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Analyzing the Bills-Voting 
Dynamics and predicting 
corruption-convictions Among 
Brazilian congressmen through 
temporal networks
tiago colliri1* & Liang Zhao2

in this paper, we propose a network-based technique to analyze bills-voting data comprising the 
votes of Brazilian congressmen for a period of 28 years. The voting sessions are initially mapped into 
static networks, where each node represents a congressman and each edge stands for the similarity 
of votes between a pair of congressmen. Afterwards, the constructed static networks are converted 
to temporal networks. Our analyses on the temporal networks capture some of the main political 
changes happened in Brazil during the period of time under consideration. Moreover, we find out that 
the bills-voting networks can be used to identify convicted politicians, who commit corruption or other 
financial crimes. Therefore, we propose two conviction prediction methods, one is based on the highest 
weighted convicted neighbor and the other is based on link prediction techniques. It is a surprise to us 
that the high accuracy (up to 90% by the link prediction method) on predicting convictions is achieved 
only through bills-voting data, without taking into account any financial information beforehand. Such 
a feature makes possible to monitor congressmen just by considering their legal public activities. In this 
way, our work contributes to the large scale public data study using complex networks.

Complex networks refer to large scale graphs with non-trivial connection patterns1. Some examples include the 
internet2, biological neural networks3, social networks4, food chains5, blood distribution networks6 and power 
grid distribution networks7. Complex networks have also been applied to data modeling and simulations, such as 
the spreading of infectious diseases8 and social contagion9, and failures and attacks in the WWW and the inter-
net10. Besides, there are currently several network-based models that have been designed to perform machine 
learning tasks, such as clustering11, classification12 and regression13. More recently, temporal networks have been 
introduced, which allows us to take into account the time dimension as well in the study of graphs. Examples of 
real-world systems, which can be modeled through temporal networks, include social networks, one-to-many 
information dissemination (such as in emails or blogs, for instance), cell-biology networks, brain networks, traffic 
networks, and mobile communication networks14.

In the last years, governments around the world have been trying to increase their transparency by mak-
ing large amount of public administration data available to the population. This phenomenon had triggered the 
development of new methods specifically designed for the analysis of such kind of data. Within this context, 
network-based techniques have also been applied to politics-related data, such as the analysis of the legislators’ 
relations through bill co-sponsorship data15,16 and through roll-call voting data17–20. A comprehensive review 
on this topic has been made by Victor et al.21. Besides, there are also applications on the analysis of networks for 
crimes-related purposes. Wachs et al.22 studied the social aspects of corruption by relating the social capital of 
Hungarian settlements to the risk of corruption in its local government, using large-scale social network data, find-
ing that settlements with high bonding social capital tend to award contracts with higher corruption risk, while 
settlements with high bridging social capital tend to award lower corruption risk contracts. Berlusconi et al.23  
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tested link prediction techniques on the identification of missing links among an Italian mafia group and Ribeiro 
et al.24 made use of the same techniques on politicians cited on corruption scandals in Brazil.

In this work, we propose a network-based approach for analyzing bills-voting data in the form of representa-
tives’ temporal networks to capture the topological structural changes along time and reveal how these changes 
may be reflected in (or by) some of the main political events happened during the same period in Brazil. Our anal-
ysis starts by converting each bill-voting session into a static network, in which each node represents a congress-
man and each edge represents the accumulated similarity of a pair of congressmen based on their historical votes 
on those bills. Afterwards, these static networks are converted to temporal networks by considering all of them as 
being an evolving network. We apply this technique to official data from the Brazilian House of Representatives, 
comprising the votes of 2,455 congressmen in a total of 3,407 bills-voting sessions from 1991 until 2019, hence 
covering a range of almost 30 years of legislative works. The obtained results are able to capture the main political 
transitions happened during the period in terms of the relative positions occupied by each political party in the 
network. We also find out that, surprisingly, the proposed technique is capable of identifying convicted repre-
sentatives in the network with high precision and most of them are for corruption charges. This method can be 
used to predict cases of corruption or other financial crimes. Such a feature comes out unexpectedly since the net-
works’ edges are generated only based on the representatives’ legal public activities (bills-voting history), without 
any financial or other relative information of any sort.

In summary, this work makes use of specific dynamical measures for analyzing the Brazilian legislators’ net-
works. Moreover, it shows how the network-based framework can be applied to identify future cases of corruption 
or other financial crimes among congressmen with high accuracy, just based on the bills-voting data. Therefore, 
we believe this work makes an important advance in the large scale public data study using complex networks.

Methods and Data
Database used. The data are collected from the official website of the Brazilian House of Representatives25 
within their transparency section. These datasets comprise the outcome of 3,407 voting sessions of legislative bills 
deliberated in the House of Representatives, from May 22, 1991 until Feb 14, 2019. We made a thorough data 
cleansing process in this database in order to detect and fix possible mistakes, such as duplicated names or votes 
and also typographical errors. Each voting session contains the following attributes: the bill to be voted, the voting 
date, and for each representative who attended the session: IDE (a unique number for each of them), Name, Party 
and Vote. The voting data are similar to roll call votes, except that here there are four different types of votes: (1) 
Yes, if the representative approves the bill; (2) No, if the representative disapproves the bill; (3) Abstention, if the 
representative deliberately chooses to not take part in the voting; and (4) Obstruction, similar to abstention, with 
the difference that abstention counts for quorum effects, i.e., the minimum number of voting members who must 
be present, while obstruction does not count for it.

