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calculation of absolute binding 
free energies between the heRG 
channel and structurally diverse 
drugs
tatsuki negami1, Mitsugu Araki  2, Yasushi okuno2 & tohru terada  1,3*

the human ether-a-go-go-related gene (heRG) encodes a voltage-gated potassium channel that 
plays an essential role in the repolarization of action potentials in cardiac muscle. However, various 
drugs can block the ion current by binding to the heRG channel, resulting in potentially lethal cardiac 
arrhythmia. Accordingly, in silico studies are necessary to clarify the mechanisms of how these drugs 
bind to the heRG channel. Here, we used the experimental structure of the heRG channel, determined 
by cryo-electron microscopy, to perform docking simulations to predict the complex structures that 
occur between the heRG channel and structurally diverse drugs. the absolute binding free energies for 
the models were calculated using the Mp-cAfee method; calculated values were well correlated with 
experimental ones. By applying the regression equation obtained here, the affinity of a drug for the 
heRG channel can be accurately predicted from the calculated value of the absolute binding free energy.

The human ether-a-go-go-related gene (hERG) encodes a voltage-gated potassium (Kv) channel that gen-
erates a rapid delayed rectifier K+ current (IKr) across the cell membrane of cardiac myocytes in an action 
potential-dependent manner, a process considered critical for the repolarization of the action potential1–3. 
Impaired functioning of the hERG channel, including from various mutations, can cause prolongation of the QT 
interval as observed by electrocardiogram (ECG), potentially leading to lethal cardiac arrhythmia2,3. QT pro-
longation can also be caused by the blockade of the hERG channel by certain drugs4,5. Since structurally diverse 
drugs are known to cause this serious side effect, all drug candidates are required to be tested for hERG blocking 
activities during preclinical development. However, tests using in vitro and in vivo experiments are very costly 
and time-consuming. Therefore, the development of in silico tools for predicting the binding affinities of drugs 
for the hERG channel is expected to reduce the cost and improve the efficiency of the drug development process.

Numerous studies have attempted to clarify the structural mechanisms underlying hERG-drug interactions 
using both experimental and/or computational methods. Based on its sequence similarity to other Kv channels, of 
which the structures have been determined (for review, see ref.3), it has been suggested that the hERG channel has 
a tetrameric structure, with each subunit containing six transmembrane helices (S1–S6). In this structure, helices 
S5 and S6 form the ion-conducting pore domain, while helices S1–S4 form the voltage sensor domain (VSD). 
Drugs are believed to enter the pore of the hERG channel from the cytoplasmic side. Previous mutagenesis studies 
have shown that the affinities of various hERG blockers are decreased by mutations of residues T623, S624, and 
V625, near the cytoplasmic end of the selectivity filter, and Y652 and F656, located in helix S66–15. In particular, 
docking simulations using homology models of the hERG channel have suggested that residues S624, Y652, F656, 
and F557 directly interact with various drugs10–17.

Several methods have been developed for predicting the affinity of a drug to the hERG channel18, such as the 
recent report by Chemi et al.19 of a method that used the three-dimensional quantitative structure–activity rela-
tionship for the prediction. Ogura et al.20 used a support vector machine to predict the hERG inhibitory activity 
of a drug. However, the accuracy of these methods depends on the amount of experimental data included in the 
training data set, and the predicted affinities or inhibitory activities may not be accurate for drugs that differ 
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structurally from those in the training data set. Boukharta et al.21 applied an MD-based method to predict the 
affinities of drugs to the hERG channel. This involved predicting the structure of the complex formed between 
each drug and the hERG channel and then performing MD simulations for the complex and for the drug alone 
to estimate the binding free energy. This estimate used the linear interaction energy method, which is based on 
an empirical relationship between the intermolecular interaction energies and the binding free energy. However, 
Boukharta et al. only predicted the affinities of structurally related drugs. In addition, they used a homology 
model for the structure of the hERG channel, which may have limited the accuracy of the prediction.

The experimental structure of the hERG channel had long remained unsolved, despite its biological and 
pharmaceutical importance. Recently, however, the structures of hERG and its closely related homolog, rat Eag1 
(rEag1), were solved by cryo-electron microscopy (cryo-EM)22,23. Similar to other Kv channels, hERG and rEag1 
channels have a tetrameric structure with a four-fold rotational symmetry. The pore-forming regions (helices S5–
S6) of the four subunits assemble to form the pore domain, which has an ion-conducting pore at the center along 
the symmetry axis, with the VSDs (helices S1–S4) surrounding. However, cryo-EM structures revealed a domain 
arrangement unique to the hERG/rEag1 channel. Indeed, while the other Kv channels have a domain-swapped 
arrangement where the VSD of a given subunit is located in proximity to the pore-forming region of the neigh-
boring subunit, the VSD of the hERG/rEag1 channel is located in proximity to its own pore-forming region. 
Consistent with this arrangement, the linker sequence of the hERG/rEag1 channel connecting the VSD with 
the pore-forming region is shorter than those of the other Kv channels. In addition, the rEag1 channel is in a 
closed conformation with a closed pore22,23, whereas the hERG channel is in an open conformation with the 
pore expanded on the cytoplasmic side of the selectivity filter, forming a large cavity termed the central cavity22. 
Residues that have been suggested to be involved in drug binding are located around the central cavity22, implying 
that drugs bind to this cavity. Furthermore, the structure of the central cavity of the hERG channel appears to be 
different from those of the other Kv channels with open pores22.

