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Species-wide Metabolic interaction 
network for Understanding natural 
Lignocellulose Digestion in termite 
Gut Microbiota
pritam Kundu1, Bharat Manna1, Subham Majumder1 & Amit Ghosh1,2*

the structural complexity of lignocellulosic biomass hinders the extraction of cellulose, and it has 
remained a challenge for decades in the biofuel production process. However, wood-feeding organisms 
like termite have developed an efficient natural lignocellulolytic system with the help of specialized 
gut microbial symbionts. Despite having an enormous amount of high-throughput metagenomic 
data, specific contributions of each individual microbe to achieve this lignocellulolytic functionality 
remains unclear. the metabolic cross-communication and interdependence that drives the community 
structure inside the gut microbiota are yet to be explored. We have contrived a species-wide metabolic 
interaction network of the termite gut-microbiome to have a system-level understanding of metabolic 
communication. Metagenomic data of Nasutitermes corniger have been analyzed to identify microbial 
communities in different gut segments. A comprehensive metabolic cross-feeding network of 205 
microbes and 265 metabolites was developed using published experimental data. Reconstruction of 
inter-species influence network elucidated the role of 37 influential microbes to maintain a stable and 
functional microbiota. furthermore, in order to understand the natural lignocellulose digestion inside 
N. corniger gut, the metabolic functionality of each influencer was assessed, which further elucidated 15 
crucial hemicellulolytic microbes and their corresponding enzyme machinery.

A substantial increase in global energy demand along with the climatic deterioration, has motivated the advance-
ment of alternative and sustainable energy source. Consequently, biofuels, the thriving candidates to replace 
petroleum-derived fuels, have attracted a great interest worldwide1. Lignocellulosic bio-polymer with an enor-
mous amount of carbohydrate contents can provide a massive source of feedstock for the production of biofuels2. 
However, the structural and compositional complexities of the cellulose, hemicellulose, and lignin in the biomass 
restrict its deconstruction into fermentable sugar3. Pretreatment removes the physicochemical obstacles in raw 
biomass, leaving cellulose and hemicellulose vulnerable to enzymatic depolymerization4. Although the enzymatic 
hydrolysis of these plant-derived polymers is an effective method for the extraction of fermentable sugars, it has 
a high economical constraint5.

Nasutitermes corniger, a wood-feeding higher termite with natural lignocellulose digestion system, can effec-
tively remove 74–99% of cellulose and 65–87% of hemicellulose from woody biomass, leaving the lignin-rich 
residues as faeces6. Diverse microbial communities residing in distinct gut compartments of N. corniger are 
responsible for developing this remarkable system of lignocellulose deconstruction and subsequent fermenta-
tion7. Each microbial entity is metabolically interacting with diverse community members through the exchange 
of small metabolites8. Specific interactions of these naturally viable consortia cause diverse metabolic phenom-
ena like commensalism, amensalism, co-operation, competition, and predation9. Metabolically communicating 
microbial symbionts and their enzyme machinery are necessary to accomplish the complex functionality of ligno-
cellulose degradation inside the termite gut.

Earlier studies on metagenomics and functional analysis of termite gut microbiota provided crucial insights 
into predominating microbial genera, for lignocellulose digestion10–12. A broad range of glycoside hydrolases 
(GHs) for efficient depolymerization of cellulose have also been identified13,14. However, even though the 
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advanced techniques of metagenomics and metatranscriptomics provide vast genomic and taxonomic infor-
mation, the pattern of species-wide metabolic interaction remains unclear. Numerous strategies of microbial 
interactions have been developed based on the statistical correlations of taxonomic abundances or by mapping 
the entire metabolic pathways through direct metagenome annotation15–17. However, the correlation-based infer-
ence networks and the assessment of community-wide metabolic capabilities, both failed to describe the precise 
mechanisms of inter-species interactions. Moreover, how the combinational influences of different microbes in 
a multi-species cross-feeding arrangement develop a community level function of lignocellulose digestion is still 
obscure.

This study focuses on understanding the microbial metabolic cross-communication and the mechanism of 
lignocellulose digestion in N. corniger gut by constructing a species-wide metabolic interaction network. The 
shotgun metagenomic data was used to identify microbial species in distinct gut compartments of N. corni-
ger. Literature-curated information of the microbial metabolic activities was taken as elementary components to 
frame the network architecture. Moreover, the inter-species influence network demonstrates the substantial effect 
of various metabolic functionality in a complex microbial niche. The metabolic profiles of several microbial influ-
encers have been characterized to decipher the role of key microbial players in a stable and functional microbiota. 
Moreover, to understand the natural bioreactor system inside N. corniger gut, a set of enzyme cocktail has been 
exemplified with corresponding lignocellulose degraders.