After extracting and cleaning the data from the 3,407 voting sessions, we end up with a total number of 
2,455 representatives and 1,656,547 votes. For analyzing these data, we opt for making use of a network-based 
technique, specially developed for this purpose. Firstly, we convert each voting session into a separated static net-
work. Afterwards, we select some of these static networks to generate temporal networks and then perform some 
analyses in order to examine how their topology — in terms of network temporal measures — evolve along time.

As for the conviction classification task, also tested in this study, we add an additional attribute, for all rep-
resentatives, which indicates whether he or she is currently convicted or have been arrested for corruption or 
other financial crimes, such as money laundering, peculation, embezzlement or misappropriation of public funds, 
improbity and crime against the Public Administration. This information has been confirmed from Brazilian 
judiciary official sources, such as the Federal Supreme Court (Supremo Tribunal Federal)26. At the end of this 
research, we were able to identify a total of 33 representatives in our database who currently have been either 
arrested or convicted for corruption (21 congressmen) or for other financial crimes (12 congressmen).

Static network generation. A network can be defined as graph =G ( , )V E , where   is a set of nodes and 
  is a set of tuples representing the edges between each pair of nodes ∈i j i j( , ): , . The process of mapping each 
voting session in the database into a network is made according to their respective date attribute, sorted in 
ascending order, strictly. For the first voting, when =t 0, its data items are initially converted to a square votes 
matrix Mt of size dXd, where d is the total number of representatives who participated in the session. Each ele-
ment Mij

t is a binary value: it assumes assuming 1 if the vote of representative i is equal to the vote of representative 
j; otherwise, it assumes −1. These values are accumulated in a separated weight matrix Wn, in which each element 
Wij

n is equal to the sum of values of Mij
t  in all votes matrices Mt until voting session n. Hence, each item Wij

n of this 
matrix represents the accumulated weight between representatives i and j. The time steps t are measured in terms 
of voting sessions. Mathematically, the current value of each weight Wij

n is given by:
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Hence, from Eq. (1), the values in each row Wi
n may range from −n, in the case that the representative i always 

voted differently from representative j, until n, which is the case when i and j always voted alike. The former case 
implies that, up to the current instant, representatives i and j have complete opposite political views, while, in the 
latter case, i and j are very aligned up to now, politically speaking. Another possibility here, in this technique, 
would be binning the votes similarities per predetermined periods of time, such as per presidential term or per 
year. After some preliminary processing of the database, we have noted that it takes varying bills-voting time to 
emerge a clear topological pattern in the networks, therefore, it is suitable to take all historical votes into consid-
eration for generating the weight matrix Wn.
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After generating the matrices Mt and Wn, the next step is to generate a network Gt, for each voting session t, 
such that each representative becomes a node in Gt. The edges in Gt are created according to the following rule:

=







=

.
∀ ∈G

W W x, if max

0, otherwise (2)
ij
t ij

n
ij
n

x Wi
n

As a result of Eq. (2), the great majority of the vertices in Gt will have only one outbound edge, connecting it 
to the most politically aligned vertex. Vertices with more than one outbound edge may only occur when the func-
tion ∀ ∈ xmax x Wi

n  returns more than one value. The most connected vertices in the network (hubs) will be the ones 
with the highest number of inbound edges.

The pipeline of our technique can be summarized in the following steps:

 1. build votes matrix Mt from data of voting session t;
 2. update weight matrix Wn, also inserting new representatives in it, if any;
 3. build network Gt, whose values come from the weight matrix Wn; and
 4. repeat the procedure for next voting session t + 1, until the last one in the dataset.

As a consequence of this process, the networks Gt evolve in time, as its edges are determined by the accu-
mulated weights between pairs of representatives from matrix Wn and are updated at each step t. The vertices, 
representing the representatives, may also be replaced by new ones along the process, as new representatives 
appear in the voting session lists, such that the nodes, in this case, can be seem as the “chairs” in the Parliament. 
When a new congressman is inserted into the network (because he/she has been elected or for any other reason), 
he/she does not inherits any voting information from the congressman who previously occupied the chair of the 
House (or node in the network). In this case, the model adds a new row and a new column in matrix Wn to store 
the vote similarities between the node of the new congressman and all other nodes in Wn. It is also worth noting 
that the attribute “party” is not taken into account by the model to generate the network’s edges. We proceed this 
way because, in this study, our aim is to capture the political affinities among representatives beyond their party 
affiliations, i.e., only taking into account their votes on legislative bills for network generation. This makes sense 
whereas, in the case of Brazil, there are currently as much as 35 different political parties, and this excessive num-
ber of parties ultimately makes the ideological differences among them to diminish substantially.

Temporal network generation. After running our algorithm for all bills in the database, we end up to a total 
of 3,407 networks, each one with around 500 nodes and representing a different bill-voting session during the last 
28 years. Thus, we can also say that all these networks, in fact, represent different moments of the Brazilian con-
gressmen network. At this point, we already have shown how to generate these networks in a static form, each Gt 
representing a moment at time t. For the sake of converting these networks into a single temporal network G, we 
need then to insert a new dimension  in the static network definition, such that it becomes =G ( , , )V E D , where 
 stands for the network temporal slices or, in our case, the voting sessions. To achieve this, we generate a matrix 
for representing each edge   in the static networks slices in the form of a triplet V D∈ ∈i j t i j t( , , ): , , . These tri-
plets are also known as dynamic graphlets27 and an illustration of their dynamics is showed by Fig. 1a. The final 
result of this conversion process is a multilayer network, in which each layer represents a static temporal slice of a 
single main graph (Fig. 1b). In this case, since the dimension  is a set of indices ordered by time, we can therefore 
also call this graph a temporal network28, and perform analyses on it by extracting some specific measures.