Using the cryo-EM structure of the hERG channel, in this study, we predicted the complex structures 
that occur between the hERG channel and structurally diverse drugs using docking simulations. In addition, 
we calculated the absolute binding free energies for selected drugs using a molecular-dynamics (MD)-based 
method termed Massively Parallel Computation of Absolute binding Free Energy with well-Equilibrated states 
(MP-CAFEE)24,25. We then examined the interactions between the drugs and the channel and evaluated the corre-
lation between the calculated binding free energy values and those determined experimentally. Finally, we present 
a method for predicting the affinity of a drug for the hERG channel based on these correlations.

Results and Discussion
Stability of the pore domain structure in MD simulations. We first examined the stability of the pore 
domain structure of the hERG channel using MD simulations. To this end, we compared the stability between the 
two systems: the VSD–Pore–C-linker system where the VSD–Pore–C-linker part of the hERG channel (residues 
398–736) is embedded in a solvated lipid bilayer and the pore-domain-only system where the pore domain (res-
idues 544–671) is embedded in a solvated lipid bilayer. The Cα RMSDs from the initial structures calculated for 
the transmembrane regions of the pore domain (residues 547–575 and 607–666) were less than 2 Å throughout 
the 500-ns simulations for each system (Fig. 1). These results indicated that the structure of the pore domain is 
stably maintained without its flanking domains (the VSD and the C-linker). Thus, for computational efficiency, 
we used the pore-domain-only system for further analysis.

heRG-drug interactions predicted by docking simulations. Docking simulations of the pore domain 
of the hERG channel were performed for 47 drugs (Supplementary Table S1), of which inhibition constants have 
been determined using the same experimental method26,27. As described above, S624, Y652, and F656 appear 
to be involved in the interactions with these drugs. Therefore, we set the center of the search space as the center 
of the mass of the Y652 residues of the four subunits, which are located between S624 and F656 in the tertiary 
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Figure 1. Time evolutions of the Cα RMSDs from the initial structure calculated for the transmembrane 
regions of the pore domain (residues 547–575 and 607–666) during the MD simulations for the VSD–pore–C-
linker system (blue) and the pore-domain-only system (red).
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structure. Docking simulations were performed with the Glide module of the Schrödinger Suite by following its 
induced-fit docking (IFD) protocol configured to allow conformational changes of these residues. Figure 2 shows 
a plot of the Glide docking scores (Gscores) of the top-ranked poses against the experimental binding free ener-
gies. These were weakly correlated with a coefficient of determination (R2) of 0.264.

We next examined the interactions of the top-ranked poses with the key binding residues (S624, Y652, and 
F656) of the channel for 15 drugs, of which interactions have been investigated using mutation experiments 
(Table 1). A residue was considered to be in contact with the ligand if a non-hydrogen sidechain atom of the resi-
due was within 4.0 Å from a non-hydrogen atom of the ligand. Y652 and F656 formed contacts with all the dock-
ing poses examined here. However, previous experiments have indicated that the mutations of Y652 and F656 
did not affect the affinities of bepridil or moxifloxacin, respectively8,9. In addition, S624 formed contacts with all 
ligands, except haloperidol and ranolazine. Previous experiments have shown that mutations of S624 significantly 
reduce the affinities of clofilium, ibutilide, and E-4031, which is consistent with our docking results. However, the 
affinity of sotalol was not affected by the mutation of S624.

To evaluate the importance of the apparent discrepancies between the results of the contact analysis and those 
determined experimentally, we further inspected the interactions of these drugs with the channel (Fig. 3). First, 
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Figure 2. Plot of the Glide scores (Gscore) of the top-ranked poses against the experimental values of the 
binding free energy (ΔGexp) for the 47 compounds. Data points colored red represent the results of the 12 
drugs for which the absolute binding free energies were calculated with the MP-CAFEE method. The solid line 
represents the regression line calculated from all the data with a coefficient of determination (R2) of 0.264.

