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Acute Toxic Injuries of Rat’s Visceral 
Tissues Induced by Different 
Oximes
Vesna Jaćević   1,2,3, Eugenie Nepovimova   3 & Kamil Kuča   3*

Certain AChE reactivators, asoxime, obidoxime, K027, K048, and K075, when taken in overdoses 
and sometimes even when introduced within therapeutic ranges, may injure the different organs. 
As a continuation of previously published data, in this study, Wistar rats have sacrificed 24 hrs and 
7 days after single im application of 0.1LD50, 0.5LD50 and 1.0LD50 of each reactivator, and examinated 
tissue samples were obtained for pathohistological and semiquantitative analysis. A severity of tissue 
alteration, expressed as different tissue damage scores were evaluated. Morphological structure of 
examinated tissues treated with of 0.1LD50 of all reactivators was comparable with the control group 
of rats. Moderate injuries were seen in visceral tissues treated with 0.5LD50 of asoxime, obidoxime and 
K027. Acute damages were enlarged after treatment with 0.5LD50 and 1.0LD50 of all reactivators during 
the next 7 days. The most prominent changes were seen in rats treated with 1.0LD50 of K048 and K075 
(P < 0.001 vs. control and asoxime-treated group). All reactivators given by a single, high, unitary dose 
regimen, have an adverse effect not only on the main visceral tissue, but on the whole rat as well, but 
the exact mechanism of cellular injury remains to be confirmed in further investigation.

Organophosphorus compounds are broadly used as pesticides in agriculture or as chemical warfare agents in the 
military attacks. In the last decades, they were misused during a terrorist attack in Japan, Syria or most recently 
in Malaysia1–3. With the growing threat of terrorism, the possible intoxication caused by these agents is relatively 
high. Due to this, many countries are focused on the development of novel more efficient antidotes against these 
agents4,5.

Among the most well-known representatives of nerve agents are sarin (GB; O-isopropylmethylfluorophosphate), 
soman (GD, O-pinacolylmethylfluorophosphate), tabun (GA, O-thyldimethylamidocyanophosphate) and VX 
(O-ethyl-S- (2-diisopropylaminoethyl) methylthiophosphonate) (Fig. 1).

Their toxic effect is based on the inhibition of enzyme acetylcholinesterase (AChE; EC 3.1.1.7) through its 
phosphorylation. As a result of this inhibition, this enzyme can not fulfil its physiological function in the organ-
ism (cleavage of a neuromediator acetylcholine at nerve synapses). Afterwards, its accumulated amount over-
stimulates nicotinic and muscarinic receptors. Clinically, it is manifested as a cholinergic crisis. The intoxicated 
organism then dies without treatment as a result of respiratory and heart failure6,7. Standard antidotal treatment 
of organophosphororus poisoning (OP) implies the administration of anticholinergic drugs to counteract mus-
carinic over-stimulation, an oxime to reactivate OP-inhibited AChE, and anticonvulsants to protect against cen-
tral nervous system seizures8–10.

AChE reactivators are a group of drugs designed to restore AChE function. Among the most well-known 
representatives of this family are pralidoxime (2-PAM, 2-hydroxyiminomethyl-1-methylpyridinium chloride), 
obidoxime (Toxogonin, 1,3- bis(4-hydroxyiminomethylpyridinium)-2-oxo-propane dichloride) or asoxime 
(1-(2-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium)-2-oxapropane dichloride) (Fig. 2).

Their reactivating effect lies in cleavage of the binding resulting from inhibition between the enzyme and 
the nerve agents11,12. None of the so far synthesized AChE reactivators is able to reactivate the enzyme inhibited 
by all types of nerve agents. That is why many institutions involved in this research area try to predict and then 
synthesize the structures of an ideal broad-spectrum AChE reactivator that can reactivate the enzyme inhibited 
by all types of nerve agents13–17.
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Currently used AChE reactivators are chemically among the mono (pralidoxime) or bisquaternary (obidox-
ime, asoxime, methoxide) pyridinium compounds with a functional aldoxime group. These substances must 
contain in their structure some important features without which their reactivation capacity would be low or 
zero. The most important are: the presence oxime groups (responsible for cleavage of nerve agent-enzyme com-
plex), the presence of quaternary nitrogen (responsible for affinity to AChE and for very good solubility of 
reactivators), etc.9,11.