Figure 1. (a) Illustration showing how the temporal network edges, or graphlets, evolve in time, here measured 
in terms of bills-voting sessions. When time slice =t 1, representative 0 is connected to representatives 2, 3, 5, 6 
and 9. In the next time slice =t 2, it loses the connections with representatives 2, 3, 5 and 9 and receives edges 
from representatives 1, 4, 7 and 8. (b) Example demonstrating the adjacency matrix evolution in a temporal 
network, whose dimension  is measured in units representing years. The network edges are generated 
according to this matrix.
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Extracting temporal measures from a network with over 3,000 time slices, each one having around 500 nodes, 
is a time-consuming process. Therefore, in this work, we decide to make use of only one time slice per year for 
generating the temporal network. The selected bills-voting sessions, as well as the current presidency at each 
period and his/her corresponding political party, are described in Table 1. It is worth noting that the bills-voting 
sessions sampling (with one session in each year being selected as a temporal network slice) has little effect on the 
overall results, since our network formation technique certifies that the weight of each edge, stored in the weight 
matrix Wn, already carries in itself the information regarding all previously voted legislative bills until present.

Besides generating one main temporal network, which includes all 28 time slices in Table 1, we also generate 
one temporal network per presidential term, for the sake of comparison purpose. The measures extracted from 
the resulting temporal networks are listed below.

•	 Temporal degree centrality (DT): the number of overall connections in time per node.
•	 Temporal participation coefficient (PT): a measure of diversity of connections across communities for individ-

ual nodes29. The communities are detected by using the Louvain method30.

We also calculate a “proportional” version of each temporal measure MT, grouped by the political party p of 
each node i, defined as:

=
∑

∑

=
M

M

M
,

(3)
p
T i i p

T

i i
T

p

where p is a political party and ip returns the party of node i. These proportional versions of the measures are used 
for comparison among parties.

Conviction prediction. Now, let us proceed to describe how we assess whether a representative is more 
likely to be convicted or arrested in the future by analyzing the bills-voting agreements among congressmen. Two 
different methods have been tested for accomplishing this task: the first one is based on the matrix Wn values, 
while the second one is based on the network link prediction model. Following, we describe the two methods 
with more details.

Year Bill voted Session date Presidency

1991 PL 638/1991 1991-08-28
Collor (PRN)

1992 PL 2747/1992 1992-04-29

1993 PL 1258/1988 1993-04-01
Itamar (PRN)

1994 PDC 413/1994 1994-04-20

1995 PL 233/1995 1995-04-04

FHC I (PSDB)
1996 PL 824/1991 1996-04-10

1997 PEC 173/1995 1997-04-09

1998 PEC 33/1995 1998-04-29

1999 PL 1/1995 1999-05-12

FHC II (PSDB)
2000 PEC 96/1992 2000-04-05

2001 PLP 23/1999 2001-04-03

2002 MPV 14/2001 2002-04-10

2003 MPV 86/2002 2003-04-01

Lula I (PT)
2004 PEC 101/2003 2004-05-19

2005 MPV 242/2005 2005-06-07

2006 MPV 269/2005 2006-04-04

2007 MPV 339/2006 2007-04-10

Lula II (PT)
2008 MPV 415/2008 2008-04-23

2009 MPV 452/2008 2009-04-14

2010 MPV 475/2009 2010-05-04

2011 REQ. 343/2011 2011-04-06

Dilma I (PT)
2012 PEC 153/2003 2012-04-10

2013 PEC 544/2002 2013-04-03

2014 PLP 221/2012 2014-05-07

2015 MPV 660/2014 2015-04-07
Dilma II (PT)

2016 REQ. 4250/2016 2016-04-04

2017 PL 5587/2016 2017-04-04
Temer (MDB)

2018 PL 3734/2012 2018-04-11

Table 1. Voting sessions used for generating the temporal network slices, yearly.
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Conviction prediction based on the weight matrix. After finishing the processing of all voting sessions, we end 
up with the network resulted from the final weight matrix Wn. This network has 2,455 nodes, representing all 
congressmen who voted in at least one legislative bill from 1991 until 2019, along with their pairwise bills-voting 
similarities. While browsing this main network, we note that the highest weighted neighbors of a node labeled as 
convicted are more likely convicted ones as well, apparently forming some sort of “corruption neighborhoods” in 
the network. Hence, we decide to investigate this aspect further by running a very simple algorithm, which basi-
cally takes the n highest weighted neighbors of a convicted representative, according to the weights stored in Wn, 
and labels all of them also as convicted ones. Thus, we have the “convicted” label c of a node i defined as follows:

=





= ∀ ∈i j j kTrue, if True, NN
False, otherwise, (4)

c
c

i

where kNNi returns the n neighbors with the highest weights associated to node i. We assess the efficiency of 
this model by measuring its prediction accuracy for different values of n. The rationale behind this model is that 
arrested or convicted representatives, for some reason, tend to vote similarly on legislative bills.

Conviction prediction based on link prediction. Given that the simple model described above does not consider 
the network topological structure for prediction purposes (only considers the weight matrix Wn), we thus also 
test another method for accomplishing this task, which makes use of models for predicting missing links of the 
networks. The method’s pipeline is described below:

 1. generate subgraph from an undirected version of the network from matrix Wn, containing only arrested or 
convicted representatives and their neighbors;

 2. remove all existing links between convicted labeled nodes from this network (subgraph);
 3. apply link prediction model to the network; and
 4. take the top n link predictions whose source is a convicted labeled node and classify their target nodes also 

as convicted ones.

