit metasurface capabilities in highly demanding applications14,15. To this end, several 
optimization methodologies have been developed and demonstrated in the recent years, including local and 
global search methods. The former is suitable to rapidly convergence to local maxima/minima and thus strongly 
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depends on the initial parameter guess16,17. This category includes topology optimization18–22 and so-called 
objective-first algorithms23–25.

The second approach, performing global parameter optimization includes stochastic search techniques such 
as genetic algorithms26–28 and evolutionary algorithms29,30. These are general methods which are very efficient for 
large parameter space optimization. The downside of the latter methods is that they all require a large number of 
forward solver calls and are thus impractical when combined with costly (three-dimensional (3D) time-domain 
simulations.

In the last two years, artificial neural networks have been used to develop innovative modelling strategies for 
several nanoscale light-matter interaction problems including light scattering problems from spherical nanoshells 
for example31. Artificial neural networks have also been utilized recently to design efficient metasurfaces32,33. As a 
general rule, training an artificial network requires numerous training data before it becomes capable of achiev-
ing the optimized design based on a specific input target. Thus, efficient neural networks, capable of generating 
practical designs, require thousands of training data using a fullwave electromagnetic solver34,35. The compu-
tation cost could become important, especially considering 3D complex problems. Another common problem 
of neural networks arises when the system under investigation has many diverse parameters, i.e. when several 
parameter sets could give approximately the same response. In this case, the performance of the network reduces 
dramatically33,34.

The main goal of our work is to introduce to the nanophotonics community novel and significantly more 
advanced evolutionary optimization strategies based on derandomized and statistical learning, evolution strat-
egies. Using practical designs of semiconductor GaN phase gradient metasurfaces, we demonstrate that these 
techniques can outperform most of optimization techniques used in the inverse design of metasurfaces. These 
are especially useful when one is considering complex 3D problems. We adopt a parametric shape optimization 
viewpoint as opposed to a topology optimization approach, enabling faster convergence to a global minima/
maxima even for large parameter space with regards to our setting. In addition, as shown inhere, our meth-
ods are capable of achieving effectively different global minima/maxima for the same value of the objective 
function, involving different parameter values. We first consider an analytical example to help readers gaining 
insights into our inverse design tools. The second goal of this paper is to apply theses techniques to the case of 
3D GaN phase gradient metasurfaces made of nanopillars of different shapes, targeting maximum light deflec-
tion efficiency at a wavelength of λ = 600 nm. The deliberate choice of GaN semiconductor has been made 
after a careful consideration of several factors such as the optical losses in the visible regime, its high refractive 
index in the visible regime, and the current ease of micro/nanofabrication technology in the industry of this 
materials, yielding ideal nanoresonators (phase-shifters) for metasurface designs and fabrication7,36. Over the 
last couple of years, several example of light deflecting metasurfaces have been realized both numerically and 
experimentally for visible wavelength applications involving GaN36,37 or at near infrared21,29,38 using silicon or 
hydrogenated amorphous silicon. For the latter, the absorption losses of silicon in the visible make them less 
efficient than, for example, TiO2

19 or c-Si19,39. Various metagratings have been used to demonstrate efficient 
light deflection at visible regime but the performance does not exceed 80%40. Here, we provide optimized 3D 
metasurface designs with record efficiency above 87%. To the best of our knowledge, this is the highest expected 
performance reported in the literature at visible regime for 3D gradient metasurfaces. Our global optimization 
techniques rely respectively on advanced evolutionary strategies and statistical learning, coupled with a high 
order Discontinuous Galerkin Time-Domain (DGTD) solver from the DIOGENeS software suite dedicated to 
computational nanophotonics41. We apply the optimization solution to design optimal phase gradient metas-
urfaces made of scatterers of different shaped, such as rectangular and cylindrical nanopillars. Our calculations 
target maximum diffraction efficiency (η(n, m), where n, m are the mode indices) at λ = 600 nm. For rectangular 
shaped nanopillars, we achieved more than 85% of diffraction efficiency at λ = 600 nm for TM polarized waves, 
while cylindrically shaped nanopillar interfaces lead to more than 85% efficiency for both TM and TE light 
polarization at λ = 600 nm.

