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pharmacokinetics of exenatide 
in nonhuman primates following 
its administration in the form 
of sustained-release PT320 and 
Bydureon
Yazhou Li1,5, Kelli L. Vaughan  2,3,5, David tweedie1, Jin Jung4, Hee Kyung Kim4, Ho-Il choi4, 
Dong Seok Kim1,4,6, Julie A. Mattison2,6 & Nigel H. Greig1,6*

The time-dependent (30 min - day 84) plasma profile of PT320, a sustained-release (SR)-Exenatide 
formulation under clinical development for treatment of neurodegenerative disorders, was evaluated 
in nonhuman primates after a single subcutaneous dose and was compared to Bydureon. Exenatide 
release from PT320 exhibited a triphasic pharmacokinetic profile. An initial peak occurred at 3 hr 
post-administration, a secondary peak at 5 days, and achievement of Exenatide steady-state plasma 
levels from day 10–28. Systemic exposure increased across PT320 doses, and Exenatide levels were 
maintained above the therapeutic threshold prior to achieving a steady-state. In contrast, Exenatide 
release from Bydureon exhibited a biphasic profile, with an initial plasma peak at 3 hr, followed by a 
rapid decline to a sub-therapeutic concentration, and a gradual elevation to provide a steady-state from 
day 35–49. Exenatide total exposure, evaluated from the area under the time-dependent Exenatide 
concentration curve, was similar for equivalent doses of PT320 and Bydureon. The former, however, 
reached and maintained steady-state plasma Exenatide levels more rapidly, without dipping to a sub-
therapeutic concentration. Both SR-Exenatide formulations proved well-tolerated and, following a 
well-regulated initial release burst, generated steady-state plasma levels of Exenatide, but with PT320 
producing continuous therapeutic Exenatide levels and more rapidly reaching a steady-state.

The incretin glucagon-like peptide 1 (GLP-1) is a gastrointestinal peptide hormone and proteolytic prod-
uct of proglucagon. It is predominantly generated within and released by intestinal enteroendocrine L cells to 
potentiate glucose-dependent insulin secretion by pancreatic β-cells following food ingestion1,2. Further to its 
well-characterized insulinotropic function and other actions on glucose homeostasis, produced by suppressing 
glucagon secretion from pancreatic α-cells, slowing gastric emptying and inducing satiety to reduce food intake 
and body weight, GLP-1 confers glucose sensitivity to glucose-resistant β-cells and provides trophic support by 
stimulating pancreatic β-cell proliferation and neogenesis, and by reducing β-cell apoptosis3,4. As the glucose 
homeostasis actions and enhancement of insulin signaling provided by GLP-1 are largely preserved in type 2 
diabetes mellitus (T2DM), agents that activate the GLP-1 receptor (GLP-1R), a class B G protein–coupled recep-
tor (GPCR) that mediates the action of GLP-1, have been developed for the treatment of T2DM; they appear to 
be well-tolerated, efficacious and widely used5–9. Furthermore, as the GLP-1R has been found expressed across a 
wide variety of other organs, such as on neurons within the brain and peripheral nervous system and within all 
four chambers of the heart, GLP-1R agonists are currently being evaluated across an increasing number of other 
diseases10–15.
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GLP-1 has an extremely short half-life (T1/2 1.5 min) within the circulation following either its physiological release 
or direct administration, with proteolysis, principally by DPP-4 and renal clearance having major roles. DPP-4 cleaves 
the amino-terminal dipeptide from GLP-1 to reduce its activity1–9,16,17. The identification of this led to the strategies 
for (i) modifying the peptide to lower proteolysis/renal clearance to generate longer-acting incretin mimetics and (ii) 
to elevate endogenous GLP-1 levels by using DPP-4 inhibitors. In relation to the former, an increasing number of 
GLP-1R agonists have been developed for clinical use and, as trials and experience with them grow, it will become 
clearer whether one has advantages over another within specific clinical settings. A practical way to categorize clinically 
available GLP-1R agonists is based on their duration of action. Centered on their pharmacokinetic/ pharmacodynamic 
profile, they can be divided into short-acting (Exenatide (Byetta): T1/2 2.4 hr18, and lixisenatide T1/2 3 hr19: administered 
twice and once daily, respectively) and long-acting GLP-1R agonists (Exenatide long-acting release (LAR (Bydureon)), 
liraglutide T1/2 13 hr, albiglutide T1/2 6–7 days, and dulaglutide T1/2 4 days20,21: administered from once daily to weekly 
(Supplemental Table 1)). A key distinction between short- and long-acting GLP-1R agonists is that, when administered 
in line with their approved dosing schedule, the former group is subject to wide fluctuations in the plasma concentra-
tion of active compound, whereas the latter provides a more stable and sustained GLP-1R activation20,21.

