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cooperative update of beliefs and 
state-transition functions in human 
reinforcement learning
Hiroshi Higashi  1*, tetsuto Minami  2,3 & Shigeki nakauchi3

it is widely known that reinforcement learning systems in the brain contribute to learning via 
interactions with the environment. these systems are capable of solving multidimensional problems, 
in which some dimensions are relevant to a reward, while others are not. to solve these problems, 
computational models use Bayesian learning, a strategy supported by behavioral and neural evidence 
in human. Bayesian learning takes into account beliefs, which represent a learner’s confidence in a 
particular dimension being relevant to the reward. Beliefs are given as a posterior probability of the 
state-transition (reward) function that maps the optimal actions to the states in each dimension. 
However, when it comes to implementing this learning strategy, the order in which beliefs and state-
transition functions update remains unclear. the present study investigates this update order using 
a trial-by-trial analysis of human behavior and electroencephalography signals during a task in which 
learners have to identify the reward-relevant dimension. our behavioral and neural results reveal a 
cooperative update—within 300 ms after the outcome feedback, the state-transition functions are 
updated, followed by the beliefs for each dimension.

To make correct choices, we need to predict future events based on past experiences. This is accomplished by 
learning to map between stimuli, actions, and outcomes. However, not all sensory inputs of observable objects 
are suitable as stimuli for the mappings that guide the decision-making process. In the real world, we face mul-
tidimensional problems in which only a few observable objects are relevant to the performance of a given task. 
If you want to safely cross the street, you will consider how far and how fast cars are, but ignore their colors and 
shapes1. Humans and animals select relevant dimensions based on past experiences. More generally, dimension 
identification improves performance and simplifies the decision-making process.

The reinforcement learning (RL) framework has successfully explained animal and human behavior in simple 
trial-and-error learning. However, little is known about the brain functions responsible for solving more complex 
problems, including multidimensional environments. Badre, Frank, and colleagues2–4 tackled a multidimensional 
problem by computational modeling of human behavior and functional magnetic resonance imaging (fMRI). In 
their experiment, cues with different shapes and orientations were used as stimuli; learners were presented with 
one cue and obtained a reward if they responded with the correct action. Only the shape or orientation of the cue 
was relevant to the correct cue-to-action mappings. More precisely, if the shape is the reward-relevant dimen-
sion, learners can respond with the correct action based solely on the shape without observing the orientation. 
This type of problem, which requires a learner to identify the reward-relevant dimension, will be referred to as a 
dimension identification problem throughout the paper. Problems that include dimension identification—such as 
hierarchical rules2,5,6, dimension attention1,7,8, multicue environment9, causal structure learning10, and informa-
tive cues11—have been tackled in computational neuroscience research.

Computational modeling is unraveling the brain activity connected with dimension identification4,12. A mod-
eling study based on Bayesian learning suggests a learner has an internal model including beliefs that represent 
how much the learner believes that a given dimension is relevant to rewards13–15. These beliefs are also called relia-
bilities4, attention weights/biases8, and credit9. In addition to beliefs, the learner holds state-transition (or reward) 
functions that map the optimal actions to the current state in each dimension. Beliefs have a role in integrating 
the multiple state-transitions functions for all dimensions to determine the learner’s action4,12. When the learner 
observes a new experience, the internal model accounting for beliefs and state-transition functions is updated. 
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The update can be implemented computationally in a Bayesian manner4,12,16. Neuroimaging research has revealed 
that this update process is associated with activities in the medial frontal cortex9, posterior parietal cortex, lateral 
prefrontal cortex, frontal pole10, and rostral premotor cortex4.

However, their models accounting for beliefs were not enough to implement the learning process computa-
tionally. If this computation model using the Bayes rule is correct, the brain cooperatively updates the beliefs and 
the state-transition functions when the learner acquires an experience. For the implementation of the update, 
there are two options: (1) in the pre-update model, the beliefs are updated with the state-transition functions that 
are not updated; and (2) in the post-update model, the beliefs are updated with state-transition functions that 
are already updated by the new experience. Figure 1 depicts these two options. Previous studies introducing the 
concept of beliefs2,4,10,12 have discussed the structure of the internal model, but have failed to thoroughly describe 
how beliefs and state-transition functions cooperatively update. The post-update model was implicitly adopted. 
However, the order in which beliefs and state-transition functions update has not yet been investigated and is key 
to understanding how humans implement Bayesian learning.

