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Tumor core biopsies 
adequately represent immune 
microenvironment of high-grade 
serous carcinoma
Olivia D. Lara1, Santhoshi Krishnan2,3, Zhihui Wang   4, Sara Corvigno1, YanPing Zhong5,6, 
Yasmin Lyons1, Robert Dood1, Wei Hu1, Lisha Qi5, Jinsong Liu5, Robert L. Coleman1, 
Shannon N. Westin1, Nicole D. Fleming1, Vittorio Cristini4,7, Arvind Rao2,3,8, Jared Burks   9 & 
Anil K. Sood1,10*

The prognostic and therapeutic value of the tumor microenvironment (TME) in various cancer types 
is of major interest. Characterization of the TME often relies on a small representative tissue sample. 
However, the adequacy of such a sample for assessing components of the TME is not yet known. Here, 
we used immunohistochemical (IHC) staining and 7-color multiplex staining to evaluate CD8 (cluster of 
differentiation 8), CD68, PD-L1 (programmed death-ligand 1), CD34, FAP (fibroblast activation protein), 
and cytokeratin in 220 tissue cores from 26 high-grade serous ovarian cancer samples. Comparisons 
were drawn between a larger tumor specimen and smaller core biopsies based on number and location 
(central tumor vs. peripheral tumor) of biopsies. Our analysis found that the correlation between 
marker-specific cell subsets in larger tumor versus smaller core was stronger with two core biopsies 
and was not further strengthened with additional biopsies. Moreover, this correlation was consistently 
strong regardless of whether the biopsy was taken at the center or at the periphery of the original tumor 
sample. These findings could have a substantial impact on longitudinal assessment for detection of 
biomarkers in clinical trials.

The tumor microenvironment (TME) is a complex network of interactions between immune cell populations, 
cancer cells, and vascular and stromal components, which play a critical role in cancer cell growth and progres-
sion. It is now well recognized that many components of the TME have implications for patient outcome and 
therapeutic targeting1. For example, the presence of T-cell infiltration has been reported to consistently correlate 
with improved patient survival2–4, whereas increased expression of tumor-associated macrophages has been asso-
ciated with poor clinical outcome5–7.

Many approaches to assess the TME have been examined, including biological and computational models 
based on bulk tumor or single-cell technology8–11, but these have been limited by the lack of adequate tissue 
sample and cost. Assessing the adequacy of a tissue sample for TME investigations is a central issue. Numerous 
therapies targeting the TME have emerged, many of which have relied on serial biopsies to assess the longitudinal 
effect of therapy on the TME over time. Clinically, serial tumor biopsies have been applied to evaluate putative 
predictive biomarkers and to test for target-specific effects with novel therapies12. However, it is unclear whether 
serial biopsies adequately represent the heterogeneity of tumor specimens13.
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Here, we used immunohistochemical (IHC) staining and advanced staining techniques to probe high-grade 
serous ovarian carcinoma (HGSC) samples to quantify immune and stromal cell populations. Furthermore, we 
determined the variability between cores and the ideal number of cores based on the location needed to ade-
quately assess the tumor immune environment. We found that TME components can be assessed reliably with a 
minimum of three small tissue biopsies taken at random locations within the larger tumor.

Materials and Methods
Patient cohorts.  Our study population consisted of 26 chemotherapy-naive patients with HGSC. Formalin-
fixed, paraffin-embedded (FFPE) tissue blocks acquired at surgery were derived from primary or metastatic 
tumor sites. A tissue microarray (TMA) was assembled with 1.5-mm cores punched from representative areas. 
For 10 patients, 5 tissue cores were taken at random locations within the tumor; for 5 patients, 10 tissue cores were 
taken randomly; and for 12 patients, 10 tissue cores were taken, 5 of which were taken from central tumor and 5 
from peripheral tumor regions. Three TMA blocks were assembled with a total of 220 cores. All methods were 
performed in accordance with the relevant guidelines and regulations of The University of Texas MD Anderson 
Cancer Center and were approved by its ethical committee and Institutional Review Board. Written informed 
consent was obtained concerning the analysis of tumor tissue for scientific purposes.