Results
construction of species-wide metabolic interaction network of n. corniger’s gut microbi-
ota. Shotgun metagenome sequencing data of N. corniger’s gut were analyzed to get the species-level informa-
tion of microbial composition in the distinct gut compartments. An extensive literature survey was carried out 
with identified microbes to obtain the information of metabolite import and/or export activities (Supplementary 
Data). Collectively, 2988 annotated metabolic events (import and/or export) of 205 identified species and 265 
metabolites were included for the construction of species-wide metabolic interaction network (Fig. 1). Evaluation 
of the structural properties of the network was also carried out to quantify the metabolic transportation activities 
inside the termite gut microbiota (Fig. S1). The average values of metabolite consumption and production by 205 
microbes were calculated to be 10.5 and 4.6, respectively (median - 9 and 4, respectively). The quantitative meas-
ure of metabolite transport indicated that the capability of importing or exporting different metabolites varied 
widely among microbial entities (Fig. 2). Promising microbes such as Granulicoccus phenolivorans (imports 50 
and exports 9 metabolites), Pelagibaca bermudensis (imports 40 and exports 10 metabolites), and Fibrobacter 
succinogenes (imports 18 and exports 17 metabolites), attained a high metabolic import and/or export activity. 
The correlation coefficient (R2 = 0.16) between microbial abundance and their import-export profile indicate a 
random distribution of microbial species inside the termite gut (Fig. S2, Table S1). Glucose, maltose, xylose, and 
cellobiose were found to be the most influential substrates, incorporated by 69%, 46%, 43%, and 42% microbial 
species, respectively. Important metabolic byproducts like acetate, lactate, ethanol, H2, and CO2 were commonly 
produced and exported to the gut microenvironment. Notably, acetate was the most frequently generated meta-
bolic byproduct, produced by 53% of the microbial population. In addition, metabolites that are rarely produced 
by the microbial populations, like putrescine, methanethiol, 4-aminobutyrate (GABA), trimethylamine, urea, and 
lithocholic acid were also encountered inside the gut microbiota. For example, methanethiol production by the 
Sporobacter termitidis and Parasporobacterium paucivorans provided insight about the sulfur metabolism and the 
degradation of methoxylated aromatic compounds inside the gut microbial niche18–20. Similarly, Pseudomonas 
aeruginosa and Escherichia coli produced 4-aminobutyrate which is a substantial element of the free amino acid 
pool in most prokaryotes and eukaryotes21.

Collective metabolic activities of these diverse microbial groups maintain a functional gut microbiota22. In 
order to understand the organization of these metabolically interacting groups, the correlation of microbial 
co-occurrence score and their metabolic similarity indices has been investigated by calculating Spearman’s cor-
relation coefficient23,24. The co-occurrence score and metabolic similarity index showed a positive correlation 
(rho = 0.235, p value = 1.115 × 10−7) between lignocellulose degrading bacteria and ethanol producing bacteria 
(Supplementary Information, Page 2). This phenomena of metabolic interdependency gives rise to the positive 
co-occurrence between these microbial groups. For example, cellulose and hemicellulose degraders (Candidatus 
Solibacter usitatus and Clostridium termitidis) supplied breakdown products, such as glucose, fructose, arabinose, 
and xylose, in the microenvironment that have been utilized by several metabolically dependent microbes like 
Treponema azotonutricium and Candida arabinofermentans. Metabolic interdependency was also present in the 
form of inter-species cross-feeding; for instance, succinate produced by Fibrobacter succinogenes and Bacteroides 
fragiles was utilized by Bacteroides coprosuis and Pseudomonas aeruginosa.

Conversely, microbial groups with similar metabolic profiles sometime compete with each other to get bet-
ter access to a common metabolite25,26. However, in this study, microbial metabolic similarity index and the 
co-occurrence score of two metabolically similar groups, i.e., lactic acid bacteria and propionic acid bacteria indi-
cated a considerable inter-dependence (rho = 0.305, p value 3.29 × 10−12). This positive correlation was possibly 
guided by habitat filtering27–29, wherein the gut physicochemical environment of the host (N. corniger) played a 
crucial role to retain the competing microbes in a stable community. In order to maintain this stable and func-
tional microbiota, each microbial community must have influenced the growth and abundance of other commu-
nities through diverse metabolic phenomena30,31. Previous studies in human gut microbiota also provided similar 
evidences of various metabolic activity and microbial co-occurrence pattern15,32.

Construction and analysis of the species-wide metabolic interaction network suggested a metabolically driven 
competitive and co-operative relationship among different microbial entities inside N. corniger gut microbiota. In 
order to assess the metabolic impact of the dominating microbial species, an inter-species influence network has 
been reconstructed utilizing the basic prototype of the species-wide metabolic interaction network.
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Reconstruction of inter-species influence network. N. corniger has evolved with a compartmental-
ized gut environment harboring specialized microbial communities for effective hydrolysis of plant polymers6,33. 
Although the overall mechanism of biomass breakdown is still not clear, several hemicellulolytic microbial phyla 
such as Spirochaetes, Bacteroidetes, Firmicutes, and Fibrobacteres, have been identified in different gut compart-
ments34,35. An inter-species influence network of N. corniger’s gut microbiota will provide useful insight into this 
natural biomass conversion process. More precisely, the network will unveil the capacity of each microbial species 
to enhance or restrain the growth of other species through diverse metabolic activities31,32,36. Intestinal tract of 
N. corniger is comprising of six major gut compartments, i.e., crop (C), midgut (M), and four major hindgut 
segments - P1, P3, P4, and P537. However, for the reconstruction of the inter-species influence network, we have 
reclassified these gut segments by investigating the correlation pattern of microbial abundance variation. A pos-
itive correlation (Hstat = 4.268, p value = 0.1183, significance level 0.05) in microbial abundance distribution was 
observed inside the first three compartments, i.e., C, M, and P1. Similarly, the P3 and P4 segments have shown 
a considerable resemblance in the microbial abundance distribution pattern (Hstat = 1.748, p value = 0.1748, sig-
nificance level 0.05). P5 segment was considered as a separate segments due to its low similarity with adjacent 