One of the models tested for this task is Rooted PageRank31, which is based on an algorithm developed for 
ranking the importance of website pages32. It defines the score(x, y) as the expected number of steps required for 
a random walk on the network starting from node x, moving iteratively with a probability α to return to x (or 
“reset”) and a probability 1 − α to move forward to a random neighbor until it reaches the node y. The lower the 
score for each pair of nodes x and y is, the higher the pair is ranked among the model’s predicted links. Besides 
Rooted PageRank, other 5 link prediction models are also applied to this task: Pearson33, Cosine34, NMeasure35, 
MinOverlap36 and Random (for comparison purposes). By making use of a link prediction model, we are now 
taking into account the congressmen network topological structure for conviction prediction purposes.

Results and Discussion
Political scenario through the analysis of the representatives’ networks. As mentioned earlier, 
our initial task involves the generation of over 3,000 static networks in total, then, a comprehensive temporal net-
work is built. We start this subsection by presenting an example of one of these static networks shown by Fig. 2a, 
built from the voting session of legislative bill PEC 77/2003, occurred on September 19, 2017. The outbound edges 
connect each node to the one with the highest accumulated weight associated with it. One feature that called our 
attention in most of these networks is that, even though the party attribute, represented by the color of the nodes 
in the figure, has not been taken into account explicitly by the algorithm, we still can note the formation of neigh-
borhoods based on parties in the networks, centered at hubs. This feature confirms that representatives from the 
same party tend to vote alike in legislative bills, thus, the formation of party clusters occurs. If a node is connected 
to a neighborhood different from its own party’s, then the congressman represented by this node has been voting 
more similarly to the representatives of other parties. As expected, still in Fig. 2a, the colors of the biggest hubs 
in the network coincide to those from the parties with most members in the House of Representatives at that 
time. The colors in blue, red, cadet-blue and orange represent the parties PSDB, PT, PP and MDB, respectively, 
which were main parties in the Brazilian congress in September 2017. The hubs, within this context, represent 
the congressmen who voted according to each “local majority” in the network, i.e., the majority within a local 
neighborhood.

Alternation of power is an important and expected condition of democratic systems. Within this context, 
we analyze the temporal networks segmented by each presidency, with the aim of measuring the evolutionary 
strength of the two main political parties (PSDB and PT) in Brazil during the considered period, in terms of the 
positions they occupy in the network, and examine how these changes are related to the main political events 
happened in the same period. We initially extract two centrality measures from each network: temporal degree 
centrality DT and temporal participation coefficient PT, which give us centrality scores for each node. Afterwards, 
we calculate the ratio of each of those measures for the parties PSDB and PT, according to Eq. (3), in each presi-
dential term. For the cases when a representative switched parties during the period, we then consider the party 
to which he belonged at the time of each voting session, i.e., each time slice. The results of this process are shown 
by Fig. 2c,d. Observe that the ruling political party presents higher values for both centrality scores measured in 
the congressmen temporal network and such a feature strictly follows the respective alternation of power between 
PSDB (FHC governments, from 1995 until 2001) and PT (Lula and Dilma governments, from 2002 until 2016). It 
is also worth noting that, in these figures, there is a sudden drop in both measures for the PT party in the second 
term of Dilma (2015–2016), which coincides with the turbulent political scenario in Brazil at that time, when 
many demonstrations were held against Dilma — specially after her predecessor Lula was charged by federal 
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prosecutors with corruption accusations against him and his party — and end up in her impeachment, in 2016. 
A similar behavior can be also observed for the PTC party (former PRN) in 1992 (the impeachment of former 
president Collor occurred at that time) in a much smaller scale since this is a minor political party in Brazil. This 
event is not included in these figures for the sake of visibility.

Following, we generate what is known as the network cartography29 for the temporal network which includes 
all 28 time slices (from 1991 until 2018, yearly). This framework helps us to better understand the network topo-
logical structure by grouping the nodes into some “universal roles”, according to their level of connectivity inside 
the network. It depends on two measures: the within-module degree zi, which shows how “well-connected” a node 
i is to other nodes within its module, and the participation coefficient Pi, which shows how “well-distributed” the 
links of node i are among different modules. For accomplishing this task, we make a slight adaptation from the 
original technique. For static networks, the within-module-degree returns a single value zi for each node i. As for 
temporal networks, instead, it returns a 2-D array in the form of zit with one value of zi for each time slice t. 
Therefore we opt here for averaging these values, such that =z zi it in order to generate the network cartography. 
We also make use of the temporal participation coefficient Pi

T, instead of its static version Pi. The output can be 
seen in Fig. 2b. Each point in this plot represents a congressman and the red color denotes those nodes labeled as 
convicted ones. The distribution of their network roles is summarized in Table 2, grouped by arrested or con-
victed and the others (those who have not been arrested or officially convicted). It shows that around 98% of them 
are non-hubs (roles R1 to R4) and only about 2% of them are module hubs (roles R5 to R7), indicating that con-
victed representatives tend to have a slightly higher incidence of connector hubs (R6), which are hubs with links to 
most of the other modules.