fullwave time-Domain Solver
In this work, we consider a general modelling approach for the numerical characterization of metasurfaces 
based on rectangular and cylindrical nanopillars by solving the full system of 3D time-domain Maxwell equa-
tions. The most widely used numerical method for this purpose is the Finite Difference Time-Domain (FDTD) 
method42 rooted on Yee’s scheme43. The FDTD method is highly popular in the computational nanophotonics 
community, in particular due to its simplicity and computational efficiency. It is available in several commercial 
software such as the Lumerical suite, which has been used here for comparison with the alternative numerical 
method that we consider in our study. Let us first recall that in the FDTD method, the whole computational 
domain is discretized using a structured (cartesian) grid, which is a strong asset from the point of view of com-
putational efficiency. However, Yee’s scheme may suffer from serious accuracy degradation when used to model 
curved objects or when treating material interfaces, especially if one is interested in assessing near field effects. 
In general, this requires a refinement of the underlying grid, which incurs a substantial increase of the simula-
tion time and memory footprint. An alternative approach is to resort to a numerical method capable of han-
dling more general meshes, e.g., unstructured grids. Such a method has been proposed in the early 2000’s by a 
few research groups in applied mathematics community and is referred as the Discontinuous Galerkin 
Time-Domain (DGTD) method44. This method can be seen as a blending of a classical (continuous) Finite 
Element Time-Domain (FETD) and Finite Volume Time-Domain (FVTD) method. As a consequence, the 
DGTD method inherits attractive features of FETD and FVTD methods and combines them to produce a full-
wave time-domain solver, which is nowadays increasingly used for the simulation of electromagnetic wave 
propagation problems. A DGTD method relies on a high order approximation of the unknown field with a 
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polynomial interpolation method (that we shall denote in the sequel as p where p is he interpolation degree). 
It is formulated on a fully unstructured tetrahedral mesh opening the route to a local refinement of the mesh 
and the possibility of using curvilinear cells for a high order approximation of complex geometry features. More 
importantly, when the discretization in space is coupled to an explicit time integration method, the DG formal-
ism leads to a block diagonal mass matrix independently of the form of the local approximation (e.g the type of 
polynomial interpolation). This is a striking difference with classical, continuous FETD formulations. Finally, 
such a time explicit DGTD method is naturally adapted to parallel computing. In this study, we exploit a high 
order DGTD-based solver that we have recently developed, and which has been specifically designed for the 
simulation of nanoscale light-matter interaction problems45. This DGTD fullwave solver is implemented in the 
DIOGENeS41 software suite, which is programmed in Fortran 2008 and is adapted to high performance com-
puting systems.

It is worth mentioning that the a metasurface device can also be modeled in the frequency-domain, especially 
when one is interested in assessing its performance at a few frequency points. In this context, the most widely 
used simulation approach is the Rigorous Coupled Wave Analysis (RCWA) method2. RCWA is a modal-type 
method. The method is based on Floquet’s theorem that the solutions of periodic differential equations can be 
expanded with Floquet functions. A device is divided into layers that are each uniform in the transverse direction, 
e.g., the z direction. In the horizontal plane, i.e., the plane of the metasurface layout, Maxwell’s equations (in par-
tial differential form) are expanded by the Floquet functions and turned into infinitely large algebraic equations. 
With the cutting off of higher order Floquet functions, depending on the accuracy and convergence speed one 
needs, the infinitely large algebraic equations become finite and thus solvable by computers. Then, the electro-
magnetic modes in each layer are calculated and analytically propagated through the layers. The overall problem 
is solved by matching boundary conditions at each of the interfaces between the layers using a technique like 
scattering matrices. Overall, RCWA is a highly efficient method and is the method of choice for many problems 
involving nanostructures with simple shapes and devices with smooth variation in the z direction. For curved 
devices, a staircase approximation is needed and the RCWA can become a very expensive method as the modal 
discretization is refined for an improved accuracy.

optimization Methods
We are here leveraging on two different efficient global optimization techniques respectively based on 
advanced evolutionary strategies and statistical learning to perform inverse metasurface designs. The first 
optimization approach is the so-called “Covariance Matrix Adaptation Evolution Strategy” (CMA-ES)46, 
which belongs to the family of evolutionary algorithms. Similarly as genetic algorithms (GAs)47, CMA-ES 
mimics natural evolution principles to maximize an objective function. It has been tested on several academic 
benchmarks as well as industrial problems and reported as one of the most efficient optimization algorithms 
for a broad class of problems. Recently, it has been used to optimize infrared broadband quarter-wave and 
half-wave plates Bézier metasurfaces48, reconfigurable metasurface absorbers49, acoustic metamaterial50, and 
for in optimizing apochromatic singlets metasurface-augmented grin lenses51. This is of critical importance for 
the design of complex assemblies of arrays of 3D nanostructurea requiring expensive simulations with a large 
number of parameters, thus increasing the chance of finding several designs with relatively well-optimized 
performances.

As other Evolution Strategies (ES), CMA-ES is based on a sequence of random searches, ruled by a nor-
mally distributed sampling. At each iteration, the characteristics of the distribution, and in particular its 
covariance matrix, are adapted to account for the latest obtained observations, in order to accelerate the con-
vergence towards the maximum/minimum of the fitness function. More precisely, the algorithm starts with an 
initial (sometime random) distribution mean (initial design) and the identity classical normal distribution as 
covariance matrix scaled by a user-defined scalar variance. According to this distribution, a set of N samples 
are generated randomly (mutation step as shown in Fig. 1(a)) and the corresponding designs are simulated to 
evaluate their fitness. Then, the best Nbest designs among the N ones are selected for the evolution (selection 
step) and are used to update the mean of the distribution (recombination step). Finally, the covariance matrix 
is updated accounting for a principal component analysis of the best points Nbest, whereas the scalar variance 
is modified using the path of the mean point (step-size control). The whole procedure is repeated using the 
updated distribution, until convergence. The detailed algorithm is described in46,52 and illustrated in Fig. 1(a). 
In the electromagnetic community, GAs are more commonly used15,26,27,47,53, although they suffer from some 
well-known drawbacks, such as the necessity to calibrate several numerical parameters and their inability to 
tackle anisotropic behaviors of the fitness function, i.e. the ability to change/adapt the search shape distribu-
tion during the optimization in order to tackle the complexity of the objective function for faster convergence. 
Consequently, GAs require a substantial amount of computational time when applied to high-performance 3D 
time/frequency domain electromagnetic solvers. Therefore, due to the huge number of parameters required 
to ensure the flexibility of modern devices, more advanced evolutionary strategies like CMA-ES are needed, 
that could (1) offer a faster convergence, i.e. require fewer fullwave solver runs (due to its ability to update 
the shape and the size of the distribution during the optimization), and (2) provide more accurate results. In 
Algorithm 1, we provide a simple illustration of the CMA-ES steps. For more details about CMA-ES, we refer 
to refs. 46,52.

