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Maximal information transmission 
is compatible with ultrasensitive 
biological pathways
Gabriele Micali1,2,3,4 & Robert G. endres  1,2*

cells are often considered input-output devices that maximize the transmission of information by 
converting extracellular stimuli (input) via signaling pathways (communication channel) to cell behavior 
(output). However, in biological systems outputs might feed back into inputs due to cell motility, and 
the biological channel can change by mutations during evolution. Here, we show that the conventional 
channel capacity obtained by optimizing the input distribution for a fixed channel may not reflect the 
global optimum. in a new approach we analytically identify both input distributions and input-output 
curves that optimally transmit information, given constraints from noise and the dynamic range of 
the channel. We find a universal optimal input distribution only depending on the input noise, and we 
generalize our formalism to multiple outputs (or inputs). Applying our formalism to Escherichia coli 
chemotaxis, we find that its pathway is compatible with optimal information transmission despite the 
ultrasensitive rotary motors.

Biological cells continuously process environmental cues, allowing them to make critical decisions quickly, e.g. 
whether to move or stay, whether to express a certain protein, or whether to divide1. These decisions are generally 
made based on the level of one or more key proteins, which are the internal representation of the extracellular 
stimulus. The higher the amount of environmental information encoded in the intracellular representation, the 
more reliable the response. In contrast, cell-external and internal noise may reduce the reliability. Hence, a bio-
logical system under evolutionary pressure is expected to evolve to optimally transmit information under biolog-
ically relevant constraints2, at least when information is a limiting factor3–5.

To formalize this optimization problem, cells can be considered input-output devices, where stimuli of extra-
cellular concentrations are the input, receptors (or the entire pathway) are the communication channel, and the 
intracellular concentration of a key protein (or the final behavior of the cell) is the output. In contrast to engi-
neered physical systems, the distinction between input, channel, and output is not always clear in biological sys-
tems with feedback. Take for instance Escherichia coli chemotaxis, a well-characterized pathway allowing bacteria 
to sense chemicals and to swim towards nutrients6,7. The intracellular level of the phosphorylated protein (CheYp) 
represents the extracellular concentration of a chemical and regulates the motors (clockwise or counterclockwise 
rotation) and hence motility (‘run’ or ‘tumble’) (Fig. 1). The swimming behavior clearly affects the input as cells 
change their location, making information flow a circular problem. Hence, the question emerges how to tackle 
such problems.

Shannon’s mutual information is generally used to quantify information transmission, capturing the statistical 
(linear and nonlinear) dependencies between inputs and outputs8. Specifically, the mutual information describes 
the ability on average to reconstruct the input distribution after repeatedly measuring the output8,9. Often max-
imal mutual information is assumed, either to reflect biological function or because the mutual information 
cannot be calculated otherwise10,11. How should mutual information be maximized? Maximizing with respect to 
the (generally unknown) distribution of inputs leads to the channel capacity. Such an approach was, e.g., used to 
study transcriptional regulation in the developing fruit-fly embryo12,13. While in this case, the mother organism 
may be able to tune its maternal factors to the optimal input distribution to match the ‘expectation’ of the embryo, 
the channel capacity may not generally be a valid approach. Alternatively, it is possible to assume a fixed input 
distribution and to maximize the mutual information with respect to the input-output curve14,15. The underlying 
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idea is that the input-output curve is adjusted by evolution to match the distribution of inputs. This approach 
might apply to organisms confined to certain environments, e.g. bacteria living in specific niches15. In addition 
to these two optimization procedures (and some attempts to combine them for specific types of input-output 
curves16–18), the Fisher information from estimation theory may also be used to predict the input distribution19,20. 
Hence, due to multiple available approaches there is considerable uncertainty to what optimization procedure to 
use.

Even the principle of maximal information transmission may be questioned. Recently, maximizing informa-
tion transmission at the E. coli receptors led to maximal drift of cells swimming up a chemical gradient and hence 
optimal chemotactic behavior15. Although a reasonable result, there are two potential problems when considering 
the whole pathway: Firstly, the dose-response curves of the motors are measured to have Hill coefficients up to 
2021. Hence, such switch-like motors may only transmit about one bit of information, distinguishing only low 
and high levels of CheYp. Secondly, the CheYp level, which maximizes the drift is not in the sensitive region of 
the motor22–24. Both issues may lead one to suggest that high information transmission at the receptors is wasted 
downstream at the motors, and that an entirely different principle may guide cell behavior25,26.

Here, we address two key questions: (1) How should the mutual information be calculated in a biological 
context, and (2) does the bacterial chemotaxis pathway maximize information transmission? Specifically, we rec-
oncile the various optimization procedures, leading to a new way of maximizing the mutual information, particu-
larly useful for biological systems. Assuming general external and internal noise, and a fixed range of sensitivity 
(as any biological or physical system is necessarily limited), we analytically derive both the optimal input distri-
bution and input-output curve. Unlike previous approaches16–18, this general solution does not assume specific 
input-output curves, such as Hill functions. Surprisingly, we find an universal optimal input distribution, only 
dependent on the input noise. Furthermore, numerically and with the help of simulations, we were able to extend 
our formalism to multiple outputs (or inputs), greatly extending the applicability of our formalism to biological 
systems. As an illustrative example, we focus on the E. coli chemotaxis pathway using previously estimated noise 
and measured dose-response curves at the receptors and the motors. By deriving analytical results for multiple 
output motors, we show that although the optimal response is not a Hill function, the measured Hill coefficients 
naturally emerge from our optimal prediction. Overall our results confirm the idea of maximal information trans-
mission in E. coli chemotaxis, and prove that maximal information transmission at the receptors is critical for the 
whole pathway despite the ultrasteep motor dose-response curves.