Compound

S624 Y652 F656

Ref. of exp. dataDockinga Exp.b Dockinga Exp.b Dockinga Exp.b

Clofilium + + + + + + Perry et al.13,14

Astemizole + + + + Saxena et al.17

Ibutilide + + + +* + +* Perry et al.13

Dofetilide + + +* + +* Kamiya et al.9

E-4031 + +* + +* + +* Kamiya et al.9

Cisapride + + + + + Mitcheson et al.15

Terfenadine + + + + + Mitcheson et al.15

Haloperidol − + + + Saxena et al.17

Bepridil + + − + +* Kamiya et al.9

Amiodarone + + + + + + Saxena et al.17

Propafenone + + + + Witchel et al.11

Quinidine + + + + Sanchez-Chapula et al.7

Ranolazine − + + + + Du et al.10

Sotalol + − + + Zhang et al.30

Moxifloxacin + + + − Alexandrou et al.8

Table 1. Contacts between the top-ranked poses and key binding residues (S624, Y652, and F656), and 
experimental results of key-residue mutants. aContacts with the top-ranked pose. A residue was considered 
to be in contact with a ligand if a non-hydrogen sidechain atom of the residue was within 4.0 Å from a non-
hydrogen atom of the ligand. bExperimental results of the mutations. + indicates that a large contribution to the 
ligand binding is suggested (>10-fold change in IC50). * is added when the IC50 values were estimated from the 
data of the fractional block by using the Hill equation (fractional block = [L]h /(IC50 + [L]h)), assuming h = 1. – 
indicates that no contribution to binding affinity is suggested in the reference.
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we analyzed the docking pose of astemizole, which had no discrepancy with the experimental results. Astemizole 
was located in the center of the pore and surrounded by the key binding residues, S624, Y652, and F656 (Fig. 3a). 
The aromatic rings of astemizole were located close to those of three Y652 residues of the four subunits, suggest-
ing a favorable contribution of π-π interactions28,29 to ligand binding. In addition, we found contacts with F557, 
which has recently been suggested to contribute to astemizole binding17. As described above, the docking pose 
of bepridil formed contacts with Y652, whereas the mutation of Y652 does not affect the affinity of bepridil9. 
Furthermore, the docking pose of bepridil indicated that there are no π-π interactions with Y652 (Fig. 3b), sug-
gesting that Y652 does not have a large contribution to bepridil binding. Therefore, the docking pose of bepridil 
is consistent with the experimental results. Figure 3c shows the docking pose of sotalol. Although a methyl group 
of the N-isopropyl group of sotalol is within 4.0 Å from the Cβ atom of S624, the distance between the amine 
group of sotalol and the hydroxy group of S624 is 4.4 Å, indicating that sotalol does not form a hydrogen bond 

Figure 3. Top-ranked poses of astemizole (a), bepridil (b), sotalol (c), moxifloxacin (d), amiodarone (e), 
and chlorpromazine (f). Protein backbone structures are shown in ribbon form. Ligand molecules and the 
sidechains of residues S624, Y652, F656, and F557 are shown in stick representation (magenta: ligand molecules; 
light blue: S624; green: Y652; orange: F656; dark gray: F557). The black dashed lines represent hydrogen 
bonds, π-π interactions, or cation-π interactions as identified by the Maestro module of the Schrödinger Suite. 
The blue dashed line in (c) represents the distance between the nitrogen atom of the amine of sotalol and the 
closest oxygen atom of the hydroxyl group of S624. All molecular graphic images were produced using UCSF 
Chimera63.
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with S624. Therefore, this pose seems to be consistent with the experimental results that S624 does not have a 
large contribution to sotalol binding30. Another study has suggested that F656 does not have a large contribution 
to moxifloxacin binding8. The docking pose of moxifloxacin indicated that it interacts more strongly with Y652 
(through π-π interactions) than F656. Therefore, the mutation of F656 is not likely to greatly affect the affinity of 
moxifloxacin for the channel.

We next analyzed the spatial distributions of the aromatic rings and positively charged amines of all 47 drugs, 
since most of the drugs have these groups (Fig. 4). The geometric centers of the aromatic rings were near Y652 or 
F656, demonstrating the importance of π-π interactions for ligand binding (Fig. 4a). The distribution of the nitro-
gen atoms of the positively charged amines indicated that most of them were located near S624 or Y652. In addi-
tion, they appeared to form hydrogen bonds with the hydroxyl group of S624, or cation-π interactions with the 
aromatic ring of Y652, indicating a large contribution to ligand binding (Fig. 4b). However, three drugs, amiodar-
one, moxifloxacin, and chlorpromazine, were located near F557. Their docking poses are shown in Fig. 3d–f, 
respectively. Since the distances between the nitrogen atoms of the positively charged amines of these drugs and 
the center of mass of the aromatic ring of F557 are about 4.5 Å, they appear to form cation-π interactions with the 
aromatic ring of F557.

Overall, the docking poses were considered reasonable because the ligands interacted with the key residues as 
proposed in the experimental studies. However, the correlation (R2 = 0.264) between the docking scores (Gscores) 
and the experimental values of the binding free energies was not considered sufficient. Therefore, we next per-
formed MD simulations for selected drugs to more accurately calculate the absolute binding free energies.

Absolute binding free energies. We calculated the absolute binding free energies of the drugs using the 
MP-CAFEE method24. Because this method is based on MD simulation and is computationally expensive, we 
selected 12 drugs (Supplementary Fig. S1), paying attention to the diversities in their molecular structures and 
in the experimental binding free energy values (−5.77 – −12.84 kcal mol−1). The resulting complex structures 
from the previous docking simulations were used as the initial structures for the MD simulations. The calculated 
absolute binding free-energy values are listed in Supplementary Table S2 and are plotted against those determined 

Figure 4. Distributions of the aromatic rings (a) and positively charged amines (b) in all the top-ranked poses. 
The nitrogen atoms of the amines and the geometric centers of the aromatic rings of the ligand molecules are 
shown as magenta balls. Protein backbone structures are shown in ribbon form. The sidechains of residues S624, 
Y652, F656, and F557 are shown in stick representations and colored light blue, green, orange, and dark gray, 
respectively. 90°-rotated views are shown on the right panels.
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experimentally in Fig. 5. The coefficient of determination (R2) was 0.767, indicating that the correlation between 
the calculated and experimental values was greatly improved by calculating the absolute binding free energy.

Clofilium had the lowest experimental binding free energy (i.e., the strongest affinity for the channel) among 
the 12 drugs. Although the Gscore for clofilium was middle-ranked among the other drugs, its calculated absolute 
binding free-energy value was the lowest and in agreement with the experimental result. Thus, the MP-CAFEE 
method, which is based on rigorous theory, can evaluate the absolute binding free energy more accurately than 
empirical scoring functions.