This study aims to identify which of the two updating processes—the beliefs or the state-transition func-
tions—comes first, by computational modeling, electroencephalography (EEG), and decoding. We designed a 
task in which learners must identify a reward-relevant dimension when presented with two dimensions. We 
confirmed that our computational models based on beliefs and state-transition functions could solve the task 
using simulated virtual learners. Next, we compared the computational models of the two options in terms of the 
accuracy of their fit to human behavior. Finally, neural signatures of the computational models were investigated 
by a trial-by-trial analysis of the outcome-related EEG signals. Thanks to the excellent temporal resolution of 
EEG, we could reveal the time dynamics of the cooperative update17–21. The neural signatures provide evidence 
that the brain either individually updates the beliefs and state-transition functions or cooperatively updates them 
together.

Results
To investigate the brain process during dimension identification, we formulated a problem and computational 
learning models to solve it (Fig. 2, Problem formulation in the Methods section). Our models take into account 
beliefs and state-transition functions for each dimension. We considered that beliefs update based on the 
state-transition functions, with two possibilities for the order of update, according to the pre- and post-update 

Figure 1. The two options of Bayesian learning for beliefs with state-transition functions. The symbols t, b, Φ, a, 
and o represent the state-transition function, beliefs, states, actions, and outcome, respectively, in our 
computational model (see Learning model with beliefs in the Method section). In (A) the pre-update model, the 
beliefs are updated with the state-transition functions that are not updated. In (B) the post-update model, the 
beliefs are updated with the state-transition functions that are already updated by the new experience.

Figure 2. A problem with dimension identification. (A) Problem. A learner gives an action, and the outcome is 
provided according to the state-transition function for the reward-relevant dimension φT. (B) A learning model. 
The state-transition function φT a o( , , )n  is updated in parallel for each dimension. The corresponding belief for 
each dimension is computed as the posterior probability distribution of the observation, action, and outcome. 
The beliefs integrate the state-transition functions, and the learner determines an action based on the integrated 
one.
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models previously described in Fig. 1. In addition to these models, which make use of beliefs for dimension iden-
tification, we also tested conventional models, the single model and the compound model (see Single and compound 
models in the Methods section for details). The single and compound models do not take into account beliefs, but 
only the state-transition functions.

Based on the formulated problem, we designed a cue-action mapping task where a learner identified the 
reward-relevant dimension when given two choices (Fig. 3). For a single trial in this task, a colored square with a 
letter in its center was presented to the learner as a cue. This cue had two dimensions (color and letter) and three 
states in each dimension (three different colors and letters). The learner had to identify the relevant dimension 
and find the optimal action for the corresponding state. Here, we present the results of simulated virtual learners 
and 29 human participants.

Simulation with virtual learners. Through simulation with virtual learners, we confirmed that the com-
putational models could solve our task. Figure 4A,B show the result of a simulation in which the learning rate α 
and the inverse temperature parameter τ were fixed at 0.2 and 5, respectively. As the learner accumulates trials, 
the belief that the reward-relevant dimension is d1 converges to a value close to 1.0 (Fig. 4A). In Fig. 4B, the 
expected reward for the optimal actions (a1 for s T1, ) is higher than for the other actions. These results indicate that 
the virtual learner found the reward-relevant dimension and the correct mappings. The cumulative reward aver-
aged over 100,000 blocks and the probability that the learners selected the correct actions are shown in Fig. 4C,D, 
respectively. The averaged rewards over blocks were . ± .23 67 4 37, . ± .21 20 4 03, . ± .23 05 3 79, and . ± .23 17 3 40 
for the single, compound, pre-update, and post-update models, respectively. A one sample t-test showed that the 
cumulative reward for all models was greater than the chance level (20) of a random learner ( < .p 0 001). The 
cumulative reward curves suggest that the learners for all models successfully learned and selected the optimal 
actions. The probability of a correct response, which improved as the number of trials increased, corroborates this 
suggestion. This result shows that both the pre- and post-update models solved the task more efficiently than the 
compound model.

fitting to human behavior. We used the four computational models to predict human participants’ behav-
ior during the experiment. Behavioral results from 26 participants were used for the analysis (data from three 
participants were excluded from the analysis due to problems with the EEG recording—for more details, see EEG 
acquisition in the Methods section). The average cumulative reward at the 40th trial is 22.76 ± 3.87. In Fig. 5A, we 
show for each trial the probability that the participants selected the optimal action. For the last (40th) trial, we 
performed a binomial test to compare the participants’ actions with those of an agent who chooses an action at 
random. It was found that the probability of selecting the correct action was significantly higher for the partici-
pants than for the random agent ( = .p 0 0002). This significant result suggests that, in most of the blocks, the 
participants correctly identified the reward-relevant dimension and cue-action mapping.