Results
Maximizing mutual information: comparison of different approaches. Information transmission 
between an input, X, and an output, Y, is often quantified by the mutual information, which is a measure of statis-
tical dependency and reflects the average ability for inferring the input after measurements of the output (8–11,27–29 
for extended reviews). For continuous random variables, X and Y, the mutual information is defined by
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Figure 1. Connection between environmental cues and chemotactic response. Chemotactic bacteria live 
in complex microenvironments in which input distributions of chemical concentrations are shaped by the 
swimming behavior (top left), chemical sources and sinks (top middle), and competition with other bacteria 
(top right). Inputs are processed by the cell-internal chemotaxis pathway, which can be viewed as an input-
output device (bottom). Specifically, input-output curves are measured in experiments by dose-response 
curves with noise. The resulting final behavior feeds back into the environment. Evolution is assumed to 
select the best input-output curves for maximizing fitness. The chemotactic pathway is a two-component 
system, and for modeling purposes, is divided into two information-transmission channels: receptors sense 
external concentration of stimuli and their activity regulates the protein CheYp (receptor channel, bottom 
left). CheYp is the internal representation of the external stimulus and regulates motor switching (clockwise or 
counterclockwise rotation) and thus bacterial motility (straight swimming via a ‘run’ or random reorientation 
via a ‘tumble’; motility channel, bottom right). Note that there is additional adaptation both at the receptors75 
and the motors52.

https://doi.org/10.1038/s41598-019-53273-4


3Scientific RepoRtS |         (2019) 9:16898  | https://doi.org/10.1038/s41598-019-53273-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

 ∫= |






| 



X Y y x p y x p x p y x

p y
[ , ] : d d ( ) ( )log ( )

( )
,

(1)2

where p(y|x) is the conditional probability of observing Y = y at given X = x, encoding the input-output curve and 
noise. Quantities p(x) and p(y) represent the input and output distributions, respectively, which are mathemati-
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where xon and xoff set the sensitive region, i.e. the dynamic range of inputs14,15 (similar equations appear in12,13,20). 
In addition to p(x), Eq. (2) depends on the gain ′y (x), i.e. the first derivative of the input-output curve y (x), and 
total noise σT(x).

To understand if biological systems maximize information flow, we need to maximise the mutual information 
and derive general principles or compare with data. To maximise the mutual information, the channel capacity is 
often considered, i.e. the mutual information maximized with respect to the input distribution12,13. Alternatively, 
the mutual information can be maximized with respect to the input-output curve assuming a fixed input distri-
bution14,15. The former method is an attempt to deal with the often unknown input distribution, while the latter is 
based on the idea that the biological channel can be modified by evolution. Additionally, the two approaches were 
combined for specific input-output Hill and Hill-like functions16–18. However, is there a general way to unify the 
different methods, without making assumptions about functional form of the input-output functions?

Formally, we maximize the mutual information, Eq. (2), with respect to p(x) and y x) by writing
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where the right-hand side of Eqs. (3) and (4) are Euler-Lagrange equations from calculus of variations with 
Lagrangian  ′ = 
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2 T , i.e. the integrand of Eq. (2). Equation (3) represents the channel 
capacity applied to a Gaussian channel (i.e. Gaussian conditional probability p(y|x), see12,13 for examples in gene 
regulation). In contrast, Eq. (4) is used to obtain the optimal input-output curve for a given input distribution 
(see14,15 for examples in sensory systems). For completeness, we provide the solutions of the individual maximi-
zations of Eqs. (3) and (4) in SI Text Sec. 1.1–1.2, with a discussion of the sensitive region in Sec. 1.8.

When the noise is uniform (σT constant) Eqs (3) and (4) coincide. Specifically,  =∂
∂

0
y

 in Eq. (4) so that y  is a 
cyclic variable. As a result, =∂
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d
 so that p/ ′y  = const and hence is conserved (not in time but in input space), 

following the Emmy Noether theorem. In this case, maximizing the mutual information leads to a simple match-
ing relationship ( ′y  ∝ p), so that the input-output curve is the cumulative integral of the input distribution (see S1 
text, Sec. 1.1 and Fig. S1)30. However, in general when both input and output noise matter the noise is a function 
of the input and input-output curve, given by σT = σT(x, y , ′y ). Assuming independent cell-external and internal 
noise, we consider

σ σ σ′ = ′ +x y y y( , , ) , (5)x yT
2 2 2

which follows from error propagation. Specifically, σx is the input noise depending on x only, amplified by the 
gain ′y (x), and σy is the output noise depending on y (x) only. In case of negligible input (σx ≈ 0) or output 
(σy ≈ 0) noise, Eq. (3) again converges to Eq. (4) and the system can be solved for any input-output curve y (x) (see 
S1 text, Sec. 1.2–1.3). As a result, the predicted input and output distributions from the two optimization 
approaches become identical (Fig. 2A). However, in general the two equations differ and the resulting optimal 
input and output distributions are very different in the two approaches (Fig. 2B). In particular, the output distri-
butions can be uni- or bimodal with details described in SI Text, Sec. 1.3.