Despite the advantages of CMA-ES over other classical evolutionary algorithms, it still requires a large number 
of computationally expensive simulations, which increases with the number of optimization parameters (curse 
of dimensionality).
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Therefore, we also consider an alternative optimization strategy based on the iterative construction of sur-
rogate models. It is known as Efficient Global Optimization (EGO)54–56 and belongs to the class of Bayesian 
optimization methods. Contrary to evolutionary algorithms, EGO is not based on adaptive sampling, but on 
a surrogate model built on the basis of available fitness observations, which is employed to decide which new 
design should be tested next, by maximizing a statistical criterion related to the optimization goal (merit func-
tion). More precisely, this approach proceeds in two main steps. First, a Design Of Experiments (DOE) is car-
ried out, which consists in exploring randomly the admissible design space using a uniform sampling strategy 

Figure 1. For the CMA-ES (a), the optimization starts with an initial design and a given mean and variance. 
The second step consists in generating a population of N designs that will be evaluated using the fullwave 
DGTD solver. If the convergence is not satisfied, the algorithm chooses the Nbest designs according to the 
objective function, and use them to update the mean of the distribution, size and the covariance matrix. N new 
designs are thereafter calculated and repeated steps until the convergence criterion is reached. For the EGO 
(b) instead, the algorithm starts with an initial design of experiments composed of NDOE designs, that will 
be simulated to estimate the corresponding objective function. The results are used to construct a surrogate 
model, of interest to search for the next design. The latter is simulated using the fullwave DGTD solver, and 
the corresponding objective value enrich the database, repeating these steps until the convergence is obtained. 
The major difference between the CMA-ES and EGO methods essentially relies on the utilization of a surrogate 
model for EGO that drastically reduces the number of evaluations NDOE by an order of magnitude.

Algorithm 1. Baseline CMA-ES steps
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(e.g. Latin Hypercube Sampling)57. After simulation of the corresponding designs, all fitness values obtained are 
considered as observations and are stored in a database. In the second step, this database is iteratively refined 
towards the most promising areas. This is performed using a Gaussian Process (GP) model, constructed using 
all the database points. This is basically an interpolating or approximating model, whose internal parameters are 
calibrated according to a maximum likelihood principle58. Once this GP model is defined, one can estimate at 
any point of the design space the fitness value (model mean) and an uncertainty value (model variance). Both 
are used to define a statistical merit function, e.g. the expected improvement, whose maximum defines the next 
design parameters set to evaluate. After simulation of this new point, the database is updated accounting for this 
new observation and the second step of the algorithm repeats until convergence. The algorithm is illustrated in 
Fig. 1(b). As explained, this approach based on the iterative construction of a database and an associated model 
can be considered as a statistical learning strategy, like for instance Artificial Neural Networks (ANNs). Its main 

Figure 2. A representative 2D analytical example to illustrate the different behaviors of CMA-ES and EGO 
methods. The problem considered here consists in minimizing an analytical function, known as the Branin 
function, characterized by the presence of 3 global minima, as indicated by the black arrows in (a). The 
evolution of CMA-ES as a function of the solver calls is provided in (b) in which the yellow points represent 
the objective function values at each iteration, the purple curve indicates the best value at each iteration. (c) 
Similar to (b) except that here the blue points represent the DOE phase NDOE = 6 (only 6 in this example). These 
points are used only for the initial training (blue shaded region in (b)) while the black dots represent the data 
generated during the optimization phase. The green line represents the best, optimized, results obtained during 
optimization phase, as explained in Fig. 1(b). (d–g) Evolution of the points tested by CMA-ES, as a function of 
the generation numbers (for each generation we simulate 6 designs). The yellow points represent all samples 
evaluated so far, the red points correspond to the last generation of size N = 6. This illustrates the search by 
progressive sampling and convergence. (h–k) Evaluation of the Gaussian process model (surrogate model) 
and the underlying database generated from iteration 0 to 30. Notice that the model converge to the analytical 
function shown in (a) after 30 iterations. The design points from the DOE phase are shown in blue, the black 
points represent the database progressively enriched during the optimization. Note that all minima are detected. 
As background, the GP model is plotted, which converges progressively towards the true cost function (a).
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characteristic is the use of internal uncertainty estimation (variance) to drive both the search for the optimum 
and the improvement of the model accuracy. Contrary to the approaches based on ANNs, that often aims at con-
structing a model accurate in the whole design space before optimization, EGO focuses on the most promising 
areas regarding the optimization criterion. It is therefore far less expensive in terms of solver calls, making it very 
well suited to the context of expensive simulations. In practice, only a few hundreds of simulations are typically 
required for EGO, whereas the database used to train ANNs usually requires tens of thousands of solver calls. As 
an example, in ref. 32 a database of 90 000 simulations has been achieved in order to train an ANN to optimize 16 
parameters. For EGO, as illustrated below, we need only 80 points for the initial design of experiments (DoE) and 
150 solver calls for the iterative enrichment, to optimize structures with 12 and 8 parameters (rectangular and 
cylindrical shaped antennas).