IHC and 7-color multiplex staining.  Slides were cut from TMAs obtained from tumor blocks and from 
original tumor blocks, deparaffinized, rehydrated, and underwent IHC analysis. Initial IHC analyses consisted of 
staining with CD8 (cluster of differentiation 8) and CD68 (cluster of differentiation 68) antibodies and hematox-
ylin counterstaining (Sigma-Aldrich, GHS316-500). These analyses did not provide data on CD8 or CD68, for 
which we relied on multiplex staining described below, but allowed us to define tissue segmentation for stroma, 
epithelial, and blank areas. On average, 10% of cores were lost after processing and staining. Additional sections 
of FFPE block and TMA were used for 7-color multiplex staining. An Opal 7-color manual IHC kit (PerkinElmer, 
NEL 811001KT, lot # 2398178) was used for sequential staining (see Supplementary Fig. S1). The protocol was 
based on the use of fluorescent tyramide signal amplification (TSA) reagents that retain a fluorescence signal 
after multiple treatments with a steamer to remove the primary and secondary antibodies. Primary antibody con-
centration and brands are included in Supplementary Table S1. After sequential reactions, slides were counter-
stained with DAPI (PerkinElmer, FP1490) and mounted with Prolong Antifade fluorescence mounting medium 
(Invitrogen, P36965). Single marker staining was used to compose a spectral library, which was analyzed in order 
to set the exposure times to detect specific signals. Data were exported as.txt files.

Imaging and spectral unmixing.  IHC and multiplex-stained slides were imaged with use of the Vectra 
Multispectral Imaging system version 2 (PerkinElmer). All samples were scanned at 20× magnification for TMA 
annotation and larger tumor region selection. Low-powered images were then used to extract one 40× image of 
each TMA core and 100 to 300 images of the larger patient samples, depending on the size of the samples, with 
the use of a Phenochart slide viewer (see Supplementary Fig. S2). Filter cubes used for multispectral imaging were 
DAPI (440–680 nm), FITC (520–680 nm), Cy3 (570–690 nm), Texas Red (580–700 nm), and Cy5 (670–720 nm). 
The signal intensities for each marker were normalized, and spectral unmixing was performed with PerkinElmer 
inForm Analysis software (2.4.1.). An image encompassing the entire slide through the full emission spectrum 
of each filter (DAPI, fluorescein isothiocyante [FITC]), Cy3, Texas Red [TR], and Cy5) was captured. A spectral 
signature for each fluorophore was obtained by using the same multispectral imaging protocol of single-stained 
slides, as well as an unstained slide to obtain the auto-fluorescence signature of the tissue. Spectral unmixing was 
then used to separate these spectral signatures into individual signals (see Supplementary Fig. S3).

Tissue and cell segmentation.  We then used the inForm 2.4.1 image analysis train-by-example inter-
face to develop an algorithm for tissue segmentation and cellular segmentation. Tissues stained with single IHC 
stain were manually segmented in stromal areas, tumor epithelial areas, and blank areas on a set of 15 training 
images. Once an accurate algorithm was developed for tissue segmentation, batch processing of all images could 
be performed. Percentages of tumor and stroma were determined for each core and larger specimen. Cell seg-
mentation was performed on multiplex stained slides by using nuclear definition to draw cell contours, and the 
train-by-example interface was then used to identify cells on a cell-by-cell basis (see Supplementary Fig. S4). After 
cellular segmentation, cell phenotyping was performed. Spectral unmixing was used to separate brown nuclear 
[virtual DAB (3,3’-diaminobenzidine)] staining from blue (virtual hematoxylin) staining. InForm software was 
then used to convert the images to quantitative optical density (OD) values. The OD threshold was set to identify 
positive-staining cells: CD8 (10.00), CD68 (1.84), PD-L1 (0.54), CD34 (3.00), FAP (0.2), and cytokeratin (0.58). 
Once the algorithm was proven to be reliable, all slides were segmented, reviewed, merged, and exported for anal-
ysis. The percentages of tumor and stroma were determined for each core and larger specimen. The percentages 
of positively stained cells were similarly determined. Data were exported as.txt files.