It is worth noting that, in Bayesian statistics the Fisher information is linked to the channel capacity19,20. A key prob-
lem in Bayesian statistics is choosing a prior distribution for a given stochastic process (i.e. p(y|x))31. The idea of having 
a prior which does not affect the posterior distribution (i.e. p(x|y)) is linked to maximal mutual information, given by 
the average Kullback-Leibler divergence between prior and posterior distributions. This prior distribution is called the 
reference prior19, given by ∝p x x( ) ( )  with Fisher information ∫= | ∂ | ∂x dy p y x p y x x( ) ( )( log( ( ))/ )2 . As 
shown in ref. 20. the Fisher information is the result of maximizing the equivalent of Eq. (2) for a general (not necessarily 
Gaussian) conditional probability distribution (see S1 Text, Sec. 2.). Hence, the channel capacity and the approach based 
on the Fisher information are equivalent.

Maximizing mutual information: a new approach. The difference between Eqs. (3) and (4) is that Eq. 
(3) assumes a fixed input-output curve and a variable input distribution, while Eq. (4) assumes a fixed input 
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distribution and a variable input-output curve. There might be situations in which one approach is more appro-
priate than the other but in a general biological context the two are intrinsically connected (Fig. 1). From a math-
ematical point of view, Eqs (3) and (4) can be combined and solved together, i.e. x y[ , ]  maximized with respect 
to both p(x) and y (x). Similar numerical double optimizations are common in rate distortion theory using, e.g., 
the Blahut algorithm4,32.

In what follows, we provide the analytical solution for p(x) and y (x) by solving Eqs. (3) and (4) together. We 
assume a fixed dynamical range of inputs set by xon and xoff (given by the receptor sensitivity), leading in return to 
a fixed dynamical range of outputs from y(xon) = 1 to y(xoff) = 0. We consider Eq. (2) with noise given by Eq. (5). 
After a first integration, we obtain the formal solution
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Figure 2. Conventional ways of maximizing mutual information. Comparison of the channel capacity, i.e. 
solving the maximization problem Eq. (3) for p(x) using a fixed y (x) and noise (red), and maximization with 
respect to input-output curve, i.e. solving the maximization problem Eq. (4) for y (x) using a fixed p(x) and 
noise (blue). (For specific examples of the solutions of Eqs (3) and (4) and a discussion of the bimodality of the 
output distribution, see SI Text Sec. 1). In both cases, the noise is provided as a function of the input distribution 
and input-output curve (top row), with the input-output curve y (x) = [1 + (x/kd)nH]−1 assumed a Hill function 
for simplicity, with Hill coefficient nH and threshold kd (inset). (A) For small input noise, the two approaches 
converge, i.e. the red and the blue input (middle left) and output (bottom left) distributions match. (B) For large 
input noise, the two approaches predict different input (middle right) and output (bottom right) distributions. 
Using Eq. (5) for the noise, the input noise is σx

2 = α1x, while the output noise σy
2 = α2y (1 − y ) + α3y  + α4 has 

three different contributions with y  the input-output curve. The parameters are chosen to provide an overall 
similar level of noise, given by α1 = 10−8, α2 = 2 · 10−6, α3 = 10−7, α4 = 10−8 (panel A) and α1 = 10−7, α2 = 10−8, 
α3 = 10−7, α4 = 10−8 (panel B). For the red model, nH = 5 and kd = 0.1. For the blue model, the input distribution 
is fixed by normalizing the derivative of a Hill function with nH = 5 and kd = 0.1, with the input-output curve 
free to change according to the maximization. The sensitive region is set by xon = 0 and xoff = +∞.
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where Z and Q are two constants set by normalization and boundary conditions, respectively (see Materials and 
Methods and S1 Text, Sec. 1.7).

Equation (6a) for the input distribution extends the matching relationship found in30 to nonuniform noise. 
In the latter case the optimal input distribution weighs certain inputs more than uncertain inputs13,20,33. Equation 
(6b) determines the input-output curve which maximizes the mutual information given the noise. A solution of 
the system of equations exists if the transmitted input noise can be expressed in terms of the output noise or vice 
versa (see S1 Text, Sec. 1.7). While such a solution may seem very specific, it is certainly plausible, given enough 
time, that evolution eventually finds it.

How may evolution find the solution? To mimic evolution, we envision an adaptive algorithm, allowing the 
pathway to iteratively reach optimal information transmission. Given an environment and hence a distribution 
of inputs, p1(x) (Fig. 3A), evolution selects the optimal internal input-output curve, y1(x) (Fig. 3B). However, the 
distribution of inputs is susceptible to changes, which might be caused by a change of the organism’s behavior, 
even in the same environment. The new input distribution, p2(x), may again lead to an increase in information 
transmission at fixed input-output curve, y1(x) (Fig. 3C). Subsequently, evolution will select a new input-output 
curve, y2(x), which enhances information transmission at a fixed input distribution, p2(x) (Fig. 3D). This cycle 
is repeated many times. If the optimal configuration is achievable and information transmission is a proxy for 
fitness, we expect that the solution of Eqs. (6a) and (6b) naturally emerges in the pathway. This is indeed the case 
for the examples studied here (see Fig. 3E,F).