Although the structure-activity relationship between reactivators’ structure and their biological activity is 
well known (both reactivation efficacy and inhibition potency), data describing their toxic effect are rare and not 
complexly investigated18,19. If novel reactivators are investigated throughout the world generally their cytotoxicity 
or acute toxicity is tested20,21. Sometimes, their pharmacokinetics with a special focus on blood-brain barrier 
penetration is investigated22–24. However, what is the real cause of the toxicity of reactivators?

Since all the toxicological data were provided in the earlier studies25,26, in this third study, we focused our 
attention on an investigation of morphological lesions of visceral tissue’s produced by increasing doses of selected 

Figure 1.  The molecular formula of nerve agents.

Figure 2.  The molecular formula of standard and experimental oxime reactivators.
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AChE reactivators. For this purpose, standard oximes (i.e. asoxime and obidoxime) and K-oximes (i.e. K027, 
K048, and K075) were selected as experimental reactivators. The whole experiment was conducted on Wistar rats.

Results
The general health condition of treated rats.  In rats treated with 0.1LD50 or 0.5LD50 dose of different 
oximes, the clinical signs of acute poisoning were not seen. The muscular pain, weakness, and tremors were per-
ceived only in rats after treatment with 1.0LD50 dose of each oxime during the whole study.

Pathohistological and semiquantitative analysis of experimental animal’s pulmonary alterations.  
The lungs’ histological features of rats treated with 0.1LD50 dose of all oximes were similar to the control values. A 
small number of alveoli were filled with desquamated epithelial cells and single alveolar macrophages only in rats 
than received K075 (Fig. 3a and Table 1).

The pulmonary lesions observed in rats treated with 0.5LD50 of each oxime included dilation of lymphatic’s 
and small blood vessels, early/mild oedema than caused discrete perivascular widening and separation of inter-
stitial tissue, and focal interstitial haemorrhage. In this early phase, 24 hrs after administration, in all oximes 
treated groups injury of the vascular endothelial cells and the alveolar epithelial cells could be seen. These alter-
ations caused alveolar oedema, which was less intensive in the asoxime-treated rats (PDS value was 1.67 ± 0.48; 
P < 0.001 vs. control group) and in the K027-treated rats (1.86 ± 0.73; P < 0.001 vs. control group), respectively. 
On day 7 of the study, the type of histopathological alterations was similar to those established after 24 hrs. The 
time-dependent differences were seen in all animals treated with asoxime, obidoxime (Fig. 3b) (P < 0.01), or K027 
(Fig. 3c) (P < 0.001), while in rats exposed to K048 it was less intensive (P < 0.05). These differences could not be 
seen after treatment with K075 (PDS values were 3.53 ± 0.51 after day 1 and 7; P < 0.001 vs. asoxime-treated and 
control groups, respectively) (Table 1).

A single injection of 1.0LD50 of different oximes caused severe and diffuse pulmonary alterations which are 
characteristic of inflammatory interstitial pneumonia. In all treated groups, sacrificed on day 1 of the study, acute 
interstitial inflammation was characterized by the massive influx of macrophages into alveoli and vacuolisation of 
their epithelial cells. The vacuolisation of capillary endothelial cells were observed, too. These alterations induced 
subsequently serofibrinous exudation into alveolar space. Periodically, hyaline membranes lined the alveolar 

Figure 3.  Pulmonary micrographs of rats on day 7 following oximes’ application; H&E staining; magnification 
at 200× ; (a) The normal histological structure of the epithelial cells of control rats - 1; (b) The obidoxime-
treated group (0.5LD50 im), extensive interstitial oedema and hyperemia - 1, seromucous exudates in alveoli - 2;  
(c) The K027-treated group (0.5LD50 im), intensive contraction of alveoli - 1, diffuse accumulation of 
inflammatory cells in the pulmonary parenchyma - 2; (d) The obidoxime-treated group (1.0LD50 im), focal 
hemorrhage - 1, interstitial accumulation of inflammatory cells - 2; (e) The K048-treated group (1.0LD50 im), 
intra-alveolar - 1, and interstitial hemorrhage - 2; (f) The K075-treated group (1.0LD50 im), compressed alveolar 
space filled with necrotic debris - 1, interstitial accumulation of macrophages and fibroblasts - 2.
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spaces, and numerous leukocytes were infiltrating into the pulmonary parenchyma. In all oximes-treated groups, 
the pulmonary parenchyma was infiltrated with massive haemorrhagic foci. The strongest PDS values were seen 
in rats treated along with K048 or K075 (PDS values were 4.00 ± 0.83 or 4.30 ± 0.70; P < 0.001 vs. asoxime-treated 
rats) (Table 1). Further development of pulmonary injury, in our study on the seventh day, was characterized by 
the massive intraalveolar aggregation of macrophages, vacuolisation of alveolar cells type II, as well as massive 
haemorrhages, fibroblast proliferation and collagen deposit in the lung interstitial tissue. The smooth muscle 
cells of the bronchial wall were the most prominent. These alterations were less intensive in the asoxime-treated 
rats (PDS value was 2.97 ± 0.69; n.s. vs. the 1st day) and in the K027-treated rats (3.57 ± 0.77; P < 0.001 vs. the 1st 
day), respectively. Noticeable pulmonary injury was established in tissue samples of rats, sacrificed 7 days after 
treatment with obidoxime, K048 or K075 (Fig. 3d–f), and their PDS values were in the range of 4.17 ± 0.70 to 
4.50 ± 0.51, respectively (P < 0.001 vs. control or asoxime-treated rats).