Figure 5B shows the belief in the reward-relevant dimension, derived from fitting the behavior with the 
post-update model. Similarly to the simulated results shown in Fig. 4A, the belief increased as the number of trials 
increased. Figure 5C shows the fitting accuracies, which were evaluated by the log-likelihood for each learning 
model. A one-way repeated-measures analysis of variance (ANOVA) with the factor of the learning models, sta-
tistically significant differences were found in the single vs. post-update models, single vs. pre-update models, 
compound vs. post-update models, compound vs. pre-update models, and post-update vs. pre-update models, 
but not in the single vs. compound models and compound vs. pre-update models. In summary, the ANOVA 
results show that the post-update model produced the best prediction among the tested models. The average 
values of the optimized parameters were η τ = . ± . . ± . . ± . . ± .{ , } {0 431 0 320, 3 60 5 18}, {0 586 0 319, 5 65 10 88}, 

Figure 3. Experiment protocol. (A) Procedure followed by participants. A colored square with a letter of 
the alphabet was presented to the participants. The participants took an action with a left- or right-click of 
a trackball. About 900 ms after the response, the outcome was indicated by a white- or black-framed gray 
square. At the end of the trial, the outcome was confirmed to the participants by the phrase “Reward” or “No 
reward”. (B) An example of cue-action-outcome mapping, where color is the reward-relevant dimension. The 
solid lines connecting an action to a reward represent transitions of high probability (75).
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. ± . . ± .{0 319 0 276, 4 45 2 49}, . ± . . ± .{0 377 0 295, 4 82 4 02} for the single, compound, pre-update, and 
post-update models, respectively.

event-related potentials. We analyzed the outcome-related potentials in the EEGs by a model-based anal-
ysis. We epoched the EEG signals such that the moment when the outcome was presented was set at 0 ms in the 
time window for the epoch (see EEG acquisition in the Methods section). Figure 6 shows the grand average of the 
outcome-related responses (rewarded vs. unrewarded trials). Differences in the EEG potentials between rewarded 
and unrewarded trials were calculated at specific moments in time and for each channel using a statistical t-test. 
We found significant differences between 250–350 ms for all presented electrodes, 400–500 ms for the frontal 
electrodes, and 400–600 ms for the parietal electrodes. We attribute the difference in potentials between 250–350 
ms to feedback-related negativity (FRN)22, while the component observed beyond 400 ms was identified as P323. 
FRN and P3 have been widely reported in RL studies21.

Model-based analysis of eeG signals. To investigate the contributions of the computational models to 
the signals, we implemented a trial-by-trial approach to analyzing the EEG signals. We used regression to extract 
the effects of computational error signals (introduced by the models) in the EEG signal from various electrodes 
and at different points in time. Let us define the error for the state-transition as the transition error (δt), the error 
between an expected and an actual reward as the reward error (δr), and the discrepancy between prior and poste-
rior updates in belief as the belief error (δb). The error signals were used as input for a generalized linear model 
(GLM)24, and the GLM predicted the EEG potentials. The prediction accuracy was evaluated by the deviance 
from the prediction. To find significant effects, we tested the accuracy with a likelihood-ratio test25; see 
Model-based analysis of EEG signals in the Methods section for procedural details.

Figure 7 shows the prediction accuracy and the results of the statistical test. The effects of δb
Po are found within 

280–340 ms in channels Cz and Pz. Through Fz and Pz, the effects of δt
Po are found within 370–420 ms, of δr

Pr 
within 360–470 ms, and of δr

Po within 250–350 ms and 360–520 ms. By coinciding the latencies and spatial pat-
terns, we concluded that the effects of the error signals on the EEG potential are caused by variations in the fol-
lowing event-related potentials (ERPs)21,26: the effect of the belief error in the post-update model (δb

Po) can be 
found in FRN, which is also affected by the reward error of the post-update model (δr

Po); last, the transition error 
of the post-update model (δt

Po) and the reward errors from both the pre-update and post-update models (δr
Pr and 

δr
Po) had an effect on P3.