information transmission at E. coli chemoreceptors. To apply our new approach, we use the chemo-
taxis pathway of E. coli as an explicit example, since it is relatively simple and well characterized in its molecular 
components6. Briefly, chemoattractant (ligand) binding turns receptors off, inhibits the kinase CheA, and hence 
reduces the phospho-transfer from CheAp to CheY. This leads to ‘runs’ as only CheYp can bind the 6–8 motors 
to introduce ‘tumbling’. There is also an adaptation mechanism, where addition of methyl groups to receptors 
compensates for increased attractant concentration by increasing the receptor activity and hence the CheYp level 
to induce cell tumbling. Removal of methyl group has the opposite effect34,35. In order to study signaling in fixed 
adaptational states, the adaptation enzymes can be removed from the chromosome and the receptor expressed 
with specific, genetically engineered, receptor modification levels to mimic receptor methylation (see S1 Text, 
Sec. 4.3)34,35.
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Figure 3. Adaptive evolutionary algorithm approaches analytical result. (A) Bacteria are assumed to live in 
a given environment and experience a given distribution of inputs. (B) Assuming that maximal information 
transmission enhances the chance to survive, evolution selects the mutations and hence the phenotype with 
optimal input-output curve. (C) At given input-output curve, the optimal input distribution generally (dark 
blue) differs from the initial input distribution (light blue) in (A). A change in behavior (and hence a change in 
the inputs) may provide an increase in information transmission (see Discussion section for more details). (D) 
The input-output curve changes again to maximise information transmission for the new set of stimuli. (E,F) 
This iterative cycle continues and eventually converges to the solution given by Eqs. (6a) and (6b) (dashed red 
line). Parameters: α1−3 = 10−7, α4 = 10−8, xon = 0.115, xoff = 0.323.
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Specifically, we consider the instantaneous information transmission between the chemoattractant meth-
ylaspartate (MeAsp) as the input and the response regulator CheYp as the output. Hence, we consider the infor-
mation transmitted by the initial (fast) response for a given adaptational state (which only changes slowly). (At 
a later time this response is removed by adaptation and hence is transient only). Note, unlike ref.36 we do not 
assume small Gaussian inputs but natural stimuli drawn from broad, potentially asymmetric input distribu-
tions p(x). When the input distribution of cells simulated in gradients of different strength match the optimal 
information-theoretical input distribution for the same receptor modification levels, the drift velocity up the gra-
dient is maximized and, hence, this leads to optimal chemotaxis15. As this matching of input distributions occurs 
anywhere in the gradient, these initial responses describe chemotaxis in the whole gradient, and so implicitly 
include adaptation. Indeed, the predicted distributions of inputs are scale invariant (when normalized by the 
adapted concentration) and reproduce Weber’s law and logarithmic sensing15. The latter can also be captured by 
the predictive mutual information37.

The functional form of the noise is assumed to be known and derived from microscopic theory as in38 (see S1 
Text, Secs. 3 and 4.2 for noise estimation and sensitivity to noise parameters, respectively). In short, the input 
variance is considered to be proportional to the input strength, σx

2 = α1x, with x in units of the ligand concentra-
tion the cell is adapted to. Furthermore, α1 ∝ (DNτ)−1 is given by the Berg-and-Purcell limit39, where D is the 
diffusion constant of the ligand molecules, N is the number of receptors acting cooperatively in a cluster, and τ is 
the averaging time, assuming a spherical cell39. The output noise has three contributions: signaling noise, switch-
ing noise due to on/off changes of the receptor state, and a constant background noise, leading to σy

2 = α2y
(1 − y ) + α3y  + α4 with phosphorylated y  in units of the total CheY level, YT, an intrinsic dependence on the 
(unknown) input-output curve, and α2−4 additional parameters defined in S1 Text, Sec. 3. Note these effective 
noise terms are time-averaged due to their dependence on chemical reactions based on finite rate constants38. 
Despite σy

2 being specific, this noise should apply to many receptor-signaling pathways, including other 
two-component pathways40.

Using this noise, the explicit solution of Eq. (6b) is
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where C and Q are constants set by imposing fixed boundary conditions, y(xoff) = 1 and y(xon) = 0 (Fig. 4A). Note 
that x appears with the prefactor Q/α1. Thus, α1 is set by the boundary conditions and it can be seen as the units 
of x. We consider two special cases: by simplifying the output noise for α2 = 0, we obtain
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Figure 4. Robustness of the adaptive algorithm. Comparison between our analytical result (blue lines) and 
the corresponding result when the input-output curve is constrained to a Hill function with adjustable Hill 
coefficient nH (red lines). (A,B) Input distributions (A) and the input-output curves (B). (C) Comparison 
between the adaptive algorithm for the unconstrained (blue lines) and Hill-function constrained (red solid 
line) optimizations. The adaptive algorithm moves the input-output curves to the optimal value nH ≈ 5, steadily 
increasing the mutual information. The convergence towards the analytical solution is robust to different 
initial Hill coefficients (dashed blue lines). The optimal Hill coefficient is compatible with the corresponding 
experimental curve from35 (see also Fig. S9). When constraining the input-output curve to a Hill function, 
the highest mutual information at a given Hill coefficient is shown by the red dashed line. Noise parameters: 
α1−3 = 10−4, α4 = 10−5, xon = 0.115 and xoff = 0.323 (see S1 Text, Sec. 3 for details of the noise).
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where the solution is again independent of α1 after imposing the boundary conditions. For α2,3 = 0, we obtain
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which does not depend on both α1 and α4 once Q and C′′ are set by the boundary conditions. The optimal input 
distribution obtained by inserting Eq. (6b) into Eq. (6a) is σ= + −p Z Q Q( (1 )/ )x

1. In particular, for our choice of 
external noise and fixed sensitivity range, the input distribution converges to = − − ~p x x x x x( ) [2( ) ] 1/on off

1  
independently of α1−4 (see S1 Text, Sec. 1.4.6 and Fig. S3). Importantly, this is a general result for the Berg-and-Purcell 
input noise, and hence should be valid for many signaling pathways. This result was previously found numerically16, 
and such an input distribution of glutamine was suggested to optimize nitrogen sensing33.