Exenatide was the first approved GLP-1R agonist for T2DM as a twice daily medication (Byetta: 2005) and 
its extended release formulation, Exenatide as Bydureon, was approved in 2012 for once weekly dosing. Both are 
well-tolerated and remain widely used5–9,21. In contrast to liraglutide that reversibly binds to serum albumin, 
albiglutide that is the fusion product of two modified GLP-1 molecules with albumin, and dulaglutide that com-
prises two modified GLP-1 molecules joined by a linker to a modified human immunoglobulin heavy chain – each 
tailored to protect against DPP-4 activity and renal clearance, Exenatide as Bydureon is the same 39 amino acid 
peptide as used in Byetta but is encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres to enable its sus-
tained release from the subcutaneous reservoir generated at the injection site21–24. Modifications in how Exenatide 
is formulated into PLGA can transform the release kinetics and the resulting pharmacokinetics of the drug23–26. 
In the current study, we evaluated a new sustained release (SR)-Exenatide formulation, PT320, with a longer (2 
week) duration dosing profile that is under clinical development by Peptron Inc. (Daejeon, Republic of Korea) for 
the treatment of neurodegenerative disorders27–29. PT320 has similar properties to PT302, formerly developed by 
Peptron for the treatment of T2DM30, and is manufactured utilizing an ultrasonic spray drying process, termed 
SmartDepot™31, to generate microspheres that contain 2% Exenatide. These microspheres likewise comprise the 
polymer, PLGA. Notably, they are of small uniform size (20 μm diameter). This allows subcutaneous adminis-
tration using a smaller needle size (27 to 30 gauge31, compared to 23 to 25 gauge for Bydurion) and, importantly, 
supports the rapid achievement of steady-state Exenatide levels. Additionally, their coating with L-lysine provides 
control of the initial burst of Exenatide released following PT320 subcutaneous administration. In the present 
study, time-dependent levels of Exenatide were evaluated in nonhuman primates following the subcutaneous 
administration of matched Exenatide doses within PT320 and Bydureon in order to compare their pharmacoki-
netic profiles.

Results
Exenatide administration in the form of both PT320 (0.44 and 1.1 mg/kg) and Bydureon (1.1 mg/kg) proved to 
be well-tolerated at the doses evaluated, albeit hard nodules (in general 2 × 2 cm in size) were evident within the 
subcutaneous injection site across groups (3 of 4: PT320 0.44 mg/kg; 4 of 4: PT320 1.1 mg/kg; 4 of 4: Bydureon 
1.1 mg/kg). For one animal in the PT320 1.1 mg/kg group (Monkey #12), the nodule broke the skin surface and 

PT320 0.44 mg/kg (A) PT320 1.1 mg/kg (B) Bydureon 1.1 mg/kg (C)

CIpeak (pg/ml) 924.5 ± 62.9 (B,C) 1740.2 ± 86.1 (A) 1960 ± 167.8 (A)

TIpeak (hr) 1.75 ± 0.7 3 3

CItrough (pg/ml) 72.1 ± 10.9 (B,C) 137.7 ± 21.7 (A,C) 8.6 ± 3.2 (A,B)

TItrough (hr) 60 ± 12 72 24

CMax (pg/ml) 1227.9 ± 251.3 1535.7 ± 167.7 1617.4 ± 272.5

TMax (hr) 438 ± 66 (18.25 days) (C) 416 ± 88 (17.3 days) (C) 966 ± 80.4 (40.25 days) (A,B)

Approx. steady-state Day 10–28 Day 10–28 Day 35–49

TLag (hr) 436 ± 66 (18.2 days) (C) 413 ± 88 (17.2 days) (C) 963 ± 80 (40.1 days) (A,B)

CAve (pg/ml) 586.4 (Day 0–35) 676.9 (Day 0–49) 658.7 (Day 0–56)

AUC: 0–24 hr 12,540.2 ± 1,229.2 (B) 19,990.0 ± 839.1 (A) 18,375.1 ± 2,712.6

AUC: 0–2016 hr (i.e., day 0–84) 490,291.4 ± 113,343.2 (C) 738,234.0 ± 109,532.3 848,585.2 ± 91,142.9 (A)

AUC: 240–672 hr (i.e., day 10–28) 350,090.2 ± 81,038.5 451,360 ± 111,800.4 (C) 182,033.8 ± 28383.2 (B)

AUC: 840–1176 hr (i.e., day 35–49) 10,486 ± 3,949 (C) 71,914 ± 34,376 (C) 373,149 ± 44,892 (A,B)