However, there were two drugs for which the calculated values largely deviated from the regression line. One 
was amiodarone, in which the positively charged amine exceptionally formed a cation-π interaction with F557 
(see Fig. 3e). Its affinity was greatly underestimated in our calculation. In contrast, the deviation from the regres-
sion line for the calculated value of another exception, chlorpromazine (see Fig. 3f), was considered small. In this 
study, the initial structure of the free-energy calculation was taken from an equilibrium ensemble generated by 
multiple runs of the MD simulation. In the equilibrium structure, the positively charged amine of amiodarone 
was detached from F557 and did not form cation-π interactions with any aromatic residues (Fig. 6a). Conversely, 
chlorpromazine changed its binding conformation to form a cation-π interaction with the aromatic ring of Y652, 
along with a hydrogen bond with the hydroxyl group of another Y652 (Fig. 6c). Since the positively charged 
amine formed a hydrogen bond with S624, or a cation-π interaction with Y652, the docking pose of amiodarone 
with such interactions may have a lower binding free energy. Because such a docking pose was not included in 
the results produced by the Glide module using the default output settings, we increased the number of outputs 
of the initial docking to 50, and repeated the docking simulation for amiodarone. We found that the top-ranked 
pose formed a cation-π interaction with the aromatic rings of Y652 (Fig. 7a). In addition, it formed contacts with 
F656, which is in agreement with experimental results17. During the MD simulations, the binding conformation 
of amiodarone slightly changed. In the equilibrium structure, the positively charged amine formed a hydrogen 
bond with S624, along with a weak cation-π interaction with Y652 (Fig. 7b). In addition, the absolute binding free 
energy calculated with the MP-CAFEE method was −16.70 kcal mol−1, which was 9.63 kcal mol−1 lower than the 
previous value determined.

Another drug that exhibited a large deviation from the regression line was sotalol. The affinity of sotalol was 
overestimated. The equilibrium structure indicated that the positively charged amine formed hydrogen bonds with 
the S624 residues of two subunits (Fig. 6b). Since the experimental results indicated that S624 is not involved in the 
binding of sotalol, the docking pose was likely incorrect. To obtain docking poses that were more consistent with 
the experimental results, we performed a docking simulation for sotalol, applying an excluded volume penalty to 
the ligand that comes close to S624. Figure 7c,d show the top-ranked pose and the equilibrium structure of sotalol. 
In both structures, sotalol did not interact with S624. In addition, the calculated absolute binding free energy value 
was −11.79 kcal mol−1, which was closer to the regression line by 1.36 kcal mol−1 than the previous value.

Figure 8 shows a plot of the calculated absolute binding free energy values against those determined exper-
imentally after the corrections for amiodarone and sotalol. The coefficient of determination (R2) was 0.909, a 
value further improved from our previous result. The binding free energy of a new drug can be accurately pre-
dicted using the regression equation (shown in Fig. 8). First, the drug is docked into the central cavity of the 
pore domain of the hERG channel. The top-ranked pose is then used in subsequent absolute binding free energy 
calculations. If the interactions between the drug and the hERG channel were also studied experimentally, the 
consistency between the docking pose and the experimental results should be examined carefully. If the drug 
has aromatic rings, they likely interact with Y652 and F656. It should be kept in mind that positively charged 
amines interact with S624 or Y652 in most cases. Second, the absolute binding free energy is calculated using the 
MP-CAFEE method. Third, the regression equation is applied to the calculated value to evaluate the predicted 
binding free-energy value that corresponds to the experimental value.
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Figure 5. Plot of the calculated values of the absolute binding free energy (ΔGbind) against those determined 
experimentally (ΔGexp) for the 12 compounds. The solid line represents the regression line with a coefficient of 
determination (R2) of 0.767.
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Finally, we evaluated the accuracy of our method using data for four further drugs as a test set. These 
drugs were not included among the 12 drugs used to calculate the regression equation and their structures 
(Supplementary Fig. S2) differed from those of the 12 drugs (Supplementary Fig. S1). When the calculated abso-
lute binding free energy values were plotted against the experimental values, the points representing the four 
additional drugs lay close to the regression line (Supplementary Fig. S3a). The calculated values were converted to 
predicted binding free energy values by applying the regression equation. The root mean squared error (RMSE) 
between the predicted and the experimental values was 0.73 kcal mol−1 (Supplementary Table S3). For compari-
son, we calculated the QPlogHERG descriptors for the original 12 drugs and the additional four drugs using the 
QikProp module of the Schrödinger Suite31 (Supplementary Table S3). The QPlogHERG descriptor predicts the 
common logarithm of the IC50 value for blockage of the hERG channel. The calculation failed for clofilium; there-
fore, the QPlogHERG values of the other 11 drugs were plotted against their experimental binding free energy 
values (ΔGexp) and the regression equation was determined (Supplementary Fig. S3b). The coefficient of determi-
nation (R2) was 0.765, which is comparable to that calculated from the initial values of the absolute binding free 
energy (Fig. 5) but worse than that calculated from the values after the corrections for amiodarone and sotalol 
(Fig. 8). The QPlogHERG values calculated for the four drugs were converted to binding free energy values by 
applying the regression equation. The RMSE between the predicted and experimental values was 1.40 kcal mol−1. 
These results confirmed that our method could accurately predict the affinity of a drug to the hERG channel.

It should be noted that in this study we used the cryo-EM structure of the hERG channel in the open confor-
mation. The hERG channel can adopt multiple conformations depending on its particular state, including the 
active, inactive, and closed states. The structure of the central cavity of the pore domain, to which drugs can bind, 
also varies between the states. Therefore, it may be difficult to accurately predict the affinity of a drug that binds 
to the channel in a different conformation from the open conformation. In fact, a recent study has suggested that 
the cryo-EM structure of the hERG channel used in this study may not be suitable for predicting the affinity of 
cavalli-232. Nonetheless, the accuracy of the binding free-energy prediction can be further improved if the struc-
tures of the hERG channel in other conformations are determined.