Figure 4. Simulations using virtual learners. (A) A typical evolution of the belief bn as a function of trials, for a 
post-update model learner. (B) Characteristic state-transition functions Q s a( , )T1,  for the optimal (a1) and other 
(a2) in a post-update model learner. (C) The average cumulative rewards for each learning model. (D) The 
probability of selecting the correct (optimal) actions for each learning model. The gray line shows the chance 
level.
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Discussion
In this study, we tested a task in which a learner had to identify a reward-relevant dimension in a multidimen-
sional environment through experiments with simulated virtual learners and human learners. We modeled a 
learning strategy for solving this task by introducing beliefs to each dimension. Simulations using virtual learners 
have shown that models that account for beliefs can solve the problem with dimension identification. Moreover, 
the post-update model in which beliefs update after the state-transition functions do predicts human behavior 
with higher accuracy compared with pre-update models. And last, EEG components reflecting error signals used 
to update the internal model were isolated.

Our study treats a specific step in the update mechanism for a problem with dimension identification. Previous 
studies2,4,10,12 proposed an internal model with beliefs and state-transition functions, supported by behavioral and 
neural evidence. In this internal model, when a learner acquires a new experience, beliefs and state-transition 
functions update simultaneously. However, previous studies did not consider the updating order and implic-
itly adopted the post-update model—i.e., beliefs are computed using state-transition functions that are already 
updated by the new experience. Because the post-update model exploits the latest experience to update all its 
internal elements, this model is more effective than the pre-update model. Indeed, we find that the post-update 
model fits well with behavioral and EEG data, suggesting that the brain updates state-transition functions and 
beliefs in this particular order.

Figure 5. Fitting the models to human behavior. (A) Probability of selecting the correct (optimal) actions. The 
gray line shows the chance level. (B) Estimated belief in the reward-relevant dimension averaged over all blocks 
in the post-update model. The shaded regions represent the standard deviations. (C) Accuracy of fitting each 
model to human behavior, calculated using the log-likelihood. The plots show the accuracy for each pair of 
models. The numbers at the top and bottom of each plot are the means of the log-likelihoods of the models on 
the vertical and horizontal axis, respectively. The results of the ANOVA are shown on the right side of each plot.
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The reward error defined in our study is fundamentally the same as the error signal that goes by the name of 
reward prediction error (RPE) in other RL literature13,27–29. In addition, the magnitudes of the RPE (| |RPE ) are the 
same as the transition error δt, because the outcome was given as a binary value (reward/no reward or 0/1). In the 
model-based analysis, the fact that the FRN incorporates the reward error but not the transition error suggests a 

Figure 6. Feedback-related signals in channels FCz and CPz for rewarded vs. unrewarded trials. The shaded 
areas show time intervals in which there were significant differences ( < .p 0 05) in the potential between 
rewarded and unrewarded trials.

Figure 7. The deviances in the model-based analysis of EEG signals for (A) the pre-update model and (B) the 
post-update model. Shaded areas represent time intervals showing significant effects ( < .p 0 05) in the model-
based analysis.
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connection to both the valence and the magnitude of the RPE. This suggestion is supported by studies showing 
that the FRN reflects signed RPEs18,30–34 or is a temporally overlapped component of the valence and magnitude 
of the RPE35,36. However, our conclusion contradicts prior studies that claim the FRN is connected neither to the 
valence28,37–42 nor the magnitude43–46 of the RPE. It should be noted that the difference in the factors of the FRN 
variation could be caused by differences in experimental designs, such as outcome magnitudes and the existence 
of punishment47. Because our experimental design does not investigate these factors, we could not reach any 
conclusion as to which RPE components contribute to the FRN variation.