Table 1. Pharmacokinetic parameters of Exenatide following a single subcutaneous administration of 
PT320 (0.4 and 1.1 mg/kg) and Bydureon (1.1 mg/kg) to nonhuman primates. C: Bydureon 1.1 mg/kg group 
is significantly different from the comparison group (p ≤ 0.05). B: PT320 1.1 mg/kg group is significantly 
different from the comparison group (p ≤ 0.05). A: PT320 0.44 mg/kg group is significantly different from the 
comparison group (p ≤ 0.05). CIpeak: Initial peak plasma concentration associated with the initial release burst 
of Exenatide. TIpeak: Time of CIpeak. Cmax: Maximal plasma concentration of Exenatide. TMax: Time of CMax. TLag: 
TMax - TIpeak CAve: Average plasma concentration of Exenatide (calculated from time zero up to the time when 
plasma levels were greater than 50 pg/ml (considered the minimal therapeutic concentration28). AUC: are under 
the Exenatide plasma concentration curve between the defined times.
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resulted in drug loss (occurring at approximately weeks 3 and 4), and hence this animal was removed from the 
pharmacokinetic analysis. The mean body weight of rhesus monkeys is shown in Fig. 1, which decreased across 
all groups, reaching a trough between weeks 4 to 6 (day 28 to 42), and recovering nearly to baseline levels by week 
12 (day 84).

An initial release burst of Exenatide was evident in plasma as early as 30 min after administration of either dose 
of PT320 or of Bydureon. Illustrated in Fig. 2A is a semi-log plot of plasma Exenatide (pg/ml) levels versus time 
(hr) that combines animals within each of the three groups (PT320 0.44 and 1.1 mg/kg, and Bydureon 1.1 mg/
kg). Following this initial Exenatide release, plasma levels declined across all treatment groups by 24 hr, reaching 
a trough (CItrough) between 60 and 72 hr. For animals administered either dose of PT320, a secondary peak was 
consistently evident at 5 days, and approximately steady-state Exenatide plasma levels were then achieved from 
days 10 to 28 post administration (i.e., from approx. 1.5 to 4 weeks). In contrast, following Bydureon administra-
tion, plasma levels of Exenatide gradually and time-dependently increased to achieve an approximate steady-state 
concentration between day 35 to 49 (5 to 7 weeks) post injection; rapidly declining at week 8 and being minimal 
thereafter.

Figure 3 demonstrates linear time-dependent curves of Exenatide levels in plasma for each nonhuman 
primate, which allows an appreciation of the variance between individual animals administered either dose 
of PT320 or Bydureon. Such variance is not uncommon in nonhuman primate as, phylogenetically close to 
humans, they possess substantial outbred genetic variability, as compared to rodents32,33. Notably, and shown 
in Table 1, is that the plasma Exenatide concentration and time associated with the initial release burst, Cipeak 
and Tipeak, following subcutaneous administration is remarkably similar between the matched 1.1 mg/kg doses 
of PT320 (1740.2 ± 86.1 pg/ml at 3 hr) and Bydureon (1960 ± 167.8 pg/ml at 3 hr) (p = 0.35). Likewise, the max-
imal concentrations, Cmax, achieved by these different formulations are also comparable; 1535.6 ± 167.7 and 
1617.4 ± 272.5 pg/ml (p = 0.83), respectively. However, the time to achieve these, Tmax, was significantly shorter 
for PT320 compared to Bydureon (416 ± 88 h (i.e., 17.3 days) vs. 966 ± 80.4 h (i.e., 40.25 days), p = 0.006), and is 
reflected in the different time-dependent AUC values (Table 1 and Fig. 2B).

A notable difference between Exenatide administered as PT320 or as Bydureon is the depth of the decline in 
plasma levels of Exenatide that followed the initial release burst. Whereas the time-dependence of the decline was 
similar across formulations, reaching a trough between 24 and 72 hr (TItrough), the lowermost Exenatide plasma 
concentration (CItrough) maintained by Bydureon was significantly less (8.6 ± 3.2 pg/ml at 24 hr) than that achieved 
by PT320 (0.44 mg dose: 72.1 ± 10.9 pg/ml at 60 hr; 1.1 mg dose: 137.7 ± 21.7 pg/ml at 72 hr) (Table 1).