Figure 2. (a) Example of a static network generated by our algorithm for the voting session occurred on 2017-
09-19 of legislative bill PEC 77/2003. Each node represents one of the 513 congressmen who voted this bill and 
each color represents a different political party. (b) Node roles based on the network cartography framework29, 
with the adaptation that, here, we use the temporal version of the participation coefficient (PT) with averaged 
within-module-degree, z-scores, from each temporal network slice t. Each point represents a congressman and 
the red color denotes convicted ones. (c) Proportional temporal degree centrality Dp

T and (d) proportional 
temporal participation coefficient Pp

T measures evolution, calculated for all representatives and grouped by 
political party p, for each presidential term. The evolution of both measures coincide precisely with the 
respective alternation of the ruling parties PSDB (FHC) and PT (Lula and Dilma).
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Prediction of conviction among representatives. The incidence of corruption impacts the society neg-
atively in many ways, such as holding back businesses, wasting public spending and undermining the democratic 
system. Predicting the incidence of corruption and other related financial crimes, specially at the individual level, 
is a challenging task. Nowadays, a prediction system with an average accuracy around 0.2 is already considered 
useful by public investigators all over the world24. Here, we make use of a network-based approach to identify 
hidden connections among convicted congressmen linked to bribing schemes or other financial crimes in Brazil. 
Two methods are tested for detecting future convictions among representatives. The first method is based on 
the nearest neighbor of convicted congressmen using the weight matrix Wn and the second one is based on link 
prediction. The former achieves prediction accuracy about 0.24, while the latter achieves accuracy beyond 0.5, 
even up to 0.9. Consequently, the accuracy obtained by the link prediction model can be considered quite satis-
factory. The reason why the prediction accuracy by the two methods are so different is simple: In the first method, 
a prediction to a congressman is made by considering only his/her labeled nearest neighbor, i.e., a prediction is 
conditioned on only one node of the network. On the other hand, in the second method, a prediction is made by 
link prediction methods, which considers local or global network structure conditioned on more than one nodes, 
i.e., a finer filtering is performed.

Results based on the weight matrix. While browsing the nodes of the network resulting from the final weight 
matrix Wn (Fig. 3a) — the one formed by all representatives, regardless the time factor — the first speculation in 
mind may be that the highest weighted neighbors of a convicted corrupt representative are possibly convicted 
ones as well. Therefore, we investigate whether the nodes of arrested or convicted representatives tend to stay 
close to each other in this network, and thus forming some sort of “corruption neighborhoods”, so to speak. For 
this purpose, we build n separated networks composed only by nodes labeled as convicted ones, along with their 
respective n highest weighted neighbors according to the final weight matrix (these neighbors can be labeled as 
convicted or not). Afterwards, we run a simple algorithm, as specified in Eq. (4), which classifies all n neighbors 
of an already convicted labeled node as being convicted ones as well (whether in the present or in the future). In 
Fig. 3b, it is possible to see the network resulted from n = 1, i.e., with the 33 convicted representatives along with 
the highest weighted neighbor of each of them. It indicates that there is, indeed, the formation of some sort of 
“corruption structures” in the network. Note that Fig. 3b is actually a subgraph of Fig. 3a, which has 2.455 nodes 
and only 33 of them labeled as convicted. So the odds of a convicted node having a neighbor who is also convicted 
would be very low, if it is not for the incidence of the corruption neighborhoods. The emergence of this feature is 
something surprising to us, considering that none of the input attributes in our data are related to the congress-
men’s financial income or expenditures and that the edges are generated solely based on their bills-voting history. 
The conviction prediction results for n in [1, 5] are shown by Fig. 3c. From this figure, we see that the optimal 
value of n is 1, with an average accuracy of 0.24.

In order to confirm whether there is indeed a correlation between bills-voting similarity and convictions for 
corruption and other financial crimes among representatives, we run another test by using the same rationale 
explained above with the difference that, here, instead of selecting the highest weighted neighbor of each con-
victed node for prediction purposes, we took its n–st highest weighted neighbor determined by its outgoing edges, 
therefore decreasing the votes similarity between the original convicted node and its neighbor, as n increases. The 
obtained results, in Fig. 3d, show that, in this case, the higher the value of n, the smaller is the accuracy achieved 
by the algorithm, which contributes to confirming our initial suspicion that convicted representatives indeed tend 
to vote alike in legislative bills.

The prediction accuracy achieved by our first prediction model is about 0.24 and it is very close to the accu-
racy achieved by Ribeiro et al.24, which is around 0.26, when predicting missing links among politicians cited on 
corruption scandals in Brazil. Following, we show how the prediction rate can be considerably improved when we 
take into account the overall network topological structure for making the predictions.

Results based on a link prediction model. The last step in our analyses involves the application of link predic-
tion techniques for the sake of predicting new conviction cases among the representatives. For accomplishing 
this task, we apply a total of 5 link prediction models plus a Random method (for comparison purposes) in the 
congressmen network. The method based on link prediction differ from the simple one presented in the previous 
sub-section because the former makes a prediction considering the network’s topological structure (excluding, of 
course, the random technique from this list), while the latter just takes into account certain neighbors. As in the 
previous test, the models are also applied to a subgraph of the network resulted from the final weight matrix Wn 

Role Convicted Others Description

R1–ultra-peripheral 62.0 63.1 nodes with all their links within their module

R2–peripheral 26.0 25.4 nodes with most links within their module

R3–non-hub connector 9.8 9.7 nodes with many links to other modules

R4–non-hub kinless — 0.5 nodes with links homogeneously distributed among all modules

R5–provincial hubs — 0.2 hubs with the vast majority of links within their module

R6–connector hubs 2.2 1.0 hubs with many links to most of the other modules

R7–kinless hubs — 0.1 hubs with links homogeneously distributed among all modules

Table 2. Network cartography: node roles distribution (%).
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formed by convicted representatives and their respective neighbors, with the difference that, at this time, neigh-
bors from both incoming and outgoing edges are considered, and also that the network is previously converted 
to an undirected one. The final subgraph contains 211 nodes (33 of them being convicted) and 1,374 edges. As a 
preprocessing, we remove all existing links between two nodes labeled as convicted from the network (5 in total). 
After running the link prediction models, we took the top n predicted links with convicted nodes as sources and 
label their target nodes as being convicted ones as well. All the tests are performed using the tool introduced by 
Guns37 with default parameters values for all models.