We would like to emphasize that EGO has some limitations in terms of the number of optimization parame-
ters, due to the fact that it relies on the construction of an internal Gaussian Process model, to decide which new 
point should be evaluated. This limitation is difficult to define precisely in general, because it depends on the 
problem studied. In the literature, it is reported that EGO should in general not be employed above one hundred 
of parameters. Nevertheless, high-dimensional Bayesian optimization is a very active research topic. In particular, 
preconditioning methods are studied, in order to reduce the number of active parameters effectively used during 
optimization.

In order to highlight the different optimization behaviors and performance between CMA-ES and EGO and 
to give the reader more insights about their properties, we provide here a 2D analytical example which is designed 
to find the global minimum of a 2D Branin function, defined by:
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The Branin function f(x, y) depicted in Fig. 2(a) has three global minima, i.e three different combinations of 
parameters x and y in the range of −5 ≤ x ≤ 10 and 0 ≤ y ≤ 15 generate the same value of the objective function, 
as indicated by the black arrows in Fig. 2(a). Using this simple example, we highlight the different behaviors of 
the two algorithms. We compared the convergence and the computational efficiency of the two algorithms in 
Fig. 2(b,c). They depict the function value obtained with respect to the number of solver calls. As seen, both meth-
ods reach a very satisfactory function value, CMA-ES being clearly more expensive converging after about 180 
solver calls, compared to 30 (including training data) for the EGO method. Below, we demonstrate the evolution 
of the two methods.

For CMA-ES, the yellow points shown in Fig. 2(d–g) show the evolution of all samples tested at generations 
ranging from 0 to 30, the red points corresponding to the last generation (size N = 6). CMA-ES sampling points 
are essentially exploring only the vicinity of the population mean, which progressively moves towards the best 
objective function values to converge on a local minimum.

For EGO, Fig. 2(h–k) show both the Gaussian Process model and the underlying database generated from 
iteration 0 to 30. At iteration 0, the database is composed of 6 points obtained from the DOE phase. Then, the 
database is enriched in most promising areas, yielding an improvement of the corresponding model. At iteration 
30, the three regions around the global minima have been found. Moreover, a Gaussian Process model has been 
constructed, which is very close to the true function seen in Fig. 2(a), in which the three global points have been 
identified by the EGO (see black points in Fig. 2(k) and the analytical function given in Fig. 2(a).

This simple analytical example illustrate the different optimization mechanisms involved in CMA-ES and EGO 
algorithms. In the following, we exploit these two methods to optimize metasurface geometries for improved light 
deflection efficiency at λ = 600 nm.

numerical Results
As a first example, in Fig.  3(a), we consider a phase gradient metasurface made of rectangular GaN 
semi-conductor (dark-red regions) placed over a semi-infinite substrate made of Al 2O3 (shown in green). We 
consider a normal incident plane wave with electric field polarized in the y-direction, and we aim to maximize 
the diffraction efficiency of the first order mode η(0, −1) (deflect light in the same plane of incidence y-z plane) 
at wavelength of λ = 600 nm. To avoid diffraction inside the substrate, we consider sub-wavelength period in the 
x-direction (300 nm) and a period of phase gradient in the y-direction, which is the dimension along which we are 
optimizing the geometries of subwavelength nanopillars, to be Γ = 1500 nm, as shown in Fig. 3(a).

In the first design, we optimize the design of rectangular antennas, considering optimization of the following 
parameters: the height, which is chosen equal for all pillars to comply with nanofabrication techniques; the posi-
tions of each ridges in y direction; the thicknesses in x and y directions, leading to 12 optimized parameters that 
are represented by the red circles in Fig. 3(a). It is worth mentioning that we took into account the experimental 
constraints during the optimization process, in which the minimum feature size is set to 90 nm and the height of 
the ridges is set between 600 nm and 800 nm. Figure 3(b,c) summarize the optimization results obtained for this 
first metasurface example. The CMA-ES results are shown in Fig. 3(b), in which the objective function evaluation 
at each iteration is shown in dark-yellow points, and the best values of the objective function evaluation obtained 
during the optimization process is represented by the purple solid curve.

Note that the evolutionary model evaluates at each iteration exactly 11 metasurface designs, keeping the best 
value among the different realizations only if the latter outperform those obtained during the previous iteration 
(purple curve in Fig. 3(b)). After nearly 550 iterations, we obtain a global mimimum such that 1 − ηTM(0, 
−1) ≈ 0.119 at λ = 600 nm, which is corresponding to diffraction efficiency of approximately 88.10% for TM 
polarized waves. The evolution of the diffraction efficiency ηTM(0, −1) as a function of the wavelength is 
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Figure 3. Results of the optimizations for rectangular nanoantenna arrays. (a) The geometry under 
consideration with rectangular nano ridges made of GaN (dark-red ridges) on top of a semi-infinite substrate 
made of Al 2O3 (green region). The 12 red circles represent the optimization parameters. (b) Optimization 
process using CMA-ES as a function of the number of fullwave solver calls. Dark-yellow points represent 
the value of the objective function at each iteration, the solid purple line highlights the best point achieved 
during the optimization. In other words, for each generation we keep only the best point that minimizes the 
objective function. These best points that are obtained from each generation along the optimization process, 
are represented by the solid purple curve. (c) Optimization realized with the EGO solver as a function of the 
number of fullwave solver calls. The blue points represent the DOE (shaded region), the black points represent 
the value of the objective function at each optimization iteration, and the green solid line indicates the 
optimized data. (d) Comparison between the diffraction efficiency for the first order mode as a function of the 
wavelength for the TM polarized wave. We use purple and green colors for the CMA-ES and EGO optimized 
geometries, respectively; the corresponding parameter values shown in Table 1, for CMA-ES, and EGO 
optimized parameters.