Also, of note is the similarity in the shape of the time-dependent Exenatide concentration curves generated 
by the two evaluated doses of PT320 (0.44 and 1.1 mg/kg) in nonhuman primates (Figs. 2 and 3). Whereas the 
times associated with the Exenatide initial release burst, subsequent trough and maximal concentration, Tipeak, 
TItrough and Tmax, were similar for the PT320 0.44 and 1.1 mg/kg doses (specifically, Tipeak: 1.75 ± 0.7 vs. 3.0 ± 0.0 hr 
(p = 0.2), TItrough: 60 ± 12 hr vs. 72 ± 0.0 hr (p = 0.4); Tmax: 438 ± 66 hr (18.25 days) vs. 416 ± 88 hr (17.3 days) 
(p = 0.85), respectively), the concentrations associated with these demonstrated dose-dependence (Cipeak: 
924.5 ± 62.9 vs. 1740.2 ± 86.1 pg/ml (p = 0.0005); CItrough: 72.1 ± 10.9 vs. 137.7 ± 21.7 pg/ml (p = 0.03); Cmax: 
1227.7 ± 251.3 vs. 1535.6 ± 167.7 pg/ml (p = 0.39), respectively).

Figure 1. Time-dependent mean weight (kg) of rhesus monkey groups following Exenatide administration 
as either PT320 (0.44 or 1.1 mg/kg) or Bydureon (1.1 mg/kg), as compared to base line (day 0) weight prior to 
dosing.
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As the development of anti-Exenatide antibodies is not uncommon in human clinical studies34 due to a low 
homology of Exenatide to native GLP-1, we evaluated the development of such antibodies by Sandwich ELISA 
across all animals from plasma samples obtained at 6 and 12 weeks post PT320 or Bydurion administration. As 
illustrated in Table 2, two of 12 animals developed a positive titer that was present at both times (specifically, 
nonhuman primates #4 and #12).

Discussion
The goal of the current study was to evaluate the pharmacokinetic properties of a single-dose of PT320 in healthy 
nonhuman primates. PT320 is a form of PT30230 that is being developed for neurological disorders27. Specifically, 
we characterized the time-dependent levels of plasma Exenatide following two single doses of PT320 (1.1 and 
0.44 mg/kg) to provide an initial evaluation of dose-dependence. Additionally, we compared the higher PT320 
dose to a matched single dose of Bydureon (1.1 mg/kg) to evaluate the equivalences of these two different SR 
Exenatide formulations. Systemic Exenatide exposure was measured periodically for 84 days (2016 hr) following a 
single subcutaneous dose of these formulations. These doses were based on a prior Bydureon study in nonhuman 
primates (Cynomolgus monkeys) in which single doses of 0.11, 0.44 and 1.1 mg/kg were evaluated from 0.5 hr to 
71 days, and proved to be well-tolerated35. The minimally effective concentration of Exenatide in humans has been 
reported as approximately 50 pg/ml, as this is the level required to reduce fasting plasma glucose levels36. In using 
50 pg/ml as a ‘cutoff limit’, the PT320 0.44 mg/kg administration provided a therapeutic level of dosing for up to 
31.5 days (756 ± 84 hr), the PT320 1.1 mg/kg dose for up to 44 days (1064 ± 112 hr), and the Bydureon 1.1 mg/kg 
dose for 52 days (1260 ± 48.5 hr) in nonhuman primates (with no significant difference in this duration between 
the 1.1 mg PT320 and Bydureon formulations; p = 0.13). These results are in accord with data from human studies 
evaluating the pharmacokinetics of Exenatide release from PT302 in which concentration-dependent release was 
measured for up to 55 days following a single subcutaneous dose of PT30230, and for some 60 days (8.5 weeks) 
following Bydureon8,37 and, additionally, are consistent with weekly to biweekly dosing38.

In the clinical setting for the treatment of T2DM1,5–8 as well as for other disorders10–14, Exenatide is routinely 
administered chronically; over months to years duration. This would involve once weekly dosing of Bydureon5–9 
and either once weekly or once every other week dosing for PT32027,30. Albeit not the focus of our single dose 
study, such multiple dosing would be expected to impact plasma Exenatide levels achieved at 7 and 14 days 
onwards, after Bydureon and PT320, respectively, and to maintain steady-state levels over a far longer duration. 
Importantly, Exenatide plasma levels associated with multiple dosing of either Bydureon or PT320 would be 

Figure 2. Time-dependent plasma concentrations of Exenatide following a single subcutaneous dose of PT320 
(0.44 or 1.1 mg/kg) or Bydureon (1.1 mg/kg) to nonhuman primates. (A) Classical semi-log plot of plasma 
Exenatide levels by treatment group from 30 min to 84 days (0.5 to 2016 hr). (B) Linear. Plot of the same data to 
emphasize the different times that steady-state Exenatide levels were achieved following administration of either 
PT320 (blue and orange lines) vs. Bydureon (gray). (C) Plot of AUC values at the times noted in (A and B). 
Values are means ± SEM, *p < 0.05.
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Figure 3. Linear time-dependent plasma Exenatide concentration plots for individual nonhuman primates 
administered a single subcutaneous dose of (A) PT320 (0.44 mg/kg), (B) PT320 (1.1 mg/kg) and (C) Bydureon 
(1.1 mg/kg). *Non human primates #4 and #12 demonstrated anti-Exenatide antibodies at 6 and 12 week 
evaluation times.  Nonhuman primate #12 was excluded from analysis of pharmacokinetic parameters as 
drug loss occurred at the skin surface at approximately week 3 to 4 (504 to 672 hr).