The FRN also reflected the belief error in the post-update model. As well as the results of the behavior fitting, 
this effect provides evidence that the brain updates beliefs with the updated state-transition functions. The belief 
error cannot be computed before the state-transition functions and beliefs are fully updated (see definition in (1)). 
This fact suggests that the update of the internal model is complete within 300 ms after the outcome. Nevertheless, 
despite our evidence that the update completes within 300 ms, we found an effect of the transition and reward 
errors on P3, which is also supported by Philiastides et al.41 and Bellebaum and Daum40, who reported that tem-
porally overlapping but separate effects of the valence and magnitude of the RPE are found in P3. They suggested 
that the complete set of information that is to update the reward functions is available at the latency of P3, which 
is consistent with our observations. However, our evidence of the updating dynamics still contradicts their claim. 
If the update process completes within 300 ms, brain processes that affect the P3 are not considered to directly 
contribute to the process of updating. Because the reward error in the pre-update model also had an effect on the 
P3, it appears that multiple processes contribute to the P3 variation21,48,49, such as the reward magnitude49, the 
magnitude26,50 and valence41,51 of the RPE, the memory operation20,23,52,53, and adaptive mechanisms46,51,54.

This study has certain limitations. For our learning model, we did not consider the attention to each dimen-
sion. However, in our task, learners can adopt a learning strategy such that they pay attention to a specific dimen-
sion and update the state-transition function and belief only for this particular dimension8,9. This selective 
attention to specific dimensions improves the learning efficiency and is an important function called representa-
tion learning1,7,15,55. Although our task might not require dimensionality reduction1 by representation learning 
because of the small number of dimensions, representation learning models or attention-detective devices such 
as eye tracking systems8,56 would be needed to estimate the attention and accurately model human learning func-
tions. Moreover, to apply our learning model to other problems, we should consider integrating model-free and 
model-based learning strategies57. Furthermore, a signal decomposition that can isolate overlapping compo-
nents58 in EEG signals could be beneficial to reveal the details of the time dynamics in the brain. For example, 
Sambrook and Goslin34 successfully decomposed the overlapping components in feedback-related EEG signals 
in an RL problem by using principal component analysis.

In summary, this study provides insight into the time dynamics of brain processing in RL in a multidimen-
sional environment. We found behavioral and neural evidence that humans solve this type of problem using a 
learning strategy in which the state-transition functions are updated, followed by the beliefs in each dimension. 
Moreover, our EEG measurements suggest that the update of the internal model is completed within 300 ms after 
a learner is provided with the outcome feedback. To our knowledge, this is a novel observation regarding the 
dynamics of the brain’s learning process.

Methods
problem formulation. This section formulates a generalized problem for our task of dimension identi-
fication, after which a learning strategy to solve the problem is modeled. Computational error signals that are 
supposed to be computed while a learner is solving the problem are also defined.

Problem. Let us consider a problem in which a learner observes Nd dimensions, D = …d d d{ , , , }N1 2 d
. An ele-

ment in D is the reward-relevant dimension denoted by D∈dT  that the learner does not know. The nth dimen-
sion has Nsn

 states, S = …s s s{ , , , }n n n n N,1 ,2 , sn
. At the beginning of each trial, the current states of all dimensions 

are presented to the learner. This combination of states is denoted by SφΦ = ∈ ={ }n n n
N

1
d . After observing the 

states, the learner selects an action out of A = …a a a{ , , , }N1 2 a
. According to the action, the state transits to an 

outcome state out of O = …o o o{ , , , }N1 2 o
. The probability of the transition to the outcome state is determined by 

the state in the reward-relevant dimension dT, i.e., φT. Therefore, if the learner selects the action ai, the state tran-
sits to an outcome state oj according to the transition probability φT a o( , , )T i j , as illustrated in Fig. 2A. At the end 
of the trial, an outcome state gives a reward defined by O∈r o o( ), . This problem thus includes both dimension 
identification and state-transition function learning.

Learning model with beliefs. We have modeled a learning strategy to solve the problem of a multidimensional 
environment. The learning strategy introduces a belief that probabilistically represents how much a learner 
believes a specific dimension. The idea behind the belief in this context is the same as in the the partially observ-
able Markov decision process59. The learning model described below is illustrated as a block diagram in Fig. 2B.