CMA-ES: element 
dimensions(h ≈ 800 nm)

EGO: element dimensions 
(h ≈ 666 nm)

Element dx(nm) dy(nm) Element dx(nm) dy(nm)

1 108.5 248.7 1 120.0 254.1

2 93.3 199.6 2 106.3 203.3

3 96.6 116.5 3 103.6 109.1

4 108.6 108.1 4 107.3 130.6

CMA-ES: distance between 
elements

EGO: distance between 
elements

between 
(1–2) 121.4 nm between 

(1–2) 98.5 nm

between 
(2–3) 114.6 nm between 

(2–3) 91.5 nm

between 
(3–4) 103.8 nm between 

(3–4) 101.6 nm

Table 1. CMA-ES and EGO optimized parameters for the rectangular shaped antennas shown in Fig. 3(a). The 
optimized heights obtained from CMA-ES and EGO are h ≈ 800 nm and h ≈ 666 nm, respectively.
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represented by the purple curve in Fig. 3(d), indicating that a maximum is achieved at λ = 600 nm. The corre-
sponding parameter values are shown in Table 1, where dx and dy give the thicknesses in x and y directions, 
respectively for each rectangular element. From the result of the CMA-ES method, the optimal height of the 
ridges is h ≈ = 800 nm. As could be expected, a linear phase gradient, which leads to light deflection in y-z plane, 
is achieved by increasing the effective mode index of the nanorectangles, i.e. by gradually increasing the thick-
nesses in y direction as a function of the position of the nanoantenna within the period. Note also that the opti-
mized height of the ridges is nearly 800 nm, which according to previous direct simulations and experimental 
works is sufficiently tall to provide high transparency windows and sufficient phase delay for increasing cross 
sections12,36,37,59. The electromagnetic field distributions for the Re(Hx) and Re(Ey) at λ = 600 nm are shown in 
Fig. 4(a,b), respectively, which clearly indicate light deflection behavior. It is worth mentioning that during the 
optimization process, accurate simulation results was obtained using a coarse mesh of only 3000 cells with a 
DGTD-4 solver (i.e. with fourth order polynomial interpolation of the components of the electromagnetic field 
within each mesh cell). One fullwave simulation with these mesh and solver configurations cost 26 minutes using 
48 cores. A numerical convergence is provided in Fig. 8(a). The results shown in Fig. 4(a,b) have been obtained 
using a finer mesh and a DGTD-2 solver.

The same optimization has also been realized using the EGO method, still considering the rectangular nano-
pillar setting shown in Fig. 3(a). As explained previously, this optimization approach build a DOE database in a 
first phase. In this example, we built a database with 80 design points represented by the blue points in Fig. 3(c). 
In a second phase, based on these 80 design points, a surrogate model is constructed and used during the optimi-
zation process to find a global minimum, i.e. that could achieve a better result than the actual best point found in 
the DOE process (represented by the pink point in Fig. 3(c)). From the green curve and its associated data (black 
points just above the green curve in Fig. 3(c)), one can note that the convergence is obtained after only a few 
number of iterations (approx. 150 iterations), beyond which the efficiency barely improves, thus indicating that 
the best point has been obtained. Compared to the CMA-ES, EGO minimization of the cost function optimizes 
the 12 parameters and converges to a global minimum in which 1 − η(0, −1) ≈ 0.12, corresponding to a deflection 
efficiency of 88.0% at λ = 600 nm after nearly 150 iterations, i.e. about 4 times faster than CMA-ES method.

Observing the optimized parameters, we realize that the geometries obtained by the EGO method (related to a 
specific stopping criteria) are different from those obtained with CMA-ES method (see Table 1), for the optimized 
parameters obtained using the CMA-ES and EGO methods), although both could provide seemingly identical 
diffraction efficiency of about 88% at λ = 600 nm, see Fig. 3(d).