Statistical analyses.  All of the correlations between the larger tumor specimen and the tumor cores (com-
bined or separately) were identified by using Pearson correlation analysis. A 95% confidence interval (CI) was 
assumed for the correlation coefficient distributions in all cases. R-values and P-values were reported for all 
comparisons. Strong correlations were based on an R > 0.7, and moderate correlations were based on R-values 
between 0.5 and 0.714. The percentage of positively stained cell type was used as the comparative feature for the 
statistical analyses. The means of the correlation distributions were compared by using the Wilcoxon RankSum 
test, with the null hypothesis that both the samples were selected from the same population distribution. ICC 
estimates and their 95% confidence intervals were calculated using the ‘irr’ package in R(R Core Team(2018), 
Vienna, Austria) with a single rating(k = 2), absolute-agreement, 2-way mixed-effects model15. The P-value was 
reported, with significance at P < 0.05. The variance across the TMA and larger slides for each phenotype was 
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compared by using the Levene’s test, with the null hypothesis that the variances of the sample populations are 
equal. The F-statistic and the P-value were reported, with significance at P < 0.05. All calculations were done on 
MATLAB 2018b (The MathWorks, Inc., Natick, Massachusetts), and plotting was done with use of both MATLAB 
and GraphPad Prism 7, version 7.03.

Results
Correlation between tumor epithelial and stromal areas.  We first used IHC staining to assess tumor 
epithelial and stromal areas. Our initial analysis focused on the percentage of stromal and epithelial tumor regions 
among all 26 patient samples. Each patient sample had between 1 and 10 cores available for analysis; these were 
taken from random, central, and peripheral locations. We compared the percentages of tumor epithelial and 
stromal areas on the total tumor areas throughout the cores and then separated them into central and peripheral 
cores. We observed a non-significant correlation (R = 0.15, P = 0.48) between stroma in larger tumor samples 
when compared with cores and similarly a non-significant correlation (R = 0.43, P = 0.26) for tumor regions in 
larger samples versus cores (see Supplementary Fig. 5).

Next, we repeated our analysis using 11 patient samples that had at least four central cores and four periph-
eral cores that were available for comparison. We found a strong correlation (R = 0.79, P = 0.006) between the 
stroma percentage in core biopsies and in larger tumor specimens, and this correlation persisted regardless of the 
location of the core biopsies (central cores, R = 0.56, P = 0.09; peripheral cores, R = 0.58, P = 0.08) (Fig. 1a,c); the 
relationship between the cores taken from central versus peripheral tumor showed a weak correlation (R = 0.10, 
P = 0.02) (Fig. 1d). The correlation between the larger tumor and all of the cores combined (Fig. 1a) was signifi-
cant at a 0.05 confidence level. While all of the other correlations (Fig. 1b,c) were identified as non-significant at 
the 0.05 confidence level, but were significant at the 0.1 confidence level.

Similarly, we observed a strong correlation (R = 0.75, P = 0.01) between the percentage of tumor epithelial 
areas compared with all cores, regardless of the location from which the cores were taken (central cores, R = 0.79, 
P = 0.006; peripheral cores, R = 0.66, P = 0.04) (Fig. 1e–g). We then compared central with peripheral cores and 
found a strong correlation between the two data sets (R = 0.89, P = 0.006) (Fig. 1h). Collectively, these results 
indicate that the percentage of tumor and stroma may be reliably represented by core biopsies, regardless of 
location. Nevertheless, stroma percentages are more dependent on core location when compared with tumor 
epithelial area percentages, which seem to be concordantly distributed in peripheral and central cores. We next 
sought to determine whether the distribution and abundance of different TME cell populations could be accu-
rately detected and measured by analyzing tumor core biopsies with a 7-color multiplex staining.