Nonhuman primate

Anti-Exenatide antibody (1:25)

6 weeks 12 weeks

# 1 (−) (−)

# 2 (−) (−)

# 3 (−) (−)

# 4 (+) (+)

# 5 (−) (−)

# 6 (−) (−)

# 7 (−) (−)

# 8 (−) (−)

# 9 (−) (−)

# 10 (−) (−)

# 11 (−) (−)

# 12 (+) (+)

Table 2. Anti-Exenatide antibodies evaluated in plasma at 6 and 12 weeks post subcutaneous Exenatide 
administration in the form of either PT320 (0.44 or 1.1 mg/kg) or Bydureon (1.1 mg/kg) to nonhuman primates. 
(+): positive antibody titer; (−): no antibody titer.
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similar to that achieved with a single dose prior to 7 and 14 days, respectively, as only a single dose would have 
been administered at these times.

A consistent initial peak in plasma Exenatide was noted following PT320 administration to nonhuman pri-
mates within 1.75 to 3 hr, which is comparable to the characteristic peak seen in humans that occurs within 4 hr 
of dosing30. This first phase is caused by the ‘burst release’ of Exenatide occurring from the PLGA nanospheres 
in which the drug is encapsulated. This predominantly derives from Exenatide on or close to the surface that 
enters the systemic circulation on initial nanosphere hydration prior to the onset of polymer erosion-associated 
Exenatide release25,39. An initial peak in plasma Exenatide was likewise evident following Bydureon adminis-
tration to nonhuman primates at 3 hr, in line with human studies in which a peak at 2.1 to 5.1 hr was noted37. 
Our study indicates that the concentration of the initial burst release in nonhuman primates appeared to be 
well-regulated across both Exenatide SR formulations, and was dose-dependent, with the CIpeak value approaching 
that of the Cmax value (PT320 0.44 and 1.1 mg/kg 75% and 113%, and Bydureon 1.1 mg/kg 121%); and the variance 
around the CIpeak value is relatively small (6.8%, 4.9% and 8.6%, respectively re: SEM as a percent of the mean 
value). This initial burst peak was relatively short in duration, with Exenatide plasma concentrations declining 
rapidly by 24 hr to provide a time-dependent concentration of less than 3% of the total exposure to Exenatide 
(AUC0-24 hr ÷ AUC0-2016 hr). This is in accord with studies of PT320 in humans in which the value of CIpeak was 
likewise comparable to CMax, and the initial Exenatide burst represented only a small fraction of the total drug 
exposure (1.2% to 3.8% over the initial 12 hr30. Controlling the initial release of a drug from a SR preparation is 
a key parameter in the development of an extended release drug delivery system to rapidly achieve a therapeutic 
concentration without inducing an unregulated spike in drug level to potentially provoke an adverse action24,25,39, 
such as nausea or vomiting, which are not uncommon following the initial use of immediate release Exenatide 
(Byetta)6,8,9,21,22.

Also evident from our time-dependent analysis of plasma Exenatide concentrations generated by PT320 or 
Bydureon in nonhuman primates (Fig. 2A) is the short ‘lag phase’ (i.e., the decline in drug levels released into 
plasma) following the initial burst peak prior to the generation of relatively stable Exenatide levels. A key differ-
ence between the matched 1.1 mg PT320 and Bydureon doses was the depth of the decline in plasma Exenatide; 
falling to a sub-therapeutic concentration for Bydrueon (CItrough: 8.6 ± 3.2 pg/ml) at 24 hr across all (4/4) non-
human primates and persisting at a sub-therapeutic level in 3/4 animals at 72 hr (Fig. 3C). In contrast, plasma 
Exenatide levels declined to a CItrough of 137.7 ± 21.7 pg/ml in 1.1 mg PT320 animals, with none from either PT320 
doses declining below a therapeutic level (50 pg/ml36).