Interestingly, the optimized parameters obtained by the EGO method are going against the intuitive designs 
for which linear phase gradients rely on increasing effective mode index of the antennas as a function of the pillar 
transverse section. Indeed, the expected gradient in the dy thicknesses of the ridges is not fully satisfied as the dy 
of the last ridge is larger than the previous pillar. These results are sensibly different to those obtained using the 
CMA-ES method. Note also that the global thicknesses of the ridges in y direction are slightly thicker than their 
counterparts obtained using the CMA-ES method. In addition, the height of the nanoridges is also much shorter 
than the optimized height found by the CMA-ES method by about nearly one wavelength. Similarly to the analyt-
ical example shown in Fig. 2, the noticeable differences in the parameters indicates that EGO has reached another 
global optimum, which was not found by the CMA-ES method. The difference in structural parameters is also 
reflected in the field maps provided in Fig. 4, in which we clearly see that the number of longitudinal modes for 
the optimized geometry found by the EGO method shown in Fig. 4(a,b) are different from the ones obtained by 
the CMA-ES method shown in Fig. 4(c,d). The possibility of operating in the optimal transmission regime, also 
related to the Kerker condition in Mie theory, has been discussed recently. Since the height of nanopillar controls 
essentially the longitudinal resonance, similar light deflection response can be achieved by varying the transverse 
cross sections of nanopillar arrays having two distinct heights, thus explaining why we could achieve at least two 
different global mimima in this configuration. We emphasize that in our unit cell, which is made of 4 nanoridges, 

Figure 4. Field maps of Re H( )x  and Re E( )y  obtained for rectangular nanopillars for the optimized geometries 
at λ = 600 nm. (a,b) Obtained from the CMA-ES method with height h ≈ 800 nm; (c,d) Obtained from the EGO 
method with h ≈ 666 nm.
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optimization is performed by modifying all antennas parameters at once, thus properly optimizing the near-field 
coupling between the different modes, as illustrated in Fig. 4.

For the second example, we optimize a phase gradient metasurface made of cylindrical nanopillars (see 
Fig. 5(a)) to maximize the diffraction efficiency in the first order mode. Due to the symmetry of the nanopillars, 
we are targeting polarization insensitive properties. For this example, we optimized the structures by modifying 
8 parameters (see Fig. 5(a)) including the pillars diameter (thick white arrows), the height, and the position of 
the nanopillars as indicated by the red points. We also kept experimental constraints identical to those for the 
rectangular case. We begin by analyzing again the optimization of the CMA-ES case, as shown in Fig. 5(b), for 

Figure 5. Optimization results for cylindrical nanopillars arrays. Similarly to Fig. 3, (a) is the geometry under 
consideration with cylindrical nanoridges made of GaN (dark-red ridges) on top of a semi-infinite substrate 
made of Al 2O3 (green region). The 8 red circles represent the optimization parameters. (b) Optimization 
process using CMA-ES as a function of the fullwave solver calls. Dark-yellow points represent the value of the 
objective function at each iteration, the solid purple line indicates the best point during the optimization up to 
the current iteration. (c) Optimization using the EGO method as a function of the fullwave solver calls. The blue 
points represent the DOE (shaded region), the black points represent the value of the objective function at each 
optimization iteration, and the green solid line indicates the optimized data. (d) Comparison between the 
diffraction efficiency for the first order mode as a function of the wavelength for the TM polarized wave. Purple 
and green colors for the CMA-ES and EGO optimized geometries, respectively; the corresponding parameter 
values shown in Table 2, for the CMA-ES and EGO results. The field maps for Re H( )x  and Re E( )y  for the 
optimized geometries at λ = 600 nm are shown in Fig. 6.

CMA-ES: element 
dimensions(h ≈ 735 nm)

EGO: element dimensions 
(h ≈ 705 nm)

Element Diameter (nm) Element Diameter (nm)

1 209.7 1 210.0

2 176.2 2 189.0

3 149.1 3 154.5

4 117.6 4 126.0

CMA-ES: distance between 
elements (center to center)

EGO: distance between 
elements (center to center)

between (1–2) 308.6 nm between (1–2) 293.9 nm

between (2–3) 255.7 nm between (2–3) 279.4 nm

between (3–4) 249.3 nm between (3–4) 236.9 nm

Table 2. CMA-ES and EGO optimized parameters for the cylindrical nanopillars shown in Fig. 5(a). The 
optimized heights obtained from CMA-ES and EGO are h ≈ 735 nm and h ≈ 708 nm, respectively.
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which a global point with diffraction efficiency around 85% for TM polarized waves (results for TE polarization 
is also around 85%, data not shown) is obtained after 300 fullwave solver calls. For the EGO method, we consider 
a DOE database with 50 design points (see blue points in Fig. 5(c)). Then, a surrogate model is constructed and a 
global optimum is clearly obtained after nearly 180 iterations with efficiency 85%. For this example, both optimi-
zation methods lead to structures with increasing gradient in the diameter, but the two set of parameters obtained 
by CMA-ES and EGO are slightly different as indicated in Table 2. The diffraction efficiency as a function of the 
wavelength obtained by the two methods can be found in Fig. 5(d), where we clearly see slight differences between 
the results obtained by the CMA-ES (purple curve) and the EGO (green curve) method.

Figure 6. Field maps of Re H( )x  and Re E( )y  obtained for cylindrical nanopillars for the optimized geometries at 
λ = 600 nm. (a,b) Obtained from the CMA-ES method with height h ≈ 735 nm, (c,d) Obtained from the EGO 
method with h ≈ 708 nm.