The state-transition function T s a o( , , ) is updated at every trial. If the learner observes the transition to an 
outcome state o from an observed state Φ by action a, the error signal is estimated as 

δ φ= − T a o1 ( , , ),n n

 for all dimensions ( = …n N1, , d). Then, the state-transition function is updated by 

φ φ ηδ← +T a o T a o( , , ) ( , , )n n n

 and 
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φ φ η′ ← ′ −T a o T a o( , , ) ( , , )(1 ),n n

 where ′o  represents the states in O except for o. The expected reward for the current state is also updated as 

O

∑φ φ= .
∈

Q a T a o r o( , ) ( , , ) ( )n
o

n

Belief is defined as the probability of whether or not a dimension is relevant to a reward. Let bn be the belief for 
dimension dn. If the learner observes the transition to the outcome state o by action a, the belief for dimension dn 
is given as a posterior probability4,10,12,60: 

∑

∑

φ

φ

φ

φ

= Φ

=
Φ Φ

Φ

=

=

=
′

=
′

b P d a o
P o d a P d a

P o a
P o a P d

P o a P d

T a o b
T a o b

( , , )
( , , ) ( , )

( , )
( , ) ( )

( , ) ( )

( , , )
( , , )

,
(1)

n n

n n

n n

m
N

m m

n n

m
N

m m

1

1

d

d

 where φ φ=P o a T a o( , ) ( , , )n n , Φ =P d a P d( , ) ( )n n , and ′b  is the belief before updating.
The expected rewards for states and actions are given as 

∑ φΦ =
=

Q a b Q a( , ) ( , ),
n

N

n n
1

d

 for A∈a . The idea of computing the reward function for each action by weighting the action-reward functions 
with the beliefs has been proposed in a few previous studies1,4,12. The probability that the learner would take an 
action a is given as 

∑
τ

τ
=

Φ
Φ ′′∈

P a Q a
Q a

( ) exp( ( , ))
exp( ( , ))

,
(2)a

 where τ is the inverse temperature parameter controlling the extent to which the learner selects the higher-value 
action.

Error signals. After receiving the outcome feedback, the learner updates the state-transition functions and 
beliefs. In this update, signals that are supposed to be computed are defined as follows. The computational signal 
for a state transition (transition error) is defined as 

∑δ φ= − .
=

b T a o(1 ( , , ))t
n

N

n n
1

d

This transition error comprises the unsigned reward prediction errors (RPEs)13,27–29 for all dimensions inte-
grated by the beliefs. The signal for an expected reward (reward error) is defined as 

δ = − Φ .r o Q a( ) ( , )r

This error comprises the signed RPEs integrated by the beliefs. The signal for a belief (belief error) is defined as 

∑δ = = ′ .
=

′
b b

b
D b blog ( )b

n

N

n
n

n1
KL

d

This is a Kullback-Leibler (KL) divergence that represents the magnitude of the discrepancy from the prior ′bn 
to the posterior bn

10,11, and ⋅ ⋅D ( )KL  is an operator computing the divergence.

Update orders: pre- and post-update models. According to (1), the update needs the state-transition functions for 
all dimensions φ =T a o{ ( , , )}m m

N
1

d . Here, we have a question: which updating process—beliefs or state-transition 
functions—comes first? That is, the order in which beliefs and state-transition functions are updated remains 
unclear. Our first hypothesis is that beliefs are updated with the pre-updating state-transition functions, which do 
not take into account the current outcome. We will refer to this formalism as the pre-update model. Our second 
hypothesis is that beliefs are updated with the post-updating state-transition functions, which are already updated 
according to the current outcome. The model which incorporates this order will be referred to as the post-update 
model. Figure 1 illustrates the update orders for these two models. Moreover, the error signals also depend on the 
order. The transition, reward, and belief errors are represented as δ δ δ{ , , }b t r

Pr Pr Pr  for the pre-update model and 
δ δ δ{ , , }b t r

Po Po Po  for the post-update model.
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Single and compound models. We compared the pre- and post-update models in terms of their performance in 
solving the problem using two conventional methods: in one dimension (the single model) and in multiple 
dimensions (the compound model). In the single model, we assumed that a learner observe only the 
reward-relevant dimension. Because no reward-irrelevant dimensions are taken into account, this model was 
used solely for reference. On the other hand, the compound model learned the state-action transition function for 
each compound state. In our experimental task, there were three states for each dimension—therefore, nine 
( ×3 3) compound states. This idea of the compound model is proposed as the Flat expert4 and the Naïve RL1.

experiment. Participants. 29 individuals (25 male and 4 female) participated in the experiment. Their ages 
ranged from 21 to 25 years ( = .M 22 5; = .SD 1 2). The participants had normal or corrected-to-normal visual 
acuity. All participants provided written informed consent. The experiment protocols were approved by the 
Committee for Human Research at the Toyohashi University of Technology, Aichi, Japan, and the experiment was 
conducted in accordance with the committee’s approved guidelines.