Figure 1. Species-wide metabolic interaction network in N. corniger gut microbiota. The species-wide 
metabolic interaction network consists of three distinct classes of nodes to denote microbial entities (eight 
large colored nodes), small metabolites (small black nodes), and macromolecules (medium cyan nodes). Small 
molecules are distributed at the periphery of the network while the macromolecules are represented at the 
center. Microbes with similar metabolic activities were shown in eight distinct groups i.e., lactic acid bacteria 
(light green), acetogen (dark green), propionic acid bacteria (sky blue), hydrogen producer (olive green), 
cellulolytic bacteria (yellow), sulfur bacteria (blue), denitrifying bacteria (grey), and pentose utilizer (dark 
purple). Some relevant groups are exemplified to get a better resolution of their metabolic characteristics. The 
nodes of macromolecule degraders are encircled in red to distinguish them from other microbial entities. 
Microbes are connected to the metabolites with corresponding metabolic activities, i.e., import (red edges), 
export (yellow edges), both import-export (blue edges), and macromolecule degradation (green edges). 
Magnified circle of macromolecule degradation shows the connections between macromolecule and their 
degradation products. Several metabolic activities of distinct microbial entities can be seen in rectangular 
boxes, e.g., F. succinogenes depolymerize cellulose, pectin, and hemicellulose to supply small metabolites such as 
xylose, glucose, cellobiose, and mannose, which are consumed by R. bormii to produce fermentative byproducts 
like acetate, ethanol, succinate, and formate in the microenvironment. The network was developed using 
Cytoscape v3.6.159.
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compartment (Supplementary Information, Page 4). Based on this statistical correlation, three segments, i.e., S1 
(C, M, and P1), S2 (P3 and P4), and S3 (P5), were considered for the reconstruction of influence network, where 
the most abundant species were shown as representative microorganisms. The quantitative values (Methods, 
Eq. 3) of metabolic influences for each species pair have been evaluated in the form of a species-wide influence 
matrix (Supplementary Data, Sheet name: Ipq Matrix). Among all possible pair-wise influence scores (Ipq), some 
highly influential interactions of 125 microbes have been represented in the influence network with 49, 61, and 
15 abundant microbial species in S1, S2, and S3 segments, respectively (Fig. 3). The metabolic contributions 
of each microbial species have been precisely assessed to characterize the mode of their metabolic influences. 
Macromolecule degraders like Ca. S. usitatus produced a wide range of degradation products for the community 
feed, exerting a net positive influence over several species like F. succinogenes, C. papyrosolvens, and R. albus. The 
positive influences were also identified in the form of cross-feeding reactions where the metabolic byproducts of 
one species provided nutrients for other microorganisms. While investigating the metabolic fate of each pair-wise 
interaction in the microbial community, we have encountered several exchange reactions responsible for these 
distinct metabolic effects. For instance, Treponema denticola employed a net positive metabolic impact of +0.62 
and +0.47 on R. bromii and B. fragilis, respectively. During the assessment of the metabolic exchange events, it 
was observed that T. denticola provided metabolic byproducts like lactate and valerate to R. bormii and B. fragilis, 
leading to positive metabolic impacts. Alternatively, negative metabolic impacts were also identified as a crucial 
part of the microbial influence network. For instance, P. superfundia and P. cyclohexanicum in the S3 segment 
employed a net negative metabolic influence (−0.19 and −0.097) on each other. Investigation of the metabolic 
compounds shared between P. superfundia and P. cyclohexanicum revealed that both of these microbial entities 
thriving on D-xylose, D-glucose, D-mannose, sucrose, and maltose. Hence, they compete with each other to get 
better access to these common substrates in the gut microenvironment, leading to the negative metabolic impact.

Network robustness calculation was performed by randomly reducing 25% of original data (microbial species 
and/or metabolic activity) followed by the reconstruction of modified inter-species influence network I and II 
(Figs S3 and S4). Analysis of the modified networks revealed that ~75% of influencer, including some potential 
members such as Ca. S. usitatus (Cb = 0.0144), T. azotonutricium (Cb = 0.016), and P. bermudensis (Cb = 0.08), 
have retained their influencing characteristics similar to the original influence network (Supplementary 
Information, Page 6). Collectively, the inter-species influence network represented numerous metabolic events 
in the form of macromolecule degradation and small molecule exchange to illustrate the effects of chemical 
cross-communication inside the gut microbial community.

Network analysis and influencer identification. Inter-species influence network suggests that the 
cumulative effects of positive and negative metabolic influences among microbes are essential to maintain a sta-
ble microbial consortium. Each microbe residing inside a complex microbial niche can affect the growth and 
viability of numerous individual species in both direct and indirect fashion. Out-degree distribution of each 
node was evaluated to identify the hub nodes in the directed network (Fig. S5). For instance, Treponema primitia 
and Celeribacter indicus have an out-degree distribution of 110 and 114 respectively, indicating a higher direct 
influence on the microbial communities. However, inside a composite microbial population, the out-degree dis-
tribution does not always provide significant information about the community-wide influence of an individual 
microbial entity. Therefore, betweenness centrality (Cb) of each microbe was measured to identify the key play-
ers with robust metabolic control (Fig. 4). Based on the average Cb value, a cutoff was defined (Cb > 0.0074) for 
selecting the network influencers (Supplementary Data, Sheet name: Network analysis). Among all the microbial 
species represented in the influence network, 29.6% were found to be the most influential.