Analyses of abundance and distribution of TME populations.  Next, we used a 7-color multiplex 
staining by using an Opal multiplex staining protocol, which allowed for simultaneous evaluation of seven 
markers in a single tissue section (see Supplementary Fig. S1). Multispectral imaging was applied to stained 
tissue samples (Fig. 2). We observed a strong correlation (all cores, R = 0.90, P < 0.001; central cores, R = 0.90, 

Figure 1.  Correlation between stromal and tumor epithelial areas in patients. Stromal correlation computed for 
larger tumor specimens versus core biopsies for all core biopsies (a), central core biopsies (b), peripheral core 
biopsies (c), and central versus peripheral core biopsies (d). Tumor percentage for larger tumor specimen versus 
core biopsies for all core biopsies (e), central core biopsies (f), peripheral core biopsies (g), and central versus 
peripheral core biopsies (h). Pearson correlation coefficient (R) and P values for each correlation analysis are 
shown.
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P < 0.001; peripheral cores, R = 0.88, P < 0.001) between CD8 positively stained cells for the entire specimen 
compared with all cores, regardless of where the cores were taken (Fig. 3a–c). Similarly, we observed a moderate 
correlation (R = 0.67, P = 0.03) between macrophage (CD68+) populations (Fig. 3d) and a strong correlation 
(R = 0.92, P < 0.001) between cells positive for vessel marker CD34 (Fig. 3g) when comparing the larger tumor 
specimen and core biopsy. When correlation of larger tumor samples versus central and peripheral tumor biop-
sies were separately analyzed for macrophage marker CD68, their correlation was not statistically significant 
(Fig. 3e,f). However the strong correlation persisted in both central and peripheral tumor biopsies (central cores, 
R = 0.80, P = 0.005; peripheral cores R = 0.98, P = 0.01) for CD34-positive cells (Fig. 3h,i). Finally, we observed 
no correlation (R = 0.13, P = 0.72) between PD-L1–positively stained cells when all cores were compared (Fig. 3j). 
When cores were separated into those taken from central versus peripheral tumor, we observed no correlation 
(Fig. 3k–l).

We then compared central versus peripheral cores for all markers. We observed a strong correlation between 
central cores and peripheral cores for markers CD8 (R = 0.92, P < 0.001), CD68 (R = 0.74, P = 0.01), and CD34 
(R = 0.76, P = 0.01) (see Supplementary Fig. S6), indicating that the location of the core did not affect overall 
correlation. These results demonstrate that components of the TME, in particular lymphocytes, macrophages, 
and vessel number, could reliably be represented on core biopsies regardless of location. However, the number 
of cells that stained PD-L1–positive was less reliably detected on core biopsies in general and also dependent on 
tumor area location.

Analysis of the optimal representative number of cores.  We next determined the optimal number 
of small biopsies needed. We focused on a subset of 11 patients for whom four central and four peripheral biop-
sies were available for analysis (Fig. 4). To accurately observe the variability in values, we computed and gener-
ated a distribution of Pearson correlation coefficients R between cell count values in larger specimens versus cell 
count values in an increasing number of core biopsies (separately from central and peripheral areas of the tumor) 
(Fig. 5). The resultant distribution consisted of correlations between the slides of the larger tumor specimen and 
of 50 randomly drawn and repeating combinations of biopsy cores of the specific type. Additionally, we calculated 
non-adjusted ICC with 95% CI, where ICC values less than 0.5 are indicative of poor concordance, 0.5 to 0.75 