The obtained results of all 6 link prediction models under consideration are shown by Fig. 4a,b. Figure 4a 
shows how the value of n, in this case, may affect the overall results, where n = 10 is the most indicated among the 
tested values, with an average accuracy of 0.65 (around 6 correct ones out of every 10 predictions, then). Figure 4b 
brings the accuracy achieved by each model, with Cosine, NMeasure and Pearson showing an impressive perfor-
mance with an accuracy of 0.9, followed by Rooted PageRank and MinOverlap, with an accuracy of 0.7 and 0.5, 
respectively. It is worth noting that the Random predictor scored 0 in this task, which contributes to highlighting 
the effectiveness of applying the graph-structure-based predictors.

Comparing between the first prediction model with the average accuracy of 0.24 and the link prediction 
models with accuracy beyond 0.65, we perceive how the performance of a model can be improved whereas one 
considers the topological structure of the input dataset for classification purposes. This feature becomes more 
evident given the good results achieved by the first 5 link prediction models shown in Fig. 4b. The performance 
of link predictors, overall, may vary significantly, with some methods being more suitable than others according 
to the input dataset31. In our case, given the technique used to build the congressmen network, two features have 

Figure 3. (a) Representation of the network resulted from the final matrix Wn, with all 2,455 congressmen in 
the database, disregarding the time factor. Each node is connected to its highest weighted neighbor, in terms of 
votes similarity on legislative bills. The red color denotes convicted representatives (33 in total). (b) A subgraph 
of the consolidated network, showed in (a), displaying only the 33 already arrested or convicted representatives 
(in red) and their respective highest weighted neighbors. We opted for not displaying the names of 
representatives who currently have not been arrested or officially convicted in this graph (in green). (c) 
Predictions based on the n highest weighted neighbors, in terms of votes similarity, resulted in an average 
accuracy of 0.243 when =n 1. (d) Tests made by considering the n–st highest weighted neighbor of a convicted 
node show that, as we increase the value of n, the lower is the average accuracy.
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emerged from it: (1) the more politically aligned two representatives are (in terms of their votes on legislative 
bills), the nearer they are in the network (in terms of number of links); and (2) only long term representatives are 
able to become hubs in the network, since a higher number of votes on bills is needed for that. In Fig. 5, we show 
a comparison of the top 10 link predictions from the Pearson and Rooted PageRank models for the network. 
This figure may help us to better understand why some link-prediction-based methods performed different than 
others in the task of predicting new convicted nodes. Methods such as Pearson, Cosine and NMeasure have in 
common the fact of being local predictors, i.e., solely based on the neighborhoods of the two nodes considered. 
Hence, they presented very similar results, also achieving the best accuracy when compared to other methods. 
This may be related to the feature where convicted nodes tend to stay close to each other in the network, as we saw 
earlier. As for the Rooted PageRank, which achieved the second best accuracy of 0.7, it is a global predictor, such 
that even if two nodes do not share any common neighbors, they still may be related and form a link in a later 
stadium. One may observe that all 7 correct links predicted by Rooted PageRank have the largest network hub 
(the one in black, in the center) either as its source or as its target and, in this case, it also happens that the largest 
hub in the network is a convicted one himself. This feature favors models based on random walks, such as Rooted 
PageRank, since many of the other convicted nodes are close to this hub.

Discussions
Fighting and preventing corruption and other financial crimes are challenging tasks, because criminals con-
stantly develop increasingly advanced mechanisms to cover their infractions. In this study, we present a technique 
to reveal the hidden relationships between bills-voting behavior and condemnations for corruption and other 
financial crimes among politicians. We also show how this information can be used to detect those individuals 
which are more likely to be convicted in the future. To our knowledge, this work is one of the first endeavours 
to accomplish such task through a network-based methodology. An interesting feature of this work is that the 
high conviction-prediction accuracy can be obtained using bills-voting data, which implies that it is possible to 
reveal politicians’ illegal behavior through just their legal public activities. Such kind of systems, once is devel-
oped, is certainly quite useful to many countries, specially to the countries like Brazil, which seriously suffer from 
corruption.

Our work is inspired by Ribeiro et al.24, which predicts missing links among politicians cited on corruption 
scandals in Brazil. Both works (the one of Ribeiro et al.24 and our work) deal with a similar problem — the inci-
dence of corruption among individuals by using network-based techniques. However, there is a fundamental 
difference between the two works: The former is based on a dataset composed of 404 politicians cited on at least 
one corruption scandal and aims to predict citations on future scandals, while our study is based on a dataset 
comprising the voting history of 2,455 representatives on legislative bills and only considers those already arrested 
or found officially guilty for prediction purposes. Therefore, the dataset used in this work is not only a larger 
one, but also is always available and easy to access. The use of regular public data, as the dataset we use here, pre-
sents big facility to develop politician monitoring system in the future. Besides of this, the prediction accuracy 
achieved by our prediction model, about 0.9, is much higher than that obtained in Ribeiro et al., which is around 
0.26. We hence believe that the accuracy rate achieved in this work is quite satisfactory. Another related work, of 
Berlusconi et al.23, tested link prediction techniques based on a similarity score on the identification of missing 
links among an Italian mafia group, obtaining a link reliability of up to around 0.9 for predictions made based on 
common neighbors. However, the prediction accuracy has been counted, in some cases, by considering informal 
relationships among the members of the mafia, for example, the existence of a phone call between the two mem-
bers (two nodes), which presents certain level of subjectivity. On the other hand, in our work, the corruption 
prediction accuracy is calculated using official judiciary sources, such that we are certain whether a congressman 
is convicted or arrested. It means that we are sure with the prediction accuracy of our model.