Figure 2. Metabolic transportation profile of the individual microbial entity. Metabolites import and export 
frequency of each microbial entity has been represented using black scattered dots. The vertical and horizontal 
axis denotes the number of imported and exported metabolites, respectively. It is observed that the number of 
small metabolites transmission varies significantly among different microbial species. Moreover, the frequency 
of metabolite import is found to be higher than the export inside the N. corniger gut microbiota. The statistical 
overview of the network has been provided in the Supplementary Information (Table S5).
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Detailed investigation of network influencers has been carried out to characterize their mode of influence 
on the community members. Assessment of the metabolic profile revealed that about 57% of the influencers 
were exclusively involved in macromolecule degradation, whereas about 22% microbes solely utilized sugars 

Figure 3. Inter-species influence network of 125 most abundant microbial entities in N. corniger gut 
microbiota. The network represents an inter-species metabolic influence map of abundant microbial entities 
in S1 (green nodes), S2 (grey nodes), and S3 (orange nodes) gut segments of N. corniger. The modes of each 
pairwise interaction have been characterized as positive (yellow edges) or negative (red edges) metabolic 
influence. Nodes with extended red background signify as network influencers that employ considerable 
metabolic influence over a large number of individual entities. Moreover, diverse metabolic events of small 
molecule export (cyan box) and macromolecule degradations (blue box) are also annotated to describe 
the metabolic flow in the gut microbial machinery. For instance, M. rhodesiae and F. succinogenes employ 
positive metabolic influence on the methanotrophic bacteria M. populi by providing methane in their 
microenvironment.

Figure 4. Identification of network influencer. The number of directly connected neighbors of each microbial 
entity in inter-species influence network were plotted as a function of betweenness centrality (Cb) parameter. 
The potential network influencers were identified based on Cb value cutoff (>0.0074) shown on the right-hand 
side of the blue line. These key microbial influencers employ significant metabolic influence over a wide range of 
species to maintain a stable and functional microbial population inside the N. corniger gut.
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to produce fermentation products such as ethanol, butanol, H2, CO2, and acetate. More interestingly, 11% of 
the influential microbes were capable of facilitating both tasks of macromolecule degradation and fermenta-
tion. F. succinogenes (Cb = 0.05 and out-degree = 71) and Ca. S. usitatus (Cb = 0.008 and out-degree = 99) were 
found to be the most influential macromolecule degraders that exerted a substantial positive influence over 
52.8% and 36.8% of total microbial species, respectively. On the other hand, T. azotonutricium (Cb = 0.010 and 
out-degree = 107), the second most abundant species in influence network, employed a negative metabolic influ-
ence over 83.2% of total microbes in the network. T. azotonutricium utilized a wide range of carbon sources such 
as D-glucose, D-fructose, D-ribose, D-xylose, maltose, and cellobiose, thus creating a competitive metabolic 
environment for other species to access these similar metabolites. This metabolic competitiveness can be the 
major reason behind the negative metabolic influences of T. azotonutricium over a large number of microbes. The 
continuous flow of metabolic byproducts in the microbial ecosystem is the basis of diverse metabolic influences. 
Systemic coordination of both positive and negative influences is essential to maintain a naturally viable microbial 
consortium.

Distributions of common metabolic byproducts in termite gut microbial machinery. The typical 
system of lignocellulose digestion and subsequent fermentation produce several crucial metabolic byproducts 
that drive the whole metabolic processes in the N. corniger gut. The distribution pattern of five most commonly 
produced metabolites in segment S1, S2, and S3 were quantified based on the number of microbial producers 
and consumers as represented in the inter-species influence network (Table S4). The frequency of metabolite 
production and consumption of microbes varied considerably in each gut segment. The acetate was produced 
by 41.7% of the microbial species in S1 segment, whereas the frequency of acetate producers was significantly 
increased to 61% in S2 segment. On the other hand, the frequency of acetate consuming microbes was decreased 
from 24.48% in S1 to 8% in S2. The result indicates a higher fermentation rate and the accumulation of acetate in 
S2 as compared to S1 (Fig. 5a). Apart from acetate, the formation of metabolic byproducts like ethanol, CO2, and 
H2 by numerous microbial species also indicates a significant amount of fermentation in S2 (Fig. 5b). However, 
the diversity of microbial species was less in the S3 segment (P5) and the commonly produced metabolites also 
deviated in comparison to S1 and S2 segments. In segment S3, 35.2% and 23.5% of microbes were involved in 
propionate and succinate production process, respectively, while the frequency of acetate producers reduced to 
41.1% (Fig. 5c). The above results indicate that acetate is the most dominating metabolic byproduct throughout 
all the gut compartments of N. corniger, which is in agreement with previous physiochemical study of N. corniger 

Figure 5. Frequently exported microbial byproducts and their consumption profile in different gut segments of 
N. corniger. The percentage of metabolic byproducts formation/consumption has been evaluated based on the 
number of microbial producers/consumers in different gut segments of N. corniger. (a) Five most commonly 
exported metabolic byproducts in segment S1 are acetate, ethanol, lactate, hydrogen, and ammonia. (b) In case 
of S2 segment five major exported metabolic byproducts are acetate, hydrogen, lactate, ethanol, and carbon 
dioxide. (c) Furthermore, acetate, propionate, lactate, succinate, and ammonia are five most predominant 
metabolic byproducts in S3 segment. Detail information of the metabolic consumptions and productions has 
been provided in Table S4.

https://doi.org/10.1038/s41598-019-52843-w


7Scientific RepoRtS |         (2019) 9:16329  | https://doi.org/10.1038/s41598-019-52843-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

gut environment37. However, acetate can also serve as a metabolic substrate for numerous species in the microbial 
community. Thus, in the absence of the conventional carbon sources, microbes can consume acetate to maintain 
the viability of the microbial niche and expedite the acetate removal from gut microenvironment. For example, 
some acetate consuming microbes like Acinetobacter baumannii, Amycolatopsis pretoriensis, Celeribacter indicus, 
Fibrobacter intestinalis, and Heliobacterium modesticaldum have been encountered in the microbial machinery 
of the N. corniger. Collectively, the study of metabolic byproduct distribution gave insight into the hierarchical 
metabolic function of dominating microbes inside the distinct gut compartment of N. corniger.