Figure 7. (a) Comparison between results obtained with CMA-ES (for the cylindrical nanopillars) as a function 
of height (purple curve, exactly as in Fig. 5(b) in which the height is optimized to h ≈ 735 nm), and the ones 
obtained with CMA-ES with fixed h = 800 nm (dark orange curve) as a function of the number of fullwave 
solver calls. The corresponding optimized parameter values for the case with h = 800 nm (dark orange curve) 
can be found in Table 3. (b) Diffraction efficiency as a function of the wavelength. (c,d) Field maps of Re H( )x  at 
λ = 600 nm for the reference case with h ≈ 735 nm (purple curve in (a)), and the case with h = 800 nm (dark 
orange curve in (a)).
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The DGTD method allows us to obtain the wavelength dependence of the deflection efficiency for both 
CMA-ES and EGO, essentially showing similar behavior. We denote a slight difference, which can be attributed to 
the fact that both structures are not operating on the exact same longitudinal modes, see the field maps in Fig. 6 
obtained at λ = 600 nm. The CMA-ES optimum is achieved for h ≈ 735 nm, for which nearly half of the last mode 
field lobe is located in the first ridge, while EGO optimization results gives an optimal height h ≈ 708 nm.

To capture the influence of the height on the performance of the designed metasurfaces, we decided to com-
pare the CMA-ES results for a fixed height h = 800 nm with those obtained when including the height in the set of 
optimization parameters, see Fig. 6(b)). The comparison in Fig. 7(a) clearly illustrates that the results obtained 
with a fixed height h = 800 nm (dark orange curve) approach those obtained with varying the height, including 
the set of parameters obtained from both structures that converge to each other, see Tables 2 and 3 for the refer-
ence case with h ≈ 735 nm and the fixed height case h = 800 nm, respectively. This indicates that the maximum of 
efficiency found in this configuration is quite robust, being resilient to significant height variation. To properly 
account for uncertainties due to the meshing of the nanostructures, we have realized a convergence proof consid-
ering the cylindrical nanopillar array, see Fig. 8(b), in which we investigated different mesh sizes and different 
polynomial orders. It is worth mentioning that during the optimization process, we used a coarse mesh of 10 000 
cells with fourth order polynomial 4, which proved sufficient to get accurate results (one fullwave simulation 

CMA-ES: element dimensions CMA-ES: distance between 
elements (center to center)Element Diameter (nm)

1 205.1 between (1–2) 328.0 nm

2 176.4 between (2–3) 264.3 nm

3 142.3 between (3–4) 238.5 nm

4 128.2

Table 3. CMA-ES optimized parameters for the cylindrical nanopillars shown in Fig. 5(a) with fixed height 
h = 800 nm during the optimization.

Figure 8. Convergence study using the DGTD method (a): for the rectangular shaped antenna (for CMA-ES 
results, the corresponding parameters can be found in Table 1) using coarse mesh with 3000 cells with fourth 
order polynomial P4 order (blue curve) and with finer mesh size (147 000 cells) with second order polynomial 
P2 order (purple curve). (b): convergence results for the cylindrical shaped antenna using the data shown in 
Table 2 for the CMA-ES results using different mesh sizes and/or types, different polynomial orders.

Figure 9. Comparison between results obtained with the FDTD method (blue solid curves) and the ones 
obtained with the DGTD method (orange dashed curves) for the optimized cylindrical nanopillars shown in 
Table 3. (a) For the total transmission and (b) for the deflection efficiency for the first order mode. The FDTD 
results are obtained with nearly 105 cells, however in our DGTD solver, we used only 13 000 cells with higher 
order polynomial order and curvilinear elements.
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with this mesh and interpolation order specifications takes about 40 minutes using 48 cores), as it is depicted in 
Fig. 8(b). To present accurate field distributions and improve the visualization, the results obtained for the opti-
mized geometries shown in Figs. 6(a,d) and 7 have been obtained with a finer mesh and a DGTD-2 solver. As 
shown in Figs. 8(b) and 9, it is possible to further improve the numerical accuracy using higher order curvilinear 
elements in combination with higher order polynomials. However, current experimental realization of metasur-
faces using state of the art nanofabrication facilities do not reach such fine level of details and it is therefore not 
essential to further improve the nanostructure discretization to even higher numerical resolution. At this point, 
it is instead more interesting to point out that after various attempts to achieve close to unitary deflection effi-
ciency, all optimized structures converge towards roughly the same number of 0.85.

This limitation of the deflection efficiency is expected as demonstrated in refs. 60,61. According to these works, 
the efficiency of the phase gradient metasurfaces is limited due to impedance mismatching between the incident 
and the desired wavefront, leading to an increase of the scattering in the other modes. In particular, theoretical 
proofs have shown that a unitary light deflection to an arbitrary angle cannot be achieved using linear gradient 
phase profiles60.

This effect is sufficiently important to avoid full unitary efficiency60. In order to overcome this limitations and 
achieve a unitary efficiency for light deflection, two different approaches have been proposed. The first approach 
is based on designing a metasurface with a surface impedance profile that takes into account the impedance 
matching into consideration. A balance between gain and loss elements (active metasurfaces), or nonlocal effects 
must be considered. This first approach is relatively difficult to be considered from the fabrication point of view, 
it requires complex design fabrication, and deep sub-wavelength resolution. Another technique is introduced 
in ref. 61. In this work, the authors have shown that by using a lossless bi-anisotropic resonators with coupled 
magnetic and electric field responses located above a ground plane (the distance between the resonators and the 
ground plane must be optimized in order to achieve the maximum efficiency). Even if the authors focused on the 
reflective case with no losses (ideal case), they mention that this work can be extended to the case of transmitting 
metasurfaces, by considering a two-layer metasurface. This latest technique requires using resonators with strong 
magnetic and electric responses at visible frequencies.