Extracting the sensitive regime of E. coli receptors for a fixed modification level (resembles receptor methyla-
tion level, see S1 Text, Sec. 4.3)35,41, we test the convergence of the adaptive algorithm to the solution in Eq. (7). 
After a few iterative cycles the system indeed converges (Fig. 4A), increasing the mutual information at each step 
(Fig. 4C, blue line). This convergence to the analytical solution occurs when starting at different initial conditions, 
showing robustness of our algorithm. Note that in Fig. 4C the solution y (x) is fitted to Hill functions for conven-
ience of presentation, allowing the mutual information to be plotted as a function of a single parameter (i.e. the 
Hill coefficient n). The optimal curve selects a Hill coefficient compatible to the experimental measurements from 
FRET data, at least for larger receptor modification levels (Fig. S9)35. Applying the adaptive algorithm instead to 
Hill-function constrained input-output curves produces the same optimal Hill coefficient n albeit with a smaller 
mutual information (Fig. 4C, red solid line, with Fig. 4B comparing the corresponding optimal input distributions 
and optimal input-output curves). Note that for a fixed Hill equation the optimal mutual information is calculated 
directly using the input distribution from Eq. (6a), resulting in

∫π σ
=













=
′x y Z Z dx y x

x
[ , ] log

2 e
with ( )

( )
,

(10)x

x

2
Ton

off


as shown in Fig. 4C (red dashed line).
However, unlike the sine function in Eq. (7), experimental dose-response curves of CheYp are thought to be 

well approximated by Hill functions rather than Eq. (7)34. There are several possible reasons for this discrepancy. 
For instance, in our model receptors are either fully sensitive or fully insensitive, and the solution given by Eq. (7) 
is only valid in the sensitive region and constant otherwise. In reality, receptors have a smooth sensitivity curve 
spanning the ligand-dissociation constant of the off and on states (such as dF/dlog(x) in41, where F is the receptor 
free-energy difference between on and off states). This may lead to a smooth Hill-function-like response. One way 
of imposing smooth input-output curves is to introduce the additional constraint of zero first derivatives at the 
boundary. In this case, however, we only obtain sigmoidal input-output curves without internal switching noise 
(α3 = 0) (see S1 Text, Sec. 1.4.4 and Fig. S3E). Moreover, very asymmetric (or even bimodal) input distributions 
might be uncommon in natural environments15, potentially favoring log-normal input distributions and hence 
Hill-function-like responses42. Finally, E. coli needs to account for many other constraints and the pathway per-
forms other tasks at the same time, such as sensing temperature and pH43–45. Hence, the E. coli sensory system 
might be in a suboptimal configuration for transmitting information about chemicals in order to account for all 
the other tasks. In the S1 Text, Sec. 1.4.5 we also solve the inverse problem and derive the optimal noise, which 
leads to an exact Hill function (see Fig. S4). In this case, the predicted input and output noises are not independ-
ent anymore. In summary, the mismatch between the experimental Hill functions and the solution in Eq. (7) is 
not an artifact of our assumptions on the sources of noise; it emerges when considering independent input and 
output noise, and when maximizing the mutual information with respect to both the input distribution and the 
input-output curve.

information transmission along the E. coli chemotaxis pathway. Now that we understand the opti-
mization of the mutual information better, we can tackle the second problem: Does the chemotaxis pathway 
maximise information transmission? Previous work suggests that the higher the information transmission at 
the receptors, the higher the drift velocity in the direction of the gradient15. Is this finding compatible with the 
recent observation of the ultrasensitive response of the motor to changes in internal CheYp

21, or does such a steep 
response prevent the cell from high information transmission? To answer this question we extend our analysis to 
the whole chemotaxis pathway.

We consider a minimal model of two channels: a receptor channel for sensing by the chemoreceptors and a 
motor channel for the flagellar motors. For the receptor channel, the external chemical concentration x is the 
input and the internal CheYp concentration, y, is the output. For the motor channel, y is the input and the motor 
clockwise (CW) bias z (for tumble) is the output (Fig. 5A). To simplify the problem and to closely resemble the 
experimental dose-response curves, we now restrict the curves to Hill functions, with Hill coefficients n and m for 
receptors and motors, respectively. The noise expressions for the receptor and motor channels are given by 
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σ α α α α= + − + +xG y y y(1 )yyT 1
2

2 3 4  and σ σ β β β= + − + +G z z z(1 )zzT yT
2 2

2 3 4 , respectively, where 
Gy and Gz are the gains of the receptor and motor channels. Parameters β2−4 represent the noise of the motors and 
are kept generic due to lack of characterization, but may reflect analogous biological processes including adapta-
tion of the motors21,46,47 (see S1 Text, Sec. 3 for further details and robustness of results to changes in β values). 
Due to the immense gain at the motors21, we generally have higher noise at the motor then at the receptor (see  
S1 Text Sec. 4.5 for the discussion of the two limits). Here only n and m are considered adjustable parameters in 
our model.

The data processing inequality, which characterizes the flow of information in a Markov chain, states that, at 
any additional processing step, information can only be lost, never gained48. For instantaneous information trans-
mission this means that the mutual information between the external concentration and the motor bias cannot be 
higher than the minimum of the mutual informations of the receptor and the motor channels, i.e. 
  ≤x z x y y z[ , ] min{ [ , ], [ , ]}. A strategy to possibly increase the mutual information is then to maximise the 
limiting mutual information.