A secondary peak in plasma Exenatide levels was evident at 5 days following either dose of PT320 and, after a 
further decline of short duration, Exenatide levels reached and maintained a relatively steady-state concentration 
from days 10 to 28. The difference between the CAve and CMax values was in the order of 2-fold (from Table 1; 
PT320 0.44, PT320 1.1 and Bydureon 1.1 mg/kg: 2.1-, 2.3- and 2.5-fold, respectively). A smaller disparity between 
CAve and CMax for a drug delivery system is associated with superior extended release while concurrently main-
taining the peptide in a stable form in vivo23,24.

A further major difference between Exenatide released from PT320 and Bydureon administration was related 
to the time required to reach steady-state plasma levels in nonhuman primates. For both PT320 doses this was 
achieved within 10 days and lasted up to day 28 (18 days duration), with plasma Exenatide levels never fall-
ing below the minimal therapeutic concentration of 50 pg/ml36 prior to achieving the steady-state. In contrast, 
Bydureon achieved steady-state levels of plasma Exenatide from approximately day 35 to 49 (14 days dura-
tion). Bydureon briefly declined to sub-therapeutic levels following the initial burst phase, and then gradually 
increased over time (Fig. 3C). Notable is the equivalence of the concentrations of Exenatide achieved for the 
matched 1.1 mg/kg doses of PT320 and Bydureon, whether the CIpeak, CMax or CAve values, which were remark-
ably similar (Table 1). As noted, the time (TMax) to achieve the CMax was shorter for PT320, which is reflected in 
the AUC values (Table 1 and Fig. 2B). Also evident is that the CIpeak, CItrough, CMax and CAve values demonstrate 
dose-dependence for both the PT320 0.44 and 1.1 mg/kg administrations, with the maintenance of the times to 
achieve these (Table 1). In comparison, in human subjects with T2DM administered PT320 the Exenatide CMax 
occurred between 23 and 27 days, and demonstrated dose-dependence30. For Bydureon in humans with T2DM, 
the CMax occurred between 39 to 48 days following administration and, likewise, was dose dependent37.

Following the initial burst release phase of Exenatide from the PLGA microsphere surface of either 
PT320 or Bydureon, the microspheres hydrate, adhere to one another, and create an in situ matrix drug res-
ervoir. Continuous diffusion from this matrix results in the secondary release phase of Exenatide into plasma 
that, followed by the hydrolysis and erosion of the PLGA polymer, results in the steady-state Exenatide third 
release stage23–25,39. The PLGA polymer hydrolysis products, lactic and glycolic acids, are ultimately eliminated 
as carbon dioxide and water23. Whereas PLGA is a biodegradable and biocompatible medical polymer with 
a well-established safety profile as an excipient in a wide variety of controlled release drugs25,39,40, the appear-
ance of subcutaneous injection site reactions for Bydureon is reported as 17.1% from clinical data presented 
within the US approved prescribing information41. When present, these reactions may occur after the first dose 
(70%), and cause local skin discoloration (70%), pain or discomfort (56%), pruritus (48%), warmth (33%), and 
swelling (30%) at the injection site. Most cases reported nodules characterized as hard, subcutaneous, lumps, 
masses, or indurations41, with a minority (22%) of cases reporting a concurrent abscess. The occurrence of injec-
tion site induration and pruritus was also noted in T2DM subjects administered PT320, and is described to be 
dose-dependent and to naturally resolve30. In our nonhuman primate study, such Bydureon and PT320 asso-
ciated nodules were evident across all animals (12 of 12) with one demonstrating an abscess (1 of 12), and all 
self-resolved. In contrast, Bydureon in humans is routinely administered as a dose of 2 mg in a 0.65 ml injection 
volume (or 0.85 ml for Bydureon BCISE)22, and hence the doses and corresponding injection volumes are sub-
stantially larger in our nonhuman primate study (mean values: 1.7 and 4.1 ml for PT320 0.4 and 1.1 mg/kg doses, 
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and 3.5 ml for Bydureon 1.1 mg/kg dose), and likely resulted in a higher injection reaction site incidence and 
unusual loss of drug in nonhuman primate #12.

Our study was specifically designed to follow time-dependent Exenatide levels achieved by the sustained 
release formulations PT320 and Bydureon, rather than to evaluate the Exenatide elimination half-life from 
plasma – which is generally unchanged when the same drug entity is administered either by immediate or sus-
tained release preparation42,43. Notable across both PT320 doses and Bydureon administration in our nonhu-
man primate study is the rapid decline in plasma Exenatide levels at the end of steady-state, coinciding with the 
exhaustion of the drug reservoir. This is in accord with a prior pharmacokinetic study of subcutaneous immediate 
release Exenatide in rhesus monkeys in which the terminal disappearance half-life from plasma ranged from 0.78 
to 1.94 hr.44. Studies across animal species and humans indicate that Exenatide, whether administered by imme-
diate or sustained release, is predominately eliminated by the kidney via glomerular filtration with subsequent 
enzymatic degradation45. Studies in nephrectomized rats demonstrated that Exenatide slowly disappeared from 
plasma signifying the occurrence of a non-renal clearance component46. This may involve target-mediated drug 
disposition47, encompassing the binding of Exenatide to the GLP-1R, and the formation of Exenatide-GLP-1R 
complexes that either dissociate or become internalized and targeted for receptor-mediated endocytosis and 
degradation48.