Lignocellulose degradation network with an insight into enzyme machinery. Reconstruction 
and analysis of inter-species influence network helped us to identify 15 major lignocellulose degraders in N. 
corniger microbiota. The microbial processes of cellulose and hemicellulose degradation entirely depend on their 
enzymatic machinery in extracellular environment. The information of the extracellular GH enzymes produced 
by the key macromolecule degraders were collected from the CAZy database38. Hotpep and HMMER dbCAN2 
Meta Server39,40 were used to annotate the CAZy domains for newer microbial genera. The sequential events 
of enzymatic hydrolysis and fermentation processes have been illustrated by the construction of lignocellulose 
degradation network with subsequent annotation of the hemicellulolytic enzyme cocktail (Fig. 6). The network 
exemplified the operational principle of a micro-community which acts collaboratively to accomplish complex 
metabolic events. The group of 15 lignocellulolytic microbes behaves like a  micro-community that produces 
several active GH enzymes in their microenvironment. Glycoside hydrolases like endoglucanases, exoglucanases, 
endo-1, 4-β-xylanase, β-glucosidase, β-xylosidase, and cellobiohydrolase contributed as the major enzyme in 
the microbial enzymatic cocktail. This collaborative enzymatic machinery effectively breaks the complex plant 
polymers and provide simpler sugar for the community feed as described in the network. Fermentation of the 
simple sugar was also included as an extension of metabolic activity inside N. corniger’s microbiota. R. bormii and 
T. azotonutricium were found to be the dominant players in the fermentation process. These crucial fermentative 
microorganisms can uptake various small molecules such as dextrin, fructose, glucose, xylose, and ribose, to 
produce fermentative byproducts like H2, acetate, and CO2 in their microenvironment. Furthermore, the organic 
acids such as acetate, butyrate, and propionate, were produced during the process and absorbed in the N. corniger 
gut to support its sustainability41,42.

Discussion
Wood-feeding higher termites have been considered as one of the most effective natural lignocellulose degraders. 
The lignocellulose degrading capability of termites has been achieved through the specialized microbial sym-
bionts and their enzymatic machinery. To understand the integral system of natural lignocellulose digestion, 
we have developed a species-wide metabolic interaction network of N. corniger’s gut microbial communities. 
In order to assess the metabolic transport frequency, the metabolite import-export activity of each microbial 
entity have been thoroughly investigated. Determination of metabolic transportation frequency inside the gut 
microbiota indicates a higher tendency of metabolite consumption than production. The elevated level of metab-
olite consumption inside the gut microbial population triggered the competition among microbial groups having 
similar metabolic inputs. This metabolic competition plays a crucial role in maintaining the abundance of diverse 
microbial species and stabilize the microbial community composition43,44. This dynamic stability of the micro-
bial community is possibly achieved through the evolution of the N.corniger and its microbiota. The metabolic 
competition was further investigated by calculating the correlation of metabolic similarity indices and microbial 

Figure 6. Lignocellulose degradation network. The network illustrates the process of macromolecule 
degradation and subsequent fermentation inside the N. corniger gut. The influential hemicellulolytic 
microbes (large green, orange, and gray-colored nodes) release extracellular enzymes (blue triangle) in their 
microenvironment denoted with the grey arrow. The effective enzyme cocktail act on macromolecule (deep 
cyan node) to produce small metabolites (small black nodes) as community feed. Fermentative microbial 
entities (large red nodes) can uptake small metabolites from the microenvironment to produce essential 
fermentative end products for maintaining the viability of a dynamic microbiota. Edges are weighted according 
to the confidence of a particular interaction.

https://doi.org/10.1038/s41598-019-52843-w


8Scientific RepoRtS |         (2019) 9:16329  | https://doi.org/10.1038/s41598-019-52843-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

co-occurrence score. Interestingly, Spearman’s correlation coefficient indicates a positive correlation (rho = 0.305, 
p value 3.29 × 10−12) between the groups of lactic acid bacteria and propionic acid bacteria despite their similar 
metabolite uptake profile. The positive co-occurrence signifies that the gut physiological condition of N. corniger 
(host) is responsible for controlling the distribution pattern of the microbial population. The phenomenon of 
this host driven structure of the microbial community was previously characterized as habitat filtering17,27,29. In 
a metabolically competing microenvironment, microbes with a similar metabolic profile tend to control their 
co-occurrence negatively but habitat filtering act as a driving force to unite these competing microbial communi-
ties. For instance, the anaerobic condition in the hindgut punch of N. corniger promotes the growth of fermenta-
tive microbial communities in a significant manner11,37. Furthermore, this unique physiological condition of the 
hindgut punch is vital for establishing the dynamic stability of diverse microbial consortia. Apart from the met-
abolic competition, metabolic interdependency was also detected by investigating the correlation between meta-
bolic similarity and co-occurrence (rho = 0.235, p value = 1.115 × 10−7) of ethanol producers and lignocellulose 
degraders. Fermentative bacteria (ethanol producers), incapable of utilizing cellulose and hemicellulose, receive 
their primary metabolites by the metabolic actions of lignocellulose degraders, which justifies the phenomenon 
of metabolic dependency. In the lignocellulose rich microenvironment of N. corniger gut, the metabolic depend-
ency is accountable for a growth-promoting effects on microbial population, whereas metabolic competition acts 
as a substantial growth repressor. The dynamic effects of these contrasting metabolic phenomena was further 
investigated by inter-species influence network. In accordance with several earlier studies15,31,45, our study has also 
demonstrated the biological significance of microbial metabolic communication in a nutritionally interconnected 
microenvironment.