Figure 6. Equilibrium structures of amiodarone (a), sotalol (b), and chlorpromazine (c). Ligand molecules 
and the sidechains of residues S624, Y652, F656, and F557 are shown in stick representation (magenta: ligand 
molecules; light blue: S624; green: Y652; orange: F656; dark gray: F557). The black dashed lines represent 
hydrogen bonds, π-π interactions, or cation-π interactions as identified by the Maestro module of the 
Schrödinger Suite.
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Figure 7. Top-ranked poses of the additional docking simulations and their equilibrium structures. (a) 
Docking pose of amiodarone. (b) Equilibrium structure of amiodarone. (c) Docking pose of sotalol. (d) 
Equilibrium structure of sotalol. Ligand molecules and the sidechains of residues S624, Y652, F656, and F557 
are shown in stick representation (magenta: ligand molecules; light blue: S624; green: Y652; orange: F656; dark 
gray: F557). The black dashed lines represent hydrogen bonds, π-π interactions, or cation-π interactions as 
identified by the Maestro module of the Schrödinger Suite. The blue dashed line in (c) represents the distance 
between the nitrogen atom of the amine of sotalol and the closest oxygen atom of the hydroxyl group of S624.
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Figure 8. Plot of the calculated values of the absolute binding free energy (ΔGbind) against those determined 
experimentally (ΔGexp) for the 12 compounds after additional calculations for amiodarone and sotalol. Data 
points colored red represent the results of the additional calculations for amiodarone and sotalol. The solid line 
represents a regression line with a coefficient of determination (R2) of 0.909. The regression equation is shown 
above the graph, in which x is ΔGexp and y is ΔGbind.
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Methods
initial structure preparation. The coordinates of the cryo-EM structure of the hERG channel were obtained 
from the Protein Data Bank (PDB) (PDB ID: 5VA2)22. The structures of the disordered extracellular loops (resi-
dues 578–582 and 598–602) were modeled using Modeller v9.1833. Potassium ions were placed at the S1 and S3 
sites of the selectivity filter and water molecules were placed at the S0, S2, and S4 sites22. The protonation states 
of ionizable residues at pH 7 were determined using the Protein Preparation Wizard of the Schrödinger Suites34.

Experimental inhibition constants (Ki) have been experimentally determined by [H3]-dofetilide displacement 
assays for 47 structurally diverse drugs26,27 (Supplementary Table S1). The structures of these drugs were obtained 
from the PubChem database35. The protonation state at pH 7 was determined for each drug and the structure 
was optimized with the OPLS-3 force field36. These calculations were conducted using the LigPrep module of the 
Schrödinger Suites37.

Docking simulations. We performed docking simulations with the Glide module of the Schrödinger Suite, 
following the induced-fit docking (IFD) protocol38. The pore domain (residues 544–671) extracted from the 
tetrameric channel structure was used as the receptor. In the IFD protocol, docking simulations were performed 
as three steps: initial docking, receptor refinement, and redocking. In the initial docking step, residues S624, 
Y652, and F656 were mutated to alanine residues and the van der Waals radii of both the ligand and protein 
atoms were scaled down to 70%. The center of the box that defines the search space was then set as the center of 
mass of the Y652 residues of the four subunits. Initial docking was performed using Glide’s standard precision 
(SP) mode39,40 and 20 poses were generated for each ligand. In the subsequent receptor refinement step, residues 
mutated in the initial docking step were restored and the structures of the residues within 5.0 Å of the docked 
ligand were refined with the OPLS-3 force field by using the Prime module41,42. In the final redocking step, the 
ligand was docked again to the refined protein structure after removal of the ligand from the complex of the pre-
vious step using Glide’s extra precision (XP) mode43. Finally, the generated poses were ranked using the IFD score.

MD simulations. In this study, we performed MD simulations for both the ligand-free and ligand-bound 
structures of the hERG channel in a solvated lipid bilayer environment. Water molecules were placed in the central 
cavity of the channel before the channel structure was embedded in the lipid bilayer using the CHARMM-GUI 
server44,45. Two systems with different protein lengths were constructed. The first was the VSD–pore–C-linker 
system, which was composed of a part of the hERG channel encompassing the VSDs, the pore domain, and the 
C-linkers, about 600 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) molecules, and 62,000 water 
molecules. The second system was a pore-domain-only system, which was composed of the pore domain of 
the hERG channel, 290 POPC molecules, and 18,000 water molecules. MD simulations were also performed 
for ligand-only systems, each of which was composed of one ligand molecule and approximately 6,700 water 
molecules. K+ and Cl− ions were added to each system so that the net charge of the whole system was zero 
and the salt concentration was approximately 0.15 M. The CHARMM36 force field was used for the proteins46, 
ions47, and POPC48. The TIP3P model49 was used for water. The parameters for the drug compounds were deter-
mined with the CHARMM General Force Field50 (CGenFF) by using the CHARMM-GUI ligand modeler51. 
Each system was energy-minimized and equilibrated following the CHARMM-GUI protocol. MD simulations to 
generate equilibrium ensembles (production runs) were performed under the constant-NPT condition. The tem-
perature was maintained at 303.15 K using a Nose-Hoover thermostat52,53. The pressure was maintained at 1 bar 
with the Parrinello-Rahman barostat54. Electrostatic interactions were calculated using the particle mesh Ewald 
(PME) method55 with a real space cutoff of 1.2 nm. Van der Waals interactions were calculated with a modified 
Lennard-Jones potential, where the force was smoothly switched to zero between 1.0 and 1.2 nm. The lengths of 
the bonds involving the hydrogen atoms were constrained with the LINCS algorithm to allow for the use of a time 
step of 2 fs56. Production runs for the ligand-free hERG channels and ligand-only systems were performed for 
500 ns and 20 ns, respectively. For the channel-drug complexes, 50-ns production runs were performed five times 
with different initial velocities. All MD simulations were performed with Gromacs 4.657.