Figure 2.  Opal 7-color multiplex analysis. (a) Representative images displaying the same TMA core after 
multispectral imaging and after spectral unmixing; (b) nuclear marker DAPI (pseudocolored blue); (c) 
PD-L1 (membrane, 540, pseudocolored cyan); (d) CD68 (membrane, 650, pseudocolored yellow); (e) CD8 
(membrane, 570, pseudocolored white); (f) fibroblast-activated protein (membrane, 620, pseudocolored 
magenta); (g) cytokeratin (cytoplasmic, 690, pseudocolored orange); (h) CD34 (membrane, 520, pseudocolored 
green); and autofluorescence (pseudocolored black) not pictured. Inset summary of each defined fluorophore, 
color code, and associated marker.
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indicated moderate concordance, and 0.75 to 0.9 indicate good concordance, and values greater than 0.90 indicate 
excellent concordance15. We found that in both central and peripheral cores, the correlation between CD8+ cell 
densities in larger tumor specimens compared with those in small biopsies was strong when two biopsies were 
used (Fig. 5a,b).

Figure 3.  Correlation between marker positive cell counts in large samples versus core biopsies. Correlation 
between number of positive-stained cells for CD8 (a–c), CD68 (d–f), CD34 (g–i), and PD-L1 (j–l) in large 
tissue versus cores. CD8+ correlations between large tumor samples and (a) all core biopsies, (b) central core 
biopsies only, and (c) peripheral core biopsies only. CD68+ correlation for (d) all core biopsies, (e) central core 
biopsies only, and (f) peripheral core biopsies only. CD34+ correlations for (g) all core biopsies, (h) central  
core biopsies only, and (i) peripheral core biopsies only. PD-L1+ correlations for (j) all core biopsies, (k) central 
core biopsies only, and (l) peripheral core biopsies only. Pearson correlation coefficient (R) and P values for each 
correlation analysis are shown in insets.
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Although increasing the number of core biopsies led to increased statistical significance, only two biopsies 
were needed for a strong correlation to larger tumor specimens (R > 0.7). This was replicated by non-adjusted 
ICC analysis, where two central biopsies and two peripheral biopsies yielded a moderate concordance with larger 
tumor specimen (ICC [CI range] central 0.61 [0.05–0.89]; peripheral 0.77 [0.33–0.94]) (Supplementary Table S2). 
Although central and peripheral cores were found to be significantly different (P = 0.03), the overall correlation to 
larger tumor remained strong, with R > 0.7 for both sets (Fig. 5e).

Correlation between CD68+ stained cells in the larger tumor specimen compared with small biopsies was met 
when two central or two peripheral biopsies were used (Fig. 5c,d). Finally, we compared CD68+ cell densities in 

Figure 4.  Variability between core specimens. Eight representative core biopsies taken from a single tumor 
specimen. The upper panel represents biopsies taken from central tumor; the lower panel corresponds to 
biopsies taken from peripheral tumor. Tissue and cellular segmentation performed on each core biopsies allows 
for visual representation of variability between cores depending on location taken.
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central versus peripheral biopsies; although there was a higher correlation between peripheral biopsies and larger 
tumor, both biopsy sites yielded a moderate correlation to larger tumor (R = 0.3 to 0.7), regardless of location 
(central versus peripheral) (Fig. 5f). ICC analysis revealed poor concordance when comparing CD68 counts 
between larger tumor and tumor core biopsies (Supplementary Table S2). Thus, we concluded that the number of 
biopsies to be taken was dependent on the marker assessed. However, when comparing all markers, a total of two 
biopsies taken either centrally or peripherally yielded a moderate to strong correlation with immune populations 
in HGSC larger tumor.

Discussion
Our ability to use components of the TME for therapeutic and prognostic strategies requires a more complete 
understanding of the complexities of the TME. Sufficient sampling of the tumor may offer insights into the diverse 
and complex interactions between immune, tumor, and stromal cells. Here, we have established a methodology 

Figure 5.  Variability between central and peripheral tumor specimens. Correlation between larger tumor 
specimen and increasing core biopsy number for CD8+ lymphocytes (a) peripheral core, (b) central core 
biopsies and CD68+ macrophages, (c) peripheral core, and (d) central core biopsies. Correlation differences 
between central and peripheral cores for (e) lymphocytes and (f) macrophages. P-values for Wilcoxon RankSum 
test are shown.
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to evaluate the TME components, providing a high-throughput protocol for clinical translation. This method 
benefits from the bioinformatics power of inForm Cell analysis and the use of multiplex IHC staining to identify 
differing cell populations. The use of multiplex staining is important since it allows for identification of specific 
individual cell populations in one tissue specimen.