In a global arrangement of metabolic communication, the dynamic metabolic action of each species can 
affect the growth and viability of several microbes in either positive or negative manner. Inter-species influence 
network was constructed by evaluating the pairwise microbial interaction score (Ipq) inside the gut microbiota. 
Betweenness centrality (Cb) of 125 nodes were calculated to measure the overall influential role of each microbial 
entity over its community members. Key microbial players employing robust metabolic influences over a wide 
range of individuals were selected based on Cb value cutoff (>0.0074). The metabolic profiles of microbial species 
suggest that over 57% macromolecule degraders account for the crucial network influencers. Microorganisms like 
C. lentocellum, F. succinogenes, and S. coccoides exert effective positive metabolic influence by converting cellu-
lose, hemicellulose, and starch into accessible community substrates like glucose, xylose, and cellobiose. In con-
trast, fermentative microbes (22%), e.g., R. bromii and T. azotonutricium, are observed to be an effective growth 
regulator, employing a strong negative metabolic influence by enhancing the metabolic competition through a 
wide range of substrate utilization. Both positive and negative influences are equally essential for the viability of 
a functional gut microbiota. The positive metabolic influence accounts for a substantial growth enhancement, 
whereas negative influence controls the growth rate of diverse microbial communities in order to balance the 
species abundance in a microbial niche. Hence, the combined effects of these positive and negative metabolic 
influences are responsible for maintaining a stable and functional gut microbiota, essential for the viability of N. 
corniger.

Furthermore, the contributions of different microbial communities involved in specialized metabolic pro-
cesses were determined in distinct gut compartments of N. corniger. The frequency of acetogen was increased 
predominantly from 41% in segment S1 to 61% in segment S2. The most frequently produced metabolites in S2 
segment are H2, lactate, ethanol and CO2 as a consequence of predominant fermentative bacterial genera like 
Clostridium sp., Treponema sp., and Spirochaeta sp. Distribution of microbial entities signifies a higher fermenta-
tion rate in segment S2 as compared to S1. Interestingly, a higher consumption rate of H2 and CO2 by dominating 
Treponema sp. indicates H2 dependent reductive acetogenesis process in S2 segement, which is crucial for the 
removal of metabolic byproducts. Apart from fermentation, macromolecule degradations were also found to be 
predominant in S2 segment, where 60% of the microbes have the abilities to degrade complex macromolecules. 
Hindgut punch (P3) of N. corniger has been reported as the most active gut compartment in terms of macromol-
ecule degradation and fermentation10,46. Similarly, the S2 segment consisting of P3 and P4 compartments in the 
inter-species influence network exhibits the most diverse and enriched microbial population with a high fre-
quency of macromolecule degraders and fermentative organisms. The anaerobic environment of the S2 segment 
is one of the main contributors towards the nourishment of highly active microbial machinery. However, the S3 
segment does not actively take part in the fermentation processes35, while a moderate frequency of acetogenic 
microbes were observed along with some propionate and succinate producers. The overall mapping of the met-
abolic flow inside the gut compartments signifies the occurrence of several biochemical events in a synchronous 
manner. The macromolecule degradation and subsequent fermentation were found to increase from S1 segment, 
reached at maximum level in the most active S2 segment, and finally get declined in the terminal S3 segment. 
Hence, this inter-species metabolic communication leads to a chain of metabolic events for accomplishing the 
complex task of lignocellulose degradation with subsequent fermentation.

Although this metagenome based approach of microbial interactions study provides a system level under-
standing of the lignocellulose degradation inside termite gut, it has a few limitation. The metagenomics data of 
N. corniger’s gut segments were obtained from a single study12, which may introduce some biases in the micro-
bial community composition. Diversity of the termite sample collection sites may provide some additional 
microbiological information, which is lacking in this study. Published experimental data of microbial metabolic 
activities provides the informational architecture of the network. However, experimental data were mostly gen-
erated in the straightforward in vitro laboratory condition and may often diverge from the complicated in vivo 
gut environment. Furthermore, each edge of our network represented the connection between metabolites and 
microbes based on the information of either the presence or absence of the corresponding metabolic associations. 
Therefore, the quantitative values of microbial transport reactions and the growth requirement cannot be recog-
nized from our network. This species-wide metabolic interaction network should be contemplated as a global 
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survey of metabolic phenomena inside a diverse microbial niche, instead of species-specific metabolic pathways. 
Although we acclaimed these drawbacks and limitation, we believe that these challenges will provide an essential 
guideline for the improvement of the network. Recognizable literature references and the confidence scores have 
been provided for each edge in the network, which will get improved and updated with further experimental 
evidence.

Detail comprehension of the metabolic activities among diverse microorganism inside natural bioreactor sys-
tem of termite gut will be helpful to develop microbial community-based approaches for biofuel production47,48. 
In silico investigations of the microbial interaction pattern in this work can be considered as a progressive step 
towards this direction. Deliberate investigation of these inter-species metabolic influences may help in designing 
a stable microbial community by combining the co-operative and competitive phenomena. Improvisations of 
certain high-throughput quantitative techniques will help in in vitro and in vivo manipulation of the commu-
nity metabolic influences to study the structural compatibility of a micro-community for achieving specialized 
functionality like lignocellulose degradation. Specifically, we have denoted the enzymatic cross-play of microbial 
communities, which is the basis of the bioreactor system inside N. corniger’s gut. Several crucial and predominant 
glycoside hydrolases with corresponding microbial producers in the termite gut will provide insights to develop 
co-culture-based lignocellulose bioreactor system. The enzyme cocktail obtained from lignocellulose degrada-
tion network may also assist in optimizing the enzymatic scarification step in the process of commercial biofuel 
production.