We start by considering a single motor, represented by a single output z. We calculate the maximal mutual 
information at the receptor (Fig. 5B, left) and motor (Fig. 5B, right) channels, dealing with the optimization of the 
two channels separately. The mutual information at the motor, y z[ , ] , always limits the whole information trans-
mission for any Hill coefficient n of the receptors and m of the motor. Hence, single-motor cells should optimize 
the motor rather than the receptor channel. This result is not unexpected for the chemotaxis pathways since the 
ultrasensitive motor enhances the downstream noise, which is generally larger than the upstream noise (here the 

Figure 5. Optimal information transmission in the E. coli chemotaxis pathway. (A) Minimal model of the E. 
coli chemotaxis pathway, using two concatenated channels. The extracellular concentration of stimulus x is the 
input of the receptor channel and CheYp, y, concentration is the output. For the motor channel, CheYp is the 
input and the tumble bias z the output. Hill functions with adjustable Hill coefficients n and m represent the 
input-output curves of the receptor and motor channels, respectively. The dissociation constants for the receptor 
and motor channels are kd

n = 0.189/(1 μM) and kd
m = 0.39 [YT], respectively. (B) Heat maps of the separately 

calculated mutual information of the receptor,  x y[ , ], (left) and of the motor, I[y,z], (right) channels for a single 
motor as a function of Hill coefficients n and m. Vertical dashed lines correspond to maximal value of  x y[ , ] 
(circles corresponds to arrows in C). (C) The mutual information as function of Hill coefficient m at n = 5 
(dashed black lines in panel B). While for a single motor the optimal mutual information of the receptor 
channel (opt rec, blue solid line) is higher than the optimal mutual information at the motor (opt mot, red solid 
line), increasing the number of motors (see legend) enhances the optimal mutual information of the motor 
channel (opt 1 mot, dashed red line, for two motors). Arrows point to the predicted m values. The purple arrow 
indicates the optimal m value for a single motor (corresponding to purple circle in B), the green and orange 
arrows point to the optimal m values for two motors (corresponding to green and orange circles in B). The 
mutual information is further increased when the optimal mutual information for two motors is calculated (opt 
2 mot, orange dashed line, see S1 Text, Sec. 4). Parameters: α1−3 = 10−4, α4 = 10−5, β2 = 7 · 10−4, β3 = 7 · 10−4, and 
β4 = 1 · 10−4.
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total CheYp noise is the input noise for the motor channel). The resulting optimal information transmission cor-
responds to relatively low n and m (≈6; red area in right panel of Fig. 5B). Experimentally, the Hill coefficient of 
the receptor channel agrees with our prediction, ranging from 6–12 in Tar-only cells35. In contrast, the ultrasteep 
motor response curve with m ≈ 20 is in stark contradiction to our single-motor dose-response model. Hence, the 
single-motor model indicates higher information transmission at the receptors (see Figs. 5, S6, S7, and S1 Text, 
Secs. 3 and 4.2 for dependence on noise). However, E. coli has multiple motors, which might effect information 
transmission.

We now extend our model to multiple (K) motors, allowing the cell to make multiple measurements of the inter-
nal CheYp concentration. There are now a single input, y, and multiple outputs z1, ..., zK, of the CW biases. The chain 
rule for the mutual information allows us to calculate  ..y z z[ ; , ]K1 . In particular, for the extreme case of fully cou-
pled motors the mutual information does not increase with the growing motor number,  .. =y z z y z[ ; , ] [ ; ]K1 1 . In 
contrast, for completely uncoupled motors (i.e. for motors which are simultaneously independent and conditionally 
independent given y) the mutual information increases with the number of motors,  .. =y z z K y z[ ; , ] [ ; ]K1 1   
(see S1 Text, Sec. 4.5). Real motors show evidence of partial coupling49, and thus we assume conditional indepen- 
dent motors, i.e. p(z1, ..zK|y) = Πi

Kp(zi|y). This means that all motors depend on the common y level but can  
independent ly select  their  CW bias .  For two motors,  the mutual  information becomes 
   = + | = − | + |y z z z y z y z z y H z y H z z[ ; , ] [ ; ] [ ; ] [ ; ] ( ) ( )1 2 1 2 1 1 2 2 1 . For K motors this is generalized to

∑… = − | + | … .
=

−y z z z y KH z y H z z z[ ; , , ] [ ; ] ( ) ( , , )
(11)K

i

K

i i1 1 1
2

1 1 

Using the small noise Gaussian approximation for p(zi|y), the conditional entropy is given by 
∫| =H z y y p y( ) d ( )1  · π σ ylog( 2 e ( ))T , and H(z2|z1) ≈ 0 (Fig. 5C, see also S1 Text, Sec. 4.5). Thus, Eq. (11) becomes

  ∫ π σ… = − .y z z z y K y p y y[ ; , , ] [ ; ] d ( )log( 2 e ( )) (12)K T1 1

We numerically tested that the conditional independence of the motors holds for two motors, despite the fact that 
motors compete for the binding of internal CheYp molecules, which can introduce negative correlations (see S1 Text, 
Sec. 4.6 and Fig. S10). Therefore, >y z z y z[ ; , ] [ ; ]1 2 1  , and more generally  .. > .. −y z z y z z[ ; , ] [ ; , ]K K1 1 1  for K 
conditionally independent motors50.