calculation of absolute binding free energies. Absolute protein-ligand binding free energies were cal-
culated for the top-ranked channel-drug complex models with the MP-CAFEE method24. Calculations were per-
formed following the protocols reported in previous studies24,58,59. In the MP-CAFEE method, a well-equilibrated 
structure is required as the initial structure of the free energy calculation. To obtain such structures, 50-ns pro-
duction runs were performed five times with different initial velocities for each channel-drug complex. Then, the 
moving average of the intermolecular interaction energy (the sum of the van der Waals and the electrostatic inter-
action energies) between the protein and the ligand was calculated with a window size of 2 ns. The snapshot with 
the lowest interaction energy was then selected as the initial structure of the free energy calculation. As for the 
ligand-only systems, a 20-ns production run was performed once for each ligand and the final structure was used 
as the initial structure. The free energy differences between the λ = 0 state, where the ligand fully interacts with 
its surroundings, and the λ = 1 state, where the intermolecular interactions between the ligand and the others are 
completely uncoupled, were calculated for the protein-ligand complexes (ΔGcomp) and the ligand-only systems 
(ΔGlig). Here, 32 intermediate states were considered between the λ = 0 and the λ = 1 states to make the adjacent 
two states close enough, between which the free-energy difference could be calculated. MD simulations for the 
free-energy calculation were performed six times with different initial velocities. The length of the MD simula-
tion for each state was 2 ns for the protein-ligand complex and 1.2 ns for the ligand-only system. The temperature 
was maintained at 303.15 K using a Nose-Hoover thermostat and the pressure was maintained at 1 bar using a 
Berendsen barostat60. The free energy difference was calculated using the Bennett acceptance ratio method61,62. 
The absolute binding free energy (ΔGbind) was calculated as ΔGbind = ΔGcomp − ΔGlig. The MD simulations were 
performed on the K computer. The 2-ns MD simulation for the protein–ligand complex using eight nodes (64 
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cores) took approximately 30 h. The 1.2-ns MD simulation for the ligand-only system using 1.5 nodes (12 cores) 
also took approximately 30 h. These calculations were performed six times for each of the 32 intermediate states. 
Thus, the total computational cost was 54,720 node-hours. Because the calculations were independent, they were 
executed in parallel.

Data availability
All data generated or analyzed during this study are included in this published article and its Supplementary 
Information files.

Received: 27 August 2019; Accepted: 28 October 2019;
Published: xx xx xxxx

References
 1. Trudeau, M. C., Warmke, J. W., Ganetzky, B. & Robertson, G. A. HERG, a human inward rectifier in the voltage-gated potassium 

channel family. Science 269, 92–95 (1995).
 2. Vandenberg, J. I. et al. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol. Rev. 92, 1393–1478 (2012).
 3. Sanguinetti, M. C. & Tristani-Firouzi, M. hERG potassium channels and cardiac arrhythmia. Nature 440, 463–469 (2006).
 4. Witchel, H. J. & Hancox, J. C. Familial and acquired long QT syndrome and the cardiac rapid delayed rectifier potassium current. 

Clin. Exp. Pharmacol. Physiol. 27, 753–766 (2000).
 5. Crumb, W. & Cavero, I. QT interval prolongation by non-cardiovascular drugs: Issues and solutions for novel drug development. 

Pharm. Sci. Technol. Today 2, 270–280 (1999).
 6. Ridley, J. M., Milnes, J. T., Witchel, H. J. & Hancox, J. C. High affinity HERG K+ channel blockade by the antiarrhythmic agent 

dronedarone: Resistance to mutations of the S6 residues Y652 and F656. Biochem. Biophys. Res. Commun. 325, 883–891 (2004).
 7. Sănchez-Chapula, J. A., Ferrer, T., Navarro-Polanco, R. A. & Sanguinetti, M. C. Voltage-dependent profile of human ether-a-go-go-

related gene channel block is influenced by a single residue in the S6 transmembrane domain. Mol. Pharmacol. 63, 1051–1058 
(2003).

 8. Alexandrou, A. J. et al. Mechanism of hERG K+ channel blockade by the fluoroquinolone antibiotic moxifloxacin. Br. J. Pharmacol. 
147, 905–916 (2006).

 9. Kamiya, K., Niwa, R., Mitcheson, J. S. & Sanguinetti, M. C. Molecular determinants of HERG channel block. Mol. Pharmacol. 69, 
1709–1716 (2006).

 10. Du, C., Zhang, Y., El Harchi, A., Dempsey, C. E. & Hancox, J. C. Ranolazine inhibition of hERG potassium channels: Drug–pore 
interactions and reduced potency against inactivation mutants. J. Mol. Cell. Cardiol. 74, 220–230 (2014).

 11. Witchel, H. J. et al. The low-potency, voltage-dependent HERG blocker propafenone–molecular determinants and drug trapping. 
Mol. Pharmacol. 66, 1201–1212 (2004).