Experiment design. The participants were seated in front of an LCD display (VIEWPixx EEG, VPixx 
Technologies Inc.) on a chair in a dark, shielded room. Visual stimuli were sent using Psychtoolbox-3 and 
MATLAB R2011b (The MathWorks, Inc.).

During measurements, the participants attempted to achieve the highest cumulative reward by selecting 
actions. Figure 3A shows the procedure of our experimental task. In the center of the display, fixation cross (2.0°
× 2.0°) was shown for 900 ±100 ms, followed by the cue for the trial–a colored square (2.0°× 2.0°) with a letter at 
its center. The average luminance of a square was variable because, even though the luminance of a square was the 
same as the letter’s, the area occupied on the square varied with the letter. However, we believe that our results 
were unaffected because the areal difference was small and the letters were chosen randomly for each block. After 
1,000 ms, the text “L or R” with a text size of °2  was presented at °5  below the center of the display. The cue 
square and the text remained on display until a response was given. Then, the participants selected “L” or “R” by a 
left- or right-button click of a four-button trackball, using their index fingers. After the response, the fixation cross 
was again presented for 900 ±100 ms, followed by a gray square (2.0°× 2.0°) which told the participant whether a 
reward had been gained or not in that particular trial. After another 1,000 ms, the text “Reward” or “No 
reward” was shown for 400 ms to help the participant confirm the result of the reward. The participants 
repeated this trial 40–70 times in a block.

For each trial, the color of the cue square was randomly selected from blue, red, and green. For the letter of 
the cue square, a set of three letters for each block was randomly selected from the English alphabet. The letter 
for each trial was selected randomly from of the set. Therefore, the cue squares had nine combinations of colors 
and letters for each block. The gray square for indicating the reward to the participants had either a black or white 
frame to indicate “reward” and “no reward,” respectively. The correspondence between the frame brightness and 
the reward was counterbalanced across participants.

The reward for an action was delivered as follows. At the beginning of the experiment, the participants were 
told that one of the dimensions of the square (the color or letter) was relevant to the reward. However, The partic-
ipants were not told which dimension would be relevant. Let dT be the reward-relevant dimension which decided 
the optimal action and dF be the reward-irrelevant dimension. Each dimension had three states, s s s{ , , }T T T1, 2, 3,  
for dT  and s s s{ , , }F F F1, 2, 3,  for dF. The participants selected one of two options a a{ , }1 2 , which corresponded to 
either action “L” or action “R.” The correspondence between the action and the response was randomly deter-
mined for each block. The reward for each trial was probabilistically determined according to the current state of 
the reward-relevant dimension and the action. If the participant observed the state s T1,  and selected the action a1, 
the participant gained the reward at the probability of 75 This probabilistic rule can be represented by the condi-
t i o n a l  p r o b a b i l i t y  a s  = = .P r s a( 1 , ) 0 75T1, 1 ,  =P r( = .s a0 , ) 0 25T1, 2 ,  = = .P r s a( 1 , ) 0 75T2, 1 , 

= = .P r s a( 0 , ) 0 25T2, 2 , = = .P r s a( 1 , ) 0 25T3, 1 , and =P r s( 0 ,T3, = .a ) 0 752 . On the other hand, for the 
reward-irrelevant dimension, the rules are ∣= = .P r s a( 0 , ) 0 5i F j,  for = =i j1, 2, 3, 1, 2. In this setting, the 
optimal actions for s T1,  and s T2,  are a1, and a2 for s T3, . An example of the state-action-reward transition is shown 
in Fig. 3B.

The number of trials for each block depended on the participants’ actions. When the number of trials was over 
40 and the participant selected the optimal action in at least 19 of the last 20 trials, the block ended. The block also 
ended when the participant performed 70 trials. Because all participants were paid the same, they were motivated 
to earn as many rewards as possible to finish early. If the block (or the whole experiment) ended early, participants 
would receive payment by shorter working time. Each participant performed more than six blocks; the first few 
were for practice and only the last five for our analysis.