Methods
Metagenome sequence analysis of n. corniger gut microbiota to identify microbial species.  
Shotgun metagenome sequencing data of crop, midgut, and hindgut compartments of N. corniger were obtained 
from the IMG/M (JGI) metagenome repository portal (IMG Genome ID: crop (C) - 3300001542, midgut (M) 
- 3300001466, hindgut (P1) - 3300002238, hindgut (P3) - 3300002119, hindgut (P4)- 3300002308, and hindgut 
(P5) - 3300001343)12. Quality checked FASTQ sequence data were analyzed through Kaiju metagenome analysis 
server that uses the Burrows-Wheeler transform (BWT) algorithm to identify maximum exact matches at the 
proteome-level49. Kaiju had transformed the nucleotide sequence into amino acid sequence followed by fragmen-
tation at the stop codon. The fragmented sequence was then sorted and searched against the reference protein 
database (103 million protein sequences) by backward search algorithm on the BWT50,51. Taxon identifiers of 
the corresponding database sequence were retrieved upon maximum exact matches with submitted metagen-
ome sequence of N. corniger microbiota. The species-level information of the termite gut microbiota of different 
gut segments were retrieved with the MEM run mode. The abundance of microbial species in the distinct gut 
segment of N. corniger was determined using Krona52, an interactive metagenome visualization tool integrated 
with Kaiju. After analyzing the segment-specific sequence data, Kaiju produced multiple hits with diverse micro-
bial population, wherein the 250 microbes were selected based on the considerable abundance values (≥0.02%) 
(Supplementary Data).

Metabolic information collection and construction of species-wide interaction network. Out 
of the 250 identified microbial species, experimental information on metabolic activities were retrieved for 205 
microbes and incorporated in the species-wide metabolic interaction network. About 400 published scientific 
research journals (Supplementary Data) were rigorously studied and evaluated to assemble the experimental 
data of all possible metabolic activities of identified microorganisms. Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database53 have also been utilized to validate the collected metabolic information for certain microbes. 
Moreover, the confidence score of the metabolic information has been calculated to increase the reliability and 
transparency of our study (Supplementary Data). The primary or central metabolites, responsible for carrying 
out the intrinsic physiological properties like growth, development, and reproduction were considered as the 
small molecules in the network. Import and/or export of small molecules produced by macromolecule degra-
dation were also precisely evaluated and annotated. A total of 10 macromolecules like cellulose, hemicellulose, 
pectin, and starch were included as a basic source of substrates inside N. corniger gut. A single macromolecule 
can be degraded by numerous species. Hence, the corresponding degradation products were considered as export 
metabolites of all the microbes participating in that particular macromolecule degradation. Secondary metabo-
lites like quorum-sensing molecule and the toxic chemical compounds derived from primary metabolism were 
eliminated. Additionally, gaseous metabolites like H2, CO2, and hydrogen sulfide that can easily disperse through 
the cell membrane and influence the metabolism were also considered. In order to maintain the interaction net-
work at the species level, all the annotated metabolic activities of different strains of a single species were merged 
as collective metabolic property.

Confidence score of species-wide interaction network. The experimental evidence, based on published literature, 
were the basic informational constituents of our network along with the KEGG database. However, while collect-
ing the experimental evidence, we often observed biases in the available data for most common and well-studied 
microorganisms. We have assigned a confidence score for each data point in the network, which will increase the 
reliability of this study54. The confidence score of each edge was calculated based on the number of annotated 
literature along with the information available in the KEGG database. The confidence scores were determined by 
following equation:

=


 ∗



 + ∗

n
N

KConfidence score 70 ( 30)
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where N is the maximum number of literature annotations available for a single edge, n is the actual number of 
publication available for a particular edge and K denotes the availability of information in KEGG database. As we 
predominantly used the literature information to construct the metabolic interaction model, a high weightage 
(70%) was assigned to it, whereas a lower weightage (30%) was assigned to the KEGG database information. The 
value of the K can be either 1 or 0 based on the KEGG data availability or unavailability, respectively. The con-
fidence scores of all the edges have been provided in the Supplementary Data (Sheet name: Confidence Score).

Classification of gut segments based on microbial abundance distribution. The intestinal tract 
of N. corniger is compartmentalized into Crop (C), midgut (M), and hindgut (P1 to P5) segments37. Analysis of 
available metagenomic data of M, C, P1, P3, P4, and P5 segments provided information about diverse micro-
bial communities. The abundance of microbial entities varied throughout different gut segments of N. corniger 
(Supplementary Data). In order to determine the level of abundance divergences among adjacent segments, the 
non-parametric Kruskal-Wallis one-way test (significance level 0.05) was carried out with compartment-specific 
sequence data55. Heat statistic and p value were calculated with a different combination of adjacent segments to 
justify the similarity of microbial abundance. The detail statistical formulation of the Kruskal-Wallis test is as 
follows:

∑=



 +






∗ − +
N N

R
n

NH 12
( 1)