Pathohistological and semiquantitative analysis of experimental animal’s gastric alterations.  
In the majority of gastric tissue samples, rats treated with 0.1LD50 of each oxime, histological findings were similar 
to those observed in the control rats (Fig. 4a). However, a small number of tissue sections were shown mild, focal 
histological changes, such as discrete desquamation of superficial epithelial cells and less intensive mucous fluid. 
These histological alterations were the highest in rats sacrificed 24 hrs after administration of K075 (GDS was no 
higher than 0.46 ± 0.61) (Table 2).

Pathohistological changes exerted in the groups of rats treated by 0.5LD50 of each oxime ranged from focal 
degeneration to necrosis of some epithelial and glandular cells. These histological alterations were associated 

Treatments
Days after 
treatment

PDS (5 lungs/group × 6 specimens/lung) × ± S.D.

0.1LD50 0.5LD50 1.0LD50

control
1 0.17 ± 0.38 0.17 ± 0.38 0.17 ± 0.38

7 0.17 ± 0.38 0.17 ± 0.38 0.17 ± 0.38

asoxime
1 0.17 ± 0.38 1.67 ± 0.48a3 2.67 ± 0.48a3

7 0.20 ± 0.41 2.67 ± 0.48a3c2 2.97 ± 0.69a3

obidoxime
1 0.27 ± 0.45 2.27 ± 0.69a3b1 3.06 ± 0.78a3

7 0.23 ± 0.45 3.27 ± 0.69a3c2 4.00 ± 0.83a3b2c2

K027
1 0.20 ± 0.41 1.86 ± 0.73a3 2.40 ± 0.50a3

7 0.23 ± 0.43 2.87 ± 0.73 a3c3 3.57 ± 0.77 a3c3

K048
1 0.40 ± 0.49 2.87 ± 0.73a3b2 4.00 ± 0.83a3b3

7 0.27 ± 0.45 3.40 ± 0.50a3c1 4.17 ± 0.70a3b3

K075
1 0.33 ± 0.48 3.53 ± 0.51a3b3 4.30 ± 0.70a3b3

7 0.27 ± 0.45 3.53 ± 0.51a3b3 4.50 ± 0.51a3b3

Table 1.  The influence of various oximes (0.1LD50, 0.5LD50 or 1.0LD50) on the pulmonary injury (pulmonary 
damage score, PDS) on day 1 and 7 following application. Statistical evaluation: The Kruskall-Wallis test 
(between columns), ANOVA test (within columns); a3 - P < 0.001 vs. control group; b1, b2, b3 - P < 0.05, 0.01, 
0.001 vs. asoxime-treated group; c1, c2, c3 - P < 0.05, 0.01, 0.001 vs. 1st day.

Treatments
Days after 
treatment

GDS (5 guts/group × 6 specimens/gut) × ± S.D.

0.1LD50 0.5LD50 1.0LD50

control
1 0.10 ± 0.31 0.10 ± 0.31 0.10 ± 0.31

7 0.17 ± 0.38 0.17 ± 0.38 0.17 ± 0.38

asoxime
1 0.13 ± 0.35 1.43 ± 0.97a3 2.13 ± 0.78a3

7 0.17 ± 0.38 2.33 ± 0.48a3c2 2.63 ± 0.96a3

obidoxime
1 0.33 ± 0.48 2.00 ± 0.64a3b1 2.76 ± 0.77a3b1

7 0.20 ± 0.41 3.06 ± 0.58a3c3 3.47 ± 1.04a3c2

K027
1 0.17 ± 0.38 1.40 ± 0.50a3 2.68 ± 0.77a3b1

7 0.20 ± 0.41 2.63 ± 0.96a3c3 3.20 ± 0.76a3b3c2

K048
1 0.37 ± 0.49 2