The instructions to the participants are summarized as follows. The probability of gaining a reward depends 
on your response. If you respond with the optimal action, you have a 75 If you respond with the other action, 
there is only a 25 Each square has two properties, color and letter, and the optimal action depends on only one of 
them. The block ends if either the number of trials reaches 70 or if you respond with the optimal action in at least 
19 of 20 consecutive trials. The optimal action and the reward-relevant dimension are changed for each block.

Simulation with virtual learners. To confirm that the learning model is able to solve our problem, we conducted 
a computer simulation. We used virtual learners that determined their actions according to the probability distri-
bution defined by (2), with a learning rate α of 0.2 and an inverse temperature parameter τ of 5. To observe any 
trends in the independent virtual learners’ behavior, we ran 100,000 blocks with random cues. We observed 
trial-by-trial changes of the beliefs and state-transition functions of the learners.
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Fitting to human behavior. The parameters in the single and compound models and the pre- and post-update 
models, η and τ, were fitted to human behavior data (participants’ actions). Because the performance in gaining 
the reward was different between blocks, even for a single participant, we grouped the data and performed the 
fitting by block, and not by participant. The fitting accuracy was evaluated using the likelihood of the actions, as 
formulated in (2). We found the parameters that achieved the maximum likelihood61 for each block. To find these 
parameters, the sequential least squares programming implemented in scipy as optimize.fmin_slsqp 
was used. We found the optimal values of η and τ in the ranges . .(0 001, 0 999) and (1, inf), respectively. The initial 
values for the optimization were .0 1 for η and 5 for τ.

EEG acquisition. The EEG recording was performed at a sampling rate of 512 Hz with a 64-electrode cap, refer-
enced to the averaged potential of both earlobes. The 64 active electrodes were positioned to cover the whole head 
according to the extended International 10/10 system. Additional signals were measured in extra active electrodes 
placed on the left and right earlobes, on the temple to the right side of the right eye, and on the left, upper, and 
lower sides of the left eye. A Butterworth bandpass filter (passband: 0.1–20 Hz, order: 4) was applied to the sig-
nals. Continuous EEG was epoched around the outcome onset (the time when the white- or black-framed square 
was presented from −100 to 1, 000 ms). An epoch for each trial was corrected using the −100 ms to 0 ms period 
as the baseline. The epochs in which the EEG and the vertical/horizontal electroculograms were larger than ±80 µ
V were removed. The blocks with fewer than 10 epochs were also excluded, resulting in a total of 36 excluded 
blocks. For this reason, the blocks for three male participants were excluded in their entirety. The EEG epochs for 
2,596 trials were left in total.

Model-based analysis of EEG signals. To find the event-related components in the EEG signals that significantly 
correlated to the trial-by-trial error signals in the pre- and post-update models, we used a multiple regression 
analysis of EEG signals with a GLM24. The RL error signals in the pre- and post-update models were used as the 
explanatory variables, and the EEG signal at certain electrodes and time points were used as the response variable. 
Two parameters—the learning rate η and the inverse temperature τ—for both the pre- and post-update models 
were obtained from fitting to the participants’ behavior in each model. In the GLM, we assumed that the response 
variable was generated using a Gaussian distribution with a linear link function. The EEG potential was calculated 
by averaging the epoch signals over a temporal window of ±50 ms around every 10 ms from 0 to 800 ms from the 
onset of the outcome feedback. We tested all six error signals (δb

Pr, δt
Pr, δr

Pr, δb
Po, δt

Po, and δr
Po) as explanatory var-

iables. Additionally, these error signals can be highly correlated with one another. Therefore, the deviance of an 
error signal was computed as the increase in the deviance of the model when accounting for all six error signals 
compared with accounting for only five error signals. In this way, correlation effects among error signals can be 
eliminated from the results. For instance, the fitting accuracy for δb

Pr was derived as the increase in the deviance 
of the model when all errors were considered, compared with δt

Pr, δr
Pr, δb

Po, δt
Po, and δr

Po. The fitting accuracy was 
statistically tested by a likelihood-ratio test25 implemented by a parametric bootstrap method62 (the number of 
sampling was 10,000).
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