3( 1)
(2)

i

i

2

where H is the heat statistic, Ri is the rank of all observations in group i, ni is the number of observations in group 
i, and N is the total number of observations. The microbial abundance in the crop, midgut, and P1 compartments 
suggested a positive correlation with each other, and they were considered as a single segment S1. Similarly, P3 
and P4 compartment were taken together as the S2 segment while the P5 compartment was considered as a sep-
arate segment (S3). Hence, the gut segments of N. corniger were redefined as S1, S2, and S3 segments based on 
microbial abundance variation. Details of the statistical calculations have been provided in the Supplementary 
Information.

construction of inter-species influence network. Species-wide metabolic interaction network of 
microbial entities and metabolites were used as a fundamental prototype to construct an inter-species influence 
network. The mono-layered network of microbial metabolic influences illustrate the contribution of each micro-
bial entity for maintaining a dynamic and functional gut microbiota. Communication between two interacting 
species leads to positive, negative, and neutral interaction giving rise to win, loss, and non-effective outcomes, 
respectively56,57. This elementary concept was acquired to construct the model of microbial influence on a global 
scale. In the gut microbial ecosystem, the cross-feeding activity of one microbe can stimulate the growth of ben-
eficiary partner by supplying essential nutrients. This phenomenon was considered as a positive metabolic influ-
ence. On the other hand, two microbial entities can compete with each other to get better access to a common 
nutrient, thus limiting the available nutrient in their microenvironment. These competitive characteristics were 
responsible for negative or growth-inhibitory influence. Information from species-wide metabolic cross feeding 
network along with the combinational effects of positive and negative influences were utilized to quantify the net 
metabolic influence of a microbial entity p on another entity q. If we consider a pair of species p and q, an increase 
in p’s abundance may contribute to an increase or decrease in q’s abundance. We assume it to be q’s growth rate, 
or q’s abundance as they are directly related with each other. If each microbial entity p or q represents a single 
microbial species, the influence score can be calculated as32,
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where np is the abundance of the microbial entity p and µq is the growth rate or abundance variation of entity q. 
Each metabolite consumed by species q is denoted by x, where xmq is the consumption rate of metabolite x by 
unit abundance of q entity. Altogether, if the growth-promoting ability of microbial entity p is greater than its 
growth-inhibiting ability towards another microbial entity q, the net metabolic influence of p is considered as a 
positive influence, i.e. Ipq > 0. In contrast, if the growth-promoting ability of p is lesser than its growth-inhibiting 
ability, the entity p will have a net negative metabolic influence on the entity q, i.e. Ipq < 0.

The sampling analysis was also performed to determine the robustness of the inter-species influence network. 
In the first sampling analysis, we have reduced the number of both metabolites and microbial entities by 25%, 
compared to the original inter-species influence network. Whereas, in the second analysis, we have reduced only 
the microbial species information by 25%. The modified inter-species influence network I and II were regenerated 
with reduced metabolic information followed by network analysis (Figs S3 and S4). Furthermore, we have com-
pared the modified and the original inter-species influence network, in order to assess the similarities between 
them (Tables S2 and S3). All the pairwise influence values have been recalculated for both of these modified 
influence network and provided in the Supplementary Data.

Identification of influencer from inter-species influence network. Microbial influence network 
represents a comprehensive sketch of the inter-species influence properties based on their metabolic profile and 
abundance data. Topological network parameters like degree distribution and betweenness centrality were esti-
mated to quantify the community scale metabolic influence of each microbial entity. The direct influence of a 
node p was quantified through the out-degree distribution parameter i.e., the total number of outwards edges. 
Hub nodes in the network were defined with a high number of outwards edges. Alternatively, the microbial 
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entity p can also apply an indirect metabolic influence on any other entity q through in-between elements despite 
any direct connection. Potential network influencers were identified by calculating betweenness centrality of all 
nodes58. The betweenness centrality index (Cb) of a node p is expressed as,

σ σ
=

∑

− −
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P P
( )

( / )

( 1)( 2)
2

(4)b
x p y xy p xy( )

where x and y denote the non-identical nodes in the network different from p, σxy signifies the number of shortest 
paths from x to y, σxy (p) is the number of shortest paths from x to y through p, and P denotes the total number of 
nodes in the attached string that p belongs to.

construction of lignocellulose degradation network. Construction of species-wide metabolic inter-
action network and the analysis network topological properties helped us to identify about 47 different lignocel-
lulose degraders in N. corniger gut microbiota. Further, the microbial influence (Ipq) in the inter-species influence 
network revealed 15 most influential lignocellulose degraders like Ca. S. usitatus, C. lentocellum, F. succinogenes, 
and S. coccoides. CAZy database38 was rigorously searched to identify the effective glycoside hydrolases (GH) 
from these 15 crucial lignocellulose degraders involved in effortless degradation of cellulose and hemicellulose 
(Supplementary Data, Sheet name: lignocellulose degraders). Additionally, Hotpep (Frequency >2.6, Hits >6) 
and HMMER dbCAN2 Meta Server39,40 were utilized to annotate the CAZy domains for newer microbial genera. 
The information about microbial metabolic activities was sequentially combined and represented with distinct 
nodes and edges. The compilation of these diverse metabolic phenomena of specialized micro-communities 
eventually leads to the formation of lignocellulose degradation network. Extracellular hydrolysis of complex 
macromolecules, release of small metabolites, and the production of fermentative byproducts were sequentially 
illustrated in the lignocellulose degradation network.

Data availability
Codes for computing the microbial co-occurrence and microbe–microbe metabolic influences are available on 
figshare (https://doi.org/10.6084/m9.figshare.9770900.v1). The flow diagram of the overall methodology has been 
provided in the Supplementary information (Fig. S6). The authors declare that all other relevant data are available 
within the article and its Supplementary Information files, or from the corresponding author upon request.
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