Figure 4. (a) Performances achieved by 6 link prediction models on the task of predicting conviction cases 
among representatives by considering the top n predicted links whose source node is a convicted one, indicating 
that the highest scores are achieved when =n 10, with an average accuracy of 0.65. (b) Performances achieved 
by each model, when considering their top 10 predictions, showing Cosine, NMeasure and Pearson with the 
highest score, with an impressive accuracy of 0.9.
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As future works, we plan to extract other measures from the temporal network, such as the temporal between-
ness centrality, the temporal closeness centrality and bursting measure, in order to better understand its topo-
logical structure. Other network building methods will also be developed to include more relevant information 
of the congressmen, such as the federal state of each of them represents, original profession, sex, age, kinship 
among them, and so on. For the conviction prediction task, one can, for example, filter the representatives’ his-
torical votes by types of bills and then identify which kinds of bills are more likely to lead to corruption and other 
financial crimes. So we can alert people to pay more attention to those kinds of bills. Finally, we believe our work 
contributes to the development of big data platform to monitor politicians’ behavior.

Data availability
The datasets generated during and/or analyzed in the current study are available from the corresponding author 
on reasonable request.

Received: 22 August 2019; Accepted: 24 October 2019;
Published: xx xx xxxx

References
 1. Albert, R. & Barabási, A. L. Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–97 (2002).
 2. Faloutsos, M., Faloutsos, P. & Faloutsos, C. On power-law relationships of the internet topology. ACM SIGCOMM Computer 

Communication Review 29 (1999).
 3. Sporns, O. Network analysis, complexity, and brain function. Complexity 8, 56–60 (2002).
 4. Carrington, P. J., Scott, J. & Wasserman, S. Models and methods in social network analysis. (Cambridge University Press, Cambridge, 

2006).
 5. Montoya, J. M. & Solé, R. V. Small world patterns in food webs. Journal of Theoretical Biology 214, 405–412 (2002).
 6. West, G. B., Brown, J. H. & Enquist, B. J. A general model for the structure, and allometry of plant vascular systems. Nature 400, 

125–126 (2009).
 7. Albert, R., Albert, I. & Nakarado, G. L. Structural vulnerability of the north american power grid. Physical Review 69, 025103 (2004).
 8. Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in scale-free networks. Physical Review Letters 86, 3200 (2001).
 9. Iacopini, I., Petri, G., Barrat, A. & Latora, V. Simplicial models of social contagion. Nature Communications 10 (2019).
 10. Albert, R., Jeong, H. & Barabási, A.-L. Error and attack tolerance of complex networks. Nature 406, 378 (2000).
 11. Silva, T. C. & Zhao, L. Stochastic competitive learning in complex networks. Neural Networks and Learning Systems, IEEE 

Transactions on 23, 385–398 (2012).
 12. Silva, T. C. & Zhao, L. Network-based high level data classification. Neural Networks and Learning Systems, IEEE Transactions on 23, 

954–970 (2012).
 13. Gao, X. et al. Transmission of linear regression patterns between time series: From relationship in time series to complex networks. 

Physical Review E 90, 012818 (2014).
 14. Holme, P. & Saramäki, J. Temporal networks. Physics Reports 519, 97–125 (2012).
 15. Kirkland, J. H. & Gross, J. H. Measurement and theory in legislative networks: The evolving topology of Congressional collaboration. 

Social Networks 36, 97–109, https://doi.org/10.1016/j.socnet.2012.11.001 (2014).
 16. Neal, Z. P. A sign of the times? Weak and strong polarization in the US Congress, 1973–2016. Social Networks (2018).
 17. Andris, C. et al. The rise of partisanship and super-cooperators in the U.S. House of Representatives. PLoS One 10, 1–14, https://doi.

org/10.1371/journal.pone.0123507 (2015).

Figure 5. Comparison of two link prediction outputs for the network formed by convicted representatives 
and their neighbors: top 10 links having a convicted node as source predicted by (a) pearson and (b) rooted 
PageRank models. Black nodes indicate convicted ones. A link prediction is considered correct if its target 
node is also labeled as convicted. Remembering that the models do not take the node labels into account for 
prediction purposes. All other links are removed from the network only for the sake of visibility.

https://doi.org/10.1038/s41598-019-53252-9
https://doi.org/10.1016/j.socnet.2012.11.001
https://doi.org/10.1371/journal.pone.0123507
https://doi.org/10.1371/journal.pone.0123507


1 1Scientific RepoRtS |         (2019) 9:16754  | https://doi.org/10.1038/s41598-019-53252-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

 18. Dal Maso, C., Pompa, G., Puliga, M., Riotta, G. & Chessa, A. Voting behavior, coalitions and government strength through a 
complex network analysis. PLoS One 9, https://doi.org/10.1371/journal.pone.0116046 (2014).

 19. Moody, J. & Mucha, P. J. Portrait of political party polarization. Network Science 1, 119–121, https://doi.org/10.1017/nws.2012.3 
(2013).