Hence, for conditionally independent motors, the mutual information at the motors will eventually overtake 
the mutual information at the receptors when the number of motors increases. Consequently, the mutual infor-
mation at the receptors becomes the limiting factor for information transmission (Fig. 5C, see50 for the case of 
Gaussian input distributions). In other words, for a small number of motors the cell has high information trans-
mission at the receptors, which will be wasted at the motors (cf. red and blue solid lines). In contrast, for a large 
number of motors the information transmission at the motors exceeds the information transmission at the recep-
tors without overall improvement. However, in the intermediate case both receptors and motors equally limit 
the transmission of information (cf. red dashed and blue solid lines in Fig. 5C). E. coli chemotaxis seems to avoid 
bottlenecks and to optimally allocate resources the latter case is the most advantageous51. Hence, the ultrasteep 
Hill function of the motor (m ≈ 20) can be explained by this matching of the information transmission at the 
receptors and motors (orange arrow in Fig. 5C). Note that in addition to the high Hill coefficient m of the motors 
there is also a corresponding low m solution (green arrow in Fig. 5C). However, the latter is not robust to changes 
in m, i.e. a small change in m can lead to a drastic reduction of information transmission, which can emerge from 
varying the number of FliM molecules of the motor52. In addition, note that the mutual information shown in 
Fig. 5C with a red dashed line is calculated assuming that the two motors are optimized separately. However, 
the mutual information is further increased by maximizing the two motors simultaneously (dashed orange line 
in Fig. 5C). Our overall result that a high mutual information can be achieved with a high Hill coefficient of the 
motors remains valid (see S1 Text, Sec. 4). In between m ≈ 1 and ≈20, the information transmission of the motor 
is wasted as receptors are information-flow limiting. In conclusion, multiple ultrasensitive motors are only useful 
when motors are sufficiently independent. Any residual coupling among motors may be the result of close motor 
proximity or mechanical coupling of the flagella.

Discussion
This study presents a new approach to maximise the mutual information, particularly suitable for evolv-
ing biological systems subject to random mutations and selection. Previously, the channel capacity, i.e. the 
mutual information maximized with respect to the input distribution was widely used for electronic and bio-
logical communication channels12,13,20,33. However, this method fails to capture possible changes of the internal 
input-output curve (e.g. by mutations). Furthermore, the mutual information maximized with respect to the 
input-output curve neglects the biological relevant feedback of the output on the input14,15. Here, we reconciled 
these two approaches by maximizing the mutual information with respect to both the input distribution and the 
input-output curve for Gaussian channels with small noise. Only when the total noise is uniform, or when the 
input or the output noise is negligible, the two approaches are identical. Unlike previous joint optimizations16–18, 
our input-output curves are not restricted to Hill or Hill-like functions. Our adaptive algorithm demonstrates 
how evolution might implement this iteratively.

Our analytical solution of the joint optimization provides a number of new insights into optimal information 
transmission. First, the optimal input distribution is universal, depending only on the input noise. For 
Berg-and-Purcell type input noise, we specifically obtain −~p x x( ) 1. Hence, organisms are optimized for envi-
ronments in which low intensity stimuli occur with high frequency. This is sensible as their high frequency would 
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compensate for their large relative noise levels. Second, the optimal input-output curve is invariant to up or down 
scaling of the input noise (parameter α1), which sets the units of the input. Hence, only the shape of the input 
noise (i.e. its functional dependence on input x) affects the input-output curve. Third, our optimal input-output 
curve is rather linear (Figs. 3D and 4A). While this does not match the sigmoidal Hill functions as suggested by 
models of E. coli chemotaxis34,53, a near linear input-output curve makes best use of a given dynamic range. 
Furthermore, enforcing either zero slope of the input-output curve at the boundaries of the sensitive region or 
Hill functions as input-output curves leads to assumptions on the noise which are hard to justify biologically. 
Hence, Hill functions are incompatible with independent input and output noise (see Supplementary Information 
Sec. 1.7 for details).

How can cells actively influence and optimize their distribution of sensory input? Genetic changes in the 
downstream pathway and motor can clearly change chemotactic behavior and hence the experienced input stim-
uli. For instance, increases in the motor speed lead to larger changes in stimulus and hence broader distributions 
of inputs. Similarly, faster adaptation leads to narrower distributions. However, the notion that cells influence 
their microenvironments is most supported by the important role of niches in stem cell differentiation, cancer 
development, gut microbiota, and host-pathogen interactions54–58. Once inside the gut, E. coli related pathogen  
C. rodentium in mice (and similarly EPEC/EHEC in humans) injects effector proteins into the epithelial host 
cells. In response, these cells secrete increased levels of oxygen, allowing in return the pathogen to perform aer-
obic metabolism59. Hence, its aerotaxis ability, inherited from E. coli based on Aer and Tsr receptors, experiences 
an increased frequency of oxygen stimuli, which the pathogen actively stimulated. If we take the assumption of 
maximal information transmission seriously, then cells do not only actively influence but also optimize their 
environment.

To apply our information-theoretical approach, we analytically showed that the entire E. coli chemotaxis path-
way can maximize the instantaneous mutual information between chemical concentration and motor bias despite 
the ultrasteep dose-response curve of the motors. Briefly, ultrasensitive motors do not restrict information trans-
mission, since a collection of motors boosts information transmission, in addition to providing other chemotactic 
advantages in the soil or animal intestine60. In particular, our model identifies the number of motors and their 
conditional independence as key quantities to transmit large amounts of information in peritrichous bacteria.