In the light of reports of anti-Exenatide antibody development in human studies focused on Exenatide use in 
T2DM34,37 as well as in preclinical studies31, we evaluated whether such an occurrence transpired in our nonhu-
man primate study by evaluating plasma samples at 6 and 12 weeks. Two of 12 animals (16.7%) demonstrated a 
positive antibody titer. Interestingly, these two (nonhuman primates #4 and #12 in the PT320 0.44 and 1.1 mg/
kg groups, respectively) were associated with lower values of plasma Exenatide (Fig. 3). Bydureon was reported 
to induce anti-exenatide antibodies as early as day 29 at ≥0.44 mg/kg dose in nonhuman primate studies under-
taken by the original manufacturer [35 (page 57)], in a 3 month study involving once weekly administration. 
Low anti-Exenatide antibody titers (≤125) have been reported in 32% and 45% of T2DM patients administered 
Exenatide either as BID Byetta or as once weekly Bydureon, respectively, within 24 to 30 weeks of treatment, and 
are considered to not impact efficacy34,37. Higher-titer antibodies (≥625) less commonly occur (5% and 12% of 
patients, respectively) and may diminish Exenatide efficacy37. Such antibodies do not appear to cross-react with 
human GLP-1 or glucagon, or influence the safety profile of Exenatide formulations37.

In summary, our evaluation of a matched dose of the SR-Exenatide formulations PT320 and Bydureon 
(1.1 mg/kg) in nonhuman primates demonstrated a similar, well-regulated, initial burst release of Exenatide into 
plasma within 3 hr. This was followed by a lag phase and a secondary and tertiary release stage of Exenatide to 
provide reasonably steady-state levels in plasma. Whereas the plasma levels of Exenatide associated with CIpeak, 
CMax and CAve were equivalent, importantly the time to achieve CMax (TMax) and the steady-state occurred signif-
icantly earlier for PT320. Furthermore, the dramatic decline in plasma Exenatide levels that followed the CIpeak 
and resulted in the CItrough was attenuated in the PT320 formulation and, unlike Bydureon, continuously main-
tained therapeutic drug levels prior to reaching steady-state delivery. Evaluation of a lower PT320 dose (0.44 mg/
kg) in nonhuman primates demonstrated dose-dependence in relation to CIpeak, CItrough, CMax and CAve values, 
with maintenance of the times to achieve these and the duration of the steady-state. Notably, our CMax and AUC 
(0–2160 hr) values for Bydureon 1.1 mg/kg are in accord with prior preclinical nonhuman primate data that 
supported the agent’s approval for clinical use (see: CMax and AUC (0–1704 hr) in35). For treatment of disorders 
involving the use of an SR-Exenatide formulation in which the rapid generation and long-term maintenance of 
therapeutic plasma and target levels is desired, as could be considered in the experimental treatment of mild 
and moderate head injury29,49–53 or acute ischemic injury54–57 (see for example clinical trials: NCT03287076 and 
NCT02829502), the pharmacokinetic characteristics of PT320 may prove particularly important; associated with 
the rapid achievement and maintenance of therapeutic Exenatide levels in plasma. For chronic disorders, such as 
T2DM and PD in which Exenatide has demonstrated value1–3,5–11,13,14,20–22,58, both sustained release formulations 
would appear to be valuable to achieve and maintain long-term steady-state drug levels through the dosing of 
Bydureon once weekly and PT320 either once every two weeks or once weekly.

Materials and Methods
Study subjects. Nonhuman primates were used in this study to provide a closer translational link in 
relation to evaluating a new drug formulation destined for use in humans, as compared to studies in rats33,35. 
Animals included 12 male (4–11 years old) rhesus macaques (Macaca mulatta) randomized into three treatment 
groups (n = 4). Monkeys were maintained at the National Institutes of Health Animal Center (Poolesville, MD) 
and housed in standard primate caging with a controlled temperature and humidity and a 12-hr light cycle. 
Commercially prepared monkey chow was distributed twice per day along with daily food enrichment, and water 
was available ad libitum. Monkeys were observed daily for food consumption and overall well-being. Animal 
husbandry and all experimental procedures complied with the National Institutes of Health Guide for the Care 
and Use of Laboratory Animals and were conducted under approved protocols by the National Institute on Aging 
Intramural Research Program Animal Care and Use Committee.