 20. Waugh, A. S., Pei, L., Fowler, J. H., Mucha, P. J. & Porter, M. A. Party polarization in congress: A network science approach. arXiv 
preprint arXiv:0907.3509 (2009).

 21. Victor, J. N., Montgomery, A. H. & Lubell, M. The Oxford Handbook of Political Networks (Oxford University Press, 2017).
 22. Wachs, J., Yasseri, T., Lengyel, B. & Kertész, J. Social capital predicts corruption risk in towns. Royal Society Open Science 6, 182103 

(2019).
 23. Berlusconi, G., Calderoni, F., Parolini, N., Verani, M. & Piccardi, C. Link prediction in criminal networks: A tool for criminal 

intelligence analysis. PLoS One 11, https://doi.org/10.1371/journal.pone.0154244 (2016).
 24. Ribeiro, H. V., Alves, L. G., Martins, A. F., Lenzi, E. K. & Perc, M. The dynamical structure of political corruption networks. Journal 

of Complex Networks 6, 989–1003 (2018).
 25. Câmara. Dados Abertos, https://dadosabertos.camara.leg.br/ [accessed on February, 19, 2019] (2019).
 26. Federal, S. T. Processos, https://portal.stf.jus.br/ [accessed on October, 22, 2019] (2019).
 27. Hulovatyy, Y., Chen, H. & Milenković, T. Exploring the structure and function of temporal networks with dynamic graphlets. 

Bioinformatics 31, i171–i180 (2015).
 28. Thompson, W. H., Brantefors, P. & Fransson, P. From static to temporal network theory: Applications to functional brain 

connectivity. Network Neuroscience 1, 69–99, https://doi.org/10.1162/NETN_a_00011 (2017).
 29. Guimera, R. & Amaral, L. A. N. Functional cartography of complex metabolic networks. Nature 433, 895 (2005).
 30. De Meo, P., Ferrara, E., Fiumara, G. & Provetti, A. Generalized Louvain method for community detection in large networks. In 2011 

11th International Conference on Intelligent Systems Design and Applications, 88–93 (IEEE, 2011).
 31. Liben-Nowell, D. & Kleinberg, J. The link-prediction problem for social networks. Journal of the American Society for Information 

Science and Technology 58, 1019–1031 (2007).
 32. Page, L., Brin, S., Motwani, R. & Winograd, T. The pagerank citation ranking: Bringing order to the web. Tech. Rep., Stanford InfoLab 

(1999).
 33. Ahlgren, P., Jarneving, B. & Rousseau, R. Requirements for a cocitation similarity measure, with special reference to Pearson’s 

correlation coefficient. Journal of the American Society for Information Science and Technology 54, 550–560 (2003).
 34. Salton, G. & McGill, M. J. Introduction to modern information retrieval (McGraw-Hill, Inc., 1986).
 35. Egghe, L. & Leydesdorff, L. The relation between pearson’s correlation coefficient r and salton’s cosine measure. Journal of the 

American Society for Information Science and Technology 60, 1027–1036 (2009).
 36. Esquivel, A. V. & Rosvall, M. Compression of flow can reveal overlapping-module organization in networks. Physical Review X 1, 

021025 (2011).
 37. Guns, R. Link prediction. In Measuring scholarly impact, 35–55 (Springer, 2014).

Acknowledgements
This work is supported in part by the São Paulo State Research Foundation (FAPESP) under grant numbers 
2015/50122-0 and 2013/07375-0, the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil 
(CAPES) - Finance Code 001, PRP, University of Sao Paulo, 2018.1.1702.59.8 and the Brazilian National Council 
for Scientific and Technological Development (CNPq) under grant number 303012/2015-3. The funders had no 
role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions
T.C. and L.Z. designed the study. T.C. performed the numerical analysis. T.C. and L.Z. wrote the paper.

competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to T.C.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-53252-9
https://doi.org/10.1371/journal.pone.0116046
https://doi.org/10.1017/nws.2012.3
https://doi.org/10.1371/journal.pone.0154244
https://dadosabertos.camara.leg.br/
https://portal.stf.jus.br/
https://doi.org/10.1162/NETN_a_00011
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Analyzing the Bills-Voting Dynamics and Predicting Corruption-Convictions Among Brazilian Congressmen Through Temporal Netw ...
	Methods and Data
	Database used. 
	Static network generation. 
	Temporal network generation. 
	Conviction prediction. 
	Conviction prediction based on the weight matrix. 
	Conviction prediction based on link prediction. 


	Results and Discussion
	Political scenario through the analysis of the representatives’ networks. 
	Prediction of conviction among representatives. 
	Results based on the weight matrix. 
	Results based on a link prediction model. 


	Discussions
	Acknowledgements
	Figure 1 (a) Illustration showing how the temporal network edges, or graphlets, evolve in time, here measured in terms of bills-voting sessions.
	Figure 2 (a) Example of a static network generated by our algorithm for the voting session occurred on 2017-09-19 of legislative bill PEC 77/2003.
	Figure 3 (a) Representation of the network resulted from the final matrix Wn, with all 2,455 congressmen in the database, disregarding the time factor.
	Figure 4 (a) Performances achieved by 6 link prediction models on the task of predicting conviction cases among representatives by considering the top predicted links whose source node is a convicted one, indicating that the highest scores are achieved wh
	Figure 5 Comparison of two link prediction outputs for the network formed by convicted representatives and their neighbors: top 10 links having a convicted node as source predicted by (a) pearson and (b) rooted PageRank models.
	Table 1 Voting sessions used for generating the temporal network slices, yearly.
	Table 2 Network cartography: node roles distribution (%).