An increasing number of clinical trials require submission of tissue specimens, either from archived speci-
mens or fresh biopsies taken from patients. These tissue specimens help to identify biomarkers for enrollment 
in trials or are saved for monitoring and correlative studies. Often enrollment in clinical trials can be delayed 
considerably because of the requirement to have a research biopsy. For instance, patients with advanced non–
small cell lung cancer who enrolled in clinical trials received treatment one week earlier in trials that did not 
have a mandatory tissue sample requirement16. In addition, almost 30% of patients had insufficient tissue on the 
biopsy specimen for analysis16. Patient reluctance to enter clinical trials for which tissue biopsy is a requirement 
highlights the importance of establishing standardization of protocols in order to use the limited amount of tissue 
in an efficient and timely fashion. Circulating tumor DNA may be used broadly as a tool for analysis of disease 
burden and genomic analyses, but it has limited utility for assessing the TME or tumor heterogeneity17.

Tissue biopsy samples are not only important for use in clinical trial eligibility and monitoring, but also may 
allow clinicians to determine potential responders versus non-responders before treatment. For instance, the 
ability to quantify T-cell infiltration may predict checkpoint blockade responsiveness18,19, and vessel density has 
been associated with greater benefit from bevacizumab in some studies20.

Several studies have focused on improving biopsy quality to yield sufficient material through protocol-specific 
and evidence-based practice guidelines; however, not much emphasis has been placed on determining whether 
these biopsies are truly representative of the larger tumor21,22. Currently, there are no established guidelines for 
a maximum number of core specimens, and those participating in clinical trials may undergo three to six core 
specimens per procedure23. We found out that the evaluation of tumor-associated stroma needs a minimum of 
two core biopsies, regardless of location, to be faithfully represented. Although the amount of tumor-associated 
stroma differed, depending on whether peripheral or central areas were analyzed, tumor epithelial areas were 
evenly distributed among peripheral and central cores. This might signify that tumor-associated stroma heteroge-
neity requires a larger number of analyzed sample areas in order to be fully represented, whereas tumor epithelial 
areas seem to be more homogeneous throughout the tissue specimen.

Limitations of our study include small sample size. Due to sample size limitations and the exploratory nature 
of our study, we used Pearson’s correlation and non-adjusted ICC to assess concordance between larger tumor 
specimen and core biopsy. Future studies could use Spearman correlation and adjusted ICC provided they have 
adequate sample size for each site. We also did not assess how concordance between larger tumor and core biopsy 
varies between tumor site (primary versus metastatic), which is a question we would like to expand on in future 
studies.

As the number of clinical trials increases and the development of markers predictive of therapy response 
expands, there will be a growing need for adequate tissue specimens. Our analyses suggest that a small tissue 
biopsy can adequately inform clinicians of specific components of the TME. We found that a number of positively 
stained CD8 cells could be reliably represented by two tissue biopsies regardless of location. CD68+ cells were 
adequately represented by two tissue biopsies as well, with a higher percentage of cells found in peripheral cores, 
which correlated well with the larger tissue specimen. We found that PD-L1 expression was poorly represented 
by tissue biopsies in our cohort of HGSC patients; thus, clinicians and researchers should be aware of the limi-
tations that small tissue biopsies may pose for evaluating some checkpoints. Collectively, this study offers new 
insight into the reliability of tumor microarrays and reveals the limitations in assessing tumor specimens in a 
high-throughput fashion.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on request.
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