What is the additional information at the motors used for if the ultimate behavioral output is just binary runs 
and tumbles? We speculate that the tumble angle, torque, and filament handedness could be regulated61,62. Indeed, 
real-time imaging of E.coli with fluorescent flagella showed that the tumble angles increased with the number of 
clockwise-turning motors, allowing for differential cell responses61. Having non-identical motors with different 
Hill coefficients and thresholds may further increase the information transmission (e.g. as produced by different 
number of FliM in the motor ring)16 but this may not be feasible in the bacterial chemotaxis pathway, as the 
adapted activity set the operating point of the motors. For instance, different threshold values for the motor would 
lead to some motor always rotating clockwise and counter-clockwise. Our model also makes the prediction that 
chemotactic bacteria with a single motor should prefer a relatively low Hill coefficient at the motor or multiple 
response regulators feeding into a motor with a high Hill coefficient to highly transmit information. This pre-
diction could be tested with the uni-flagellated bacterial species, such as Rhodobacter sphaeroides, Pseudomonas 
aerugiuosa or monotrichous marine bacteria60,63. In support of our theory, R. sphaeroides is known to have mul-
tiple CheY’s64,65.

While applicable to many biological systems, our model makes a number of simplifications (in addition to 
assumptions on noise and receptor sensitivity). Our results are based on the independent maximizations of the 
receptor and motor channels. However in SI text, Sec. 4.5, we discuss the general case, providing estimes of the 
mutual information  x z[ ; ], between ligand input and final motor output. Our analysis suggests, once again, that 
high Hill coefficient for multiple motors can support high information transmission. In particular, we analytically 
identify two expected limits, (i) when the receptor noise is much smaller than the motor noise, we obtain 

≈x z y z[ ; ] [ ; ]  , and (ii) when the motor noise is smaller than the receptor noise, we have  ≈x z x y[ ; ] [ ; ]. 
Our analysis over the chemotactic pathway primarily focuses on the Hill coefficient. However, the dissociation 
constant kd

m of the motor response is known to be larger than the adapted CheYp concentration. In SI text, 
Sec. 4.5.4, we explicitly study the role of the dissociation constant kd

m, and found a relative weak dependence of 
the mutual information on it. We also found that after fixing the Hill coefficient m and using the optimized output 
distribution of the receptor channel, the kd

m that maximizes the mutual information at the motor matches the 
experimentally measured value (which is larger than the adapted CheYp level, see Fig. S8).

Another simplification is that our model deals with instantaneous information transmission, and hence does 
not explicitly include any history dependence36,37,66,67. Hence, our approach should be highly suitable for the 
slow genetic response in quorum sensing68,69. In this system, the input-output relation has been measured but 
input distributions were simply guessed, and not predicted. Another area of application is eukaryotic chemotaxis, 
where cells move slowly while actively shaping their chemical gradient by ligand secretion70 and degradation71. 
In all these examples, the input distributions and cell behaviors need to match the input-output relations to allow 
for optimal information gathering. Nevertheless, our model is valid for information transmission by initial tran-
sient chemotactic responses, and as this applies anywhere in the gradient, our model describes chemotaxis even 
including adaptation15. We expect that our model even works in relatively steep gradients, where, in addition to 
adaptation, long-history effects are important, such as caused by receptor saturation and rotational diffusion24. 
The main assumption in15 is that gradients can be linearized over the range of input distributions. However, we 
do not assume small Gaussian-distributed inputs. A drawback of our model is that we neglect any cell-to-cell 
variability, which can be substantial72,73, so that in effect our theory focuses on a certain subpopulation of cells. 
This cell-to-cell variability may lead to advantages in terms of bet-hedging strategies not directly related to infor-
mation processing74.
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In conclusion, we provided a biologically inspired adaptive algorithm with analytical solution for com-
plex problems in information transmission in sensory systems. Future studies may need to account for 
time-dependencies explicitly, including adaptation both at the receptors and motors. This may be achieved by 
considering trajectories of molecular concentrations and/or cell behavior, which may also help establish a link 
between chemotactic performance (e.g. drift velocity), information transmission, and energetic cost of chemot-
axis. This link may show interesting tradeoffs and new design principles29. A methodological contribution might 
be necessary as calculation of the mutual information based on trajectories are hampered by the high-dimensional 
phase space of all possible trajectories.

Materials and Methods
Maximization of mutual information with respect to input distribution and input-output curve. To 
maximize Eq. (2) assuming the noise in Eq. (5), we focus on the integrand  ′ = 








π σ
′

x p y y p p( , , , ) log e
y2

2 T  and use 
the well-known Lagrange formalism from calculus of variations, where x is the independent variable while p = p(x), 
y  = y (x) and ′y  = ′y (x) are the dependent variables. Note that p′(x) is not appearing in the Lagrangian . To find the 
maximum of I with respect to p and y , we need to solve Eqs. (3) and (4) together.

Equation (6a) is the solution of Eq. (3), which can be rewritten through differentiation as

σ
σ

′
=

″
′

−
′

.
p
p

y
y (13)

T

T

To derive Eq. (6b), we evaluate the following derivatives

σ
σ∂

∂
=

∂
∂y

p
y

,
(14)T

T

σ
σ∂

∂ ′
=

∂
∂ ′

−
′y

p
y

p
y

,
(15)T

T


σ

σ σ
σ

σ
σ

σ∂
∂ ′

= −
′
′

+
″

−
′ ∂

∂ ′
+

′ ∂
∂

+
∂
∂ ′

.
′

d
dx y

p
y

py
y

p
y

p
y

p d
dx y (16)2

T

T T

T
2

T

T

T

Using Eqs (13)–(16), Eq. (4) becomes
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Now assuming independent cell-external and internal noises as in Eq. (5), Eq. (17) becomes Eq. (6b).
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