 12. Zhang, Y. et al. Interactions between amiodarone and the hERG potassium channel pore determined with mutagenesis and in silico 
docking. Biochem. Pharmacol. 113, 24–35 (2016).

 13. Perry, M. et al. Structural determinants of HERG channel block by clofilium and ibutilide. Mol. Pharmacol. 66, 240–249 (2004).
 14. Perry, M. et al. Drug binding interactions in the inner cavity of HERG channels: molecular insights from structure-activity 

relationships of clofilium and ibutilide analogs. Mol. Pharmacol. 69, 509–519 (2006).
 15. Mitcheson, J. S., Chen, J., Lin, M., Culberson, C. & Sanguinetti, M. C. A structural basis for drug-induced long QT syndrome. Proc. 

Natl. Acad. Sci. USA 97, 12329–12333 (2000).
 16. Dempsey, C. E., Wright, D., Colenso, C. K., Sessions, R. B. & Hancox, J. C. Assessing hERG pore models as templates for drug 

docking using published experimental constraints: the inactivated state in the context of drug block. J. Chem. Inf. Model. 54, 601–612 
(2014).

 17. Saxena, P. et al. New potential binding determinant for hERG channel inhibitors. Sci. Rep. 6, 24182 (2016).
 18. Wang, S., Li, Y., Xu, L., Li, D. & Hou, T. Recent Developments in Computational Prediction of hERG Blockage. Curr. Top. Med. 

Chem. 13, 1317–1326 (2013).
 19. Chemi, G. et al. Computational Tool for Fast in silico Evaluation of hERG K+ Channel Affinity. Front. Chem. 5, 7 (2017).
 20. Ogura, K., Sato, T., Yuki, H. & Honma, T. Support Vector Machine model for hERG inhibitory activities based on the integrated 

hERG database using descriptor selection by NSGA-II. Sci. Rep. 9, 12220 (2019).
 21. Boukharta, L. et al. Computer Simulations of Structure–Activity Relationships for hERG Channel Blockers. Biochemistry 50, 

6146–6156 (2011).
 22. Wang, W. & MacKinnon, R. Cryo-EM Structure of the open human ether-à-go-go-related K+ channel hERG. Cell 169, 422–430.e10 

(2017).
 23. Whicher, J. R. & MacKinnon, R. Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism. 

Science 353, 664–669 (2016).
 24. Fujitani, H., Tanida, Y. & Matsuura, A. Massively parallel computation of absolute binding free energy with well-equilibrated states. 

Phys. Rev. E 79, 1–12 (2009).
 25. Fujitani, H. et al. Direct calculation of the binding free energies of FKBP ligands. J. Chem. Phys. 123, 084108 (2005).
 26. Diaz, G. J. et al. The [3H]dofetilide binding assay is a predictive screening tool for hERG blockade and proarrhythmia: Comparison 

of intact cell and membrane preparations and effects of altering [K+]o. J. Pharmacol. Toxicol. Methods 50, 187–199 (2004).
 27. Yu, Z., IJzerman, A. P. & Heitman, L. H. K v11.1 (hERG)-induced cardiotoxicity: a molecular insight from a binding kinetics study 

of prototypical K v11.1 (hERG) inhibitors. Br. J. Pharmacol. 172, 940–955 (2015).
 28. Chelli, R., Gervasio, F. L., Procacci, P. & Schettino, V. Stacking and T-shape Competition in Aromatic−Aromatic Amino Acid 

Interactions. J. Am. Chem. Soc. 124, 6133–6143 (2002).
 29. Kuroda, Y., Suenaga, A., Sato, Y., Kosuda, S. & Taiji, M. All-atom molecular dynamics analysis of multi-peptide systems reproduces 

peptide solubility in line with experimental observations. Sci. Rep. 6, 19479 (2016).
 30. Zhang, Y. H., Dempsey, C. E. & Hancox, J. C. The Basis for Low-affinity hERG Potassium Channel Block by Sotalol. J. Pharmacol. 

Pharmacother. 8, 130–131 (2017).
 31. QikProp, Schrödinger LLC, New York, NY (2016).
 32. Helliwell, M. V. et al. Structural implications of hERG K channel block by a high-affinity minimally structured blocker. J. Biol. Chem. 

293, 7040–7057 (2018).
 33. Martí-Renom, M. A. et al. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 

291–325 (2000).
 34. Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: parameters, protocols, and 

influence on virtual screening enrichments. J. Comput. Aided. Mol. Des. 27, 221–234 (2013).
 35. Kim, S. et al. PubChem Substance and Compound databases. Nucleic Acids Res. 44, D1202–D1213 (2016).
 36. Harder, E. et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory 

Comput. 12, 281–296 (2016).

https://doi.org/10.1038/s41598-019-53120-6


1 1Scientific RepoRtS |         (2019) 9:16586  | https://doi.org/10.1038/s41598-019-53120-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

 37. Chen, I.-J. & Foloppe, N. Drug-like bioactive structures and conformational coverage with the LigPrep/ConfGen suite: comparison 
to programs MOE and catalyst. J. Chem. Inf. Model. 50, 822–839 (2010).

 38. Sherman, W., Day, T., Jacobson, M. P., Friesner, R. A. & Farid, R. Novel procedure for modeling ligand/receptor induced fit effects. 
J. Med. Chem. 49, 534–553 (2006).

 39. Friesner, R. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. 
J. Med. Chem. 47, 1739–1749 (2004).

 40. Halgren, T. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. 
Med. Chem. 47, 1750–1759 (2004).

 41. Jacobson, M. P., Friesner, R. A., Xiang, Z. & Honig, B. On the Role of the Crystal Environment in Determining Protein Side-chain 
Conformations. J. Mol. Biol. 320, 597–608 (2002).