Experimental design. At each procedure, monkeys were restrained with ketamine (3–5 mg/kg, IM), which 
was supplemented with partial doses of ketamine, as needed, to maintain anesthesia. Following an initial baseline 
blood draw to obtain background signal levels for Exenatide ELISA evaluations, one of three pharmaceutical 
grade treatments was administered subcutaneously into the abdomen (with the selected doses representing the 
active pharmaceutical ingredient (API) within each Exentatide sustained release formulation – to ensure match-
ing of the Exenatide in PT320 and Bydureon (this was undertaken to account for the different percents of API, 
approx. 2% and 5%, respectively, within these formulations). The treatment groups included (i) PT320 0.44 mg/
kg (mean body weight 10.45 ± 1.18 kg; injection volume 160 ul/kg), (ii) PT320 1.1 mg/kg (mean body weight 

https://doi.org/10.1038/s41598-019-53356-2


8Scientific RepoRtS |         (2019) 9:17208  | https://doi.org/10.1038/s41598-019-53356-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

10.32 ± 1.15 kg; injection volume 400 ul/kg), and (iii) Bydureon 1.1 mg/kg (mean body weight 11.02 ± 1.45 kg; 
injection volume 320 ul/kg). A 4.0 ml blood sample was collected into an EDTA vacuum tube at 0.5, 3, and 24 hr, 
at days 3, 5, 7, and 10, and then once per week throughout the 12-week study (a total of 18 time points per ani-
mal). Blood samples were immediately placed on wet ice, centrifuged within 30 min (10,000 G, 2 min, 4 °C) and, 
following plasma removal, separate aliquots were frozen and stored at −80 °C.

Exenatide assay. Exenatide levels were quantified by using the Peptron Exendin-4 EIA Kit (Peptron Inc., 
Daejeon, South Korea). Each sample was evaluated in duplicate at a volume of 50 ul each, with a plasma dilution 
of 1:10. Concentrations of Exenatide were subsequently determined from standard curves of newly prepared 
Exenatide, following preliminary studies to ensure that all results fell within the linear range of the plasma stand-
ard curves. Notably, this Exenatide assay appears to lack cross-reactivity with glucagon, oxyntomodulin, GLP-1 
or GLP-2.

Anti-Exenatide antibody measurement. As both PT320 and Bydureon are slow-release formulations 
of Exenatide and our study extended over a period of 12 weeks, we evaluated plasma anti-Exenatide antibody 
levels at both week 6 and week 12 using a previously developed homemade Sandwich ELISA28. In brief, ELISA 
plates were coated with Exendin-4 (concentration: 2 ug/ml in coating buffer) at 4 °C overnight, and follow-
ing blocking and washing steps, standards (mouse monoclonal anti-Exenatide antibody) and unknown sam-
ples with serial dilutions were added to the plate and incubated at room temperature for 1 h. After washing, 
biotinylated-Exenatide (concentration: 2 ug/ml) was added, and was followed by washing and SA-HRP detection. 
The titers of the anti-Exenatide antibody within the samples were then estimated by serial dilution of the plasma 
(to a maximum dilution of 1:225). We used results from the 1:25 dilution of all samples to determine whether a 
positive or negative development of anti-Exenatide antibodies had occurred across all 12 nonhuman primates 
evaluated in our study.

Statistics and pharmacokinetic evaluation. The pharmacokinetic characteristics of PT320 and 
Bydureon were assessed by following Exenatide time-concentration profiles and pharmacokinetic parameters, 
which were analyzed with noncompartmental methods using WinNonlin (version 6.0; Pharsight Corporation, 
Cary, NC). The baseline (zero time) sample was quantified for each animal as a level of ‘background signal’, and 
this value was then subtracted from time-dependent values in the same animal. The pharmacokinetic parameters 
evaluated included (i) the initial peak concentration (CIpeak) associated with the initial release burst of Exenatide, 
and the time to reach CIpeak (TIpeak). (ii) The lowest concentration of Exenatide in plasma (CItrough) achieved sub-
sequent to the CIpeak, and the time of this decline (TItrough). (iii) The ultimate maximal Exenatide concentration 
(CMax), and time to reach it (TMax). (iv) The lag time between the achievement of CIpeak and CMax (TLag). (v) The 
area under the curve from 0 to the last time point (AUC0–last), as calculated by the linear trapezoidal and log-linear 
trapezoidal methods. The lower limit of quantitation (LLOQ) for Exenatide in our study was 3.1 pg/ml.

Data availability
The dataset analyzed during the current study are available from the corresponding author on reasonable request.
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