Besides the fact that we observed a limitation in the overall efficiency, as expected from previous theoretical 
predictions60,61, these studies for cylindrical and rectangular nanoantennas allow us to confirm that the optimiza-
tion strategies based on the CMA-ES and EGO methods that we have considered here are capable of understand-
ing which key parameter influence the most on the minimization process. Indeed, for all the results presented 
herein, we figured out that both optimizers set the thickness of the first ridge (dy in case of rectangular nanopillars, 
and diameter in case of cylindrical nanopillars) to the largest values, for which the effective refractive index is the 
largest. The height of the ridges is another interesting parameters as it essentially relates to the different longitu-
dinal modes inside the nanopillars, leading to relatively well optimized diffraction efficiency at different height.

conclusion
Two advanced optimization strategies have been introduced to optimize 3D semiconductor-based metasur-
faces. We proved that our optimization methods are very efficient in obtaining different global minima/maxima, 
requiring only a few hundreds of electromagnetic solver calls. We applied these methods to maximize the light 
deflection efficiency at λ = 600 nm using GaN based metasurfaces. Our numerical results reveal that one can 
obtain 85% of deflection efficiency for both TM and TE polarization using cylindrical nanoantennas. In addi-
tion, we show that using rectangular nanoantennas, one might obtain more that 88% of deflection efficiency 
for TM polarization. These methods, which are widely used in the computational fluid dynamics community, 
could have significant implications in the design of efficient metasurfaces, notably in view of their utilization in 
real world applications, for which reaching highly efficient designs in reasonable computation time is one of the 
most important figure of merit. Our future works will aim at improving the computational performances of these 
optimization strategies by leveraging the different levels of parallelism underlying their algorithmic structures one 
one hand, and extending their capabilities in view of dealing with multi-objective problems.

numerical validation. In this section, we discuss about the numerical validation of some of the results 
obtained in our work. First, we start by studying the influence of the mesh size/type using our DGTD fullwave 
solver from the DIOGENeS software suite41 on some of the optimized designs. In Fig. 8(a), we study the influence 
of the mesh and the polynomial order on the optimized solution obtained in the rectangular nanoantennas case 
(the results obtained from the CMA-ES method are shown in Fig. 3). As it can be seen in Fig. 8(a), using fourth 
order polynomial order 4 with a coarse mesh (only 3 000 cells) provides the same results than when we consider 
second order polynomial order 2 with a finer mesh (with 147 000 cells). In Fig. 8(b), we show the convergence for 
the cylindrical nanoantennas case obtained using the CMA-ES method with h ≈ 735 nm (the corresponding 
parameters can be found in Table 2) using both linear tetrahedral elements and also curvilinear tetrahedral ele-
ments in order to achieve a high order approximation of the cylindrical geometry of the nanopillars. As it can be 
noticed, the convergence is obtained with less cells in the case of the mesh with curvilinear elements compared to 
the case with linear ones. To conclude on this point, using our DGTD solver, we are able to demonstrate the con-
vergence for the optimized geometries using different mesh size and/or types, which is not trivial especially for 
the case of cylindrical elements that require higher order curvilinear mesh type for more accurate results, other-
wise, a finer mesh must be used with the classical linear elements.

In Fig. 9, we provide another validation of our numerical results by simulating the optimized structure given 
in Table 3 using the FDTD fullwave solver from Lumerical commercial software, and comparing the results with 
the ones obtained from our DGTD solver. As it can be seen from Fig. 9, we have a very good agreement between 
the results obtained using the two methods for both the total transmission and the deflection efficiency of the 
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first order mode. However, in the case of the DGTD method, we show the results using curvilinear elements with 
fourth order polynomial using only 13 000 cells (same results can be obtained with classical linear elements with 
109000 cells as we have seen in Fig. 7). On the other hand, for the FDTD results, we consider a very fine mesh with 
nearly 105 cells in order to get accurate results that can be compared with the DGTD method.

Next, we show one example in order to demonstrate that our optimization techniques outperform the classical 
approach to phase gradient metasurface design. In Fig. 10(a), we present the geometry obtained using the clas-
sical approach. In this approach, one calculates the phase gradient needed with 1500 nm period in y-direction at 
wavelength λ = 600 nm and place the pillars at the right y positions in order to introduce the needed phase shifts 
to maximize the light deflection of the (0, −1) mode. The phase shifts and transmission introduced by each single 
element is calculated before using a classical forward simulation by changing the radius of the pillar and compute 
the corresponding phase and transmission (we consider a fixed height h = 800 nm). The corresponding deflection 
efficiency for the first order mode can be seen in the red curve in Fig. 10(c), in which the maximum efficiency at 
λ = 600 nm is around 74%. On the other hand the optimized geometry obtained using the CMA-ES method pre-
sented in Fig. 10(b), provides nearly 85% of deflection efficiency at λ = 600 nm (data can be found in Table 3). This 
discrepancy between the two results is clearly linked to the near field coupling as it is shown in Fig. 10(d,e). In 
the classical design approach (see the corresponding geometry in Fig. 9(a)), we neglect the effect of the near field 
coupling when we place the nanopillars together to construct the required phase shift, while in the optimization 
techniques presented in this paper, the near field coupling is taking into account during all optimization steps, 
which give us an optimized geometry as shown in Fig. 10(b).
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