 42. Jacobson, M. P. et al. A hierarchical approach to all-atom protein loop prediction. Proteins Struct. Funct. Bioinforma. 55, 351–367 
(2004).

 43. Friesner, R. A. et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand 
complexes. J. Med. Chem. 49, 6177–6196 (2006).

 44. Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 
1859–1865 (2008).

 45. Lee, J. et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations 
Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 12, 405–413 (2016).

 46. Huang, J. & MacKerell, A. D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. 
Comput. Chem. 34, 2135–2145 (2013).

 47. Beglov, D. & Roux, B. Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations. J. Chem. 
Phys. 100, 9050–9063 (1994).

 48. Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 
7830–7843 (2010).

 49. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for 
simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

 50. Vanommeslaeghe, K. et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-
atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).

 51. Kim, S. et al. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J. Comput. Chem. 
38, 1879–1886 (2017).

 52. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).
 53. Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).
 54. Parrinello, M. & Rahman, A. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett. 45, 1196–1199 

(1980).
 55. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 

10089–10092 (1993).
 56. Hess, B. P-LINCS: A parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008).
 57. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable 

Molecular Simulation. J. Chem. Theory Comput. 4, 435–447 (2008).
 58. Brown, J. B., Nakatsui, M. & Okuno, Y. Constructing a foundational platform driven by Japan’s K supercomputer for next-generation 

drug design. Mol. Inform. 33, 732–741 (2014).
 59. Araki, M. et al. The Effect of Conformational Flexibility on Binding Free Energy Estimation between Kinases and Their Inhibitors. 

J. Chem. Inf. Model. 56, 2445–2456 (2016).
 60. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external 

bath. J. Chem. Phys. 81, 3684–3690 (1984).
 61. Bennett, C. H. Efficient estimation of free energy differences from Monte Carlo data. J. Comput. Phys. 22, 245–268 (1976).
 62. Shirts, M. R., Bair, E., Hooker, G. & Pande, V. S. Equilibrium Free Energies from Nonequilibrium Measurements Using Maximum-

Likelihood Methods. Phys. Rev. Lett. 91, 140601 (2003).
 63. Pettersen, E. F. et al. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 

(2004).

Acknowledgements
We would like to thank Drs. Toshiaki Hisada, Seiryo Sugiura, Jun-ichi Okada, and Takumi Washio of UT-Heart 
Inc. for valuable discussion. This research was supported by MEXT as “Priority Issue on Post-K computer” 
(Building Innovative Drug Discovery Infrastructure Through Functional Control of Biomolecular Systems). This 
research used computational resources of the K computer and other computers of the HPCI system provided by 
Supercomputing Division, Information Technology Center, The University of Tokyo through the HPCI System 
Research Project (Project IDs: hp150272, hp160213, hp170275, hp180186, and hp190154). The authors would like 
to thank Enago (www.enago.jp) for the English language review.

Author contributions
T.T. conceived, designed, and supervised the study. T.N. performed the docking simulations and the MD 
simulations. T.N. and T.T. analyzed the data. M.A. and Y.O. gave advice to T.N. and T.T. about the protocol of the 
absolute binding free-energy calculation they established. T.N. and T.T. wrote the manuscript with input from all 
authors.

competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-53120-6.
Correspondence and requests for materials should be addressed to T.T.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41598-019-53120-6
http://www.enago.jp
https://doi.org/10.1038/s41598-019-53120-6
http://www.nature.com/reprints


1 2Scientific RepoRtS |         (2019) 9:16586  | https://doi.org/10.1038/s41598-019-53120-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-53120-6
http://creativecommons.org/licenses/by/4.0/

	Calculation of absolute binding free energies between the hERG channel and structurally diverse drugs
	Results and Discussion
	Stability of the pore domain structure in MD simulations. 
	hERG-drug interactions predicted by docking simulations. 
	Absolute binding free energies. 

	Methods
	Initial structure preparation. 
	Docking simulations. 
	MD simulations. 
	Calculation of absolute binding free energies. 

	Acknowledgements
	Figure 1 Time evolutions of the Cα RMSDs from the initial structure calculated for the transmembrane regions of the pore domain (residues 547–575 and 607–666) during the MD simulations for the VSD–pore–C-linker system (blue) and the pore-domain-only syste
	Figure 2 Plot of the Glide scores (Gscore) of the top-ranked poses against the experimental values of the binding free energy (ΔGexp) for the 47 compounds.
	Figure 3 Top-ranked poses of astemizole (a), bepridil (b), sotalol (c), moxifloxacin (d), amiodarone (e), and chlorpromazine (f).
	Figure 4 Distributions of the aromatic rings (a) and positively charged amines (b) in all the top-ranked poses.
	Figure 5 Plot of the calculated values of the absolute binding free energy (ΔGbind) against those determined experimentally (ΔGexp) for the 12 compounds.
	Figure 6 Equilibrium structures of amiodarone (a), sotalol (b), and chlorpromazine (c).
	Figure 7 Top-ranked poses of the additional docking simulations and their equilibrium structures.
	Figure 8 Plot of the calculated values of the absolute binding free energy (ΔGbind) against those determined experimentally (ΔGexp) for the 12 compounds after additional calculations for amiodarone and sotalol.
	Table 1 Contacts between the top-ranked poses and key binding residues (S624, Y652, and F656), and experimental results of key-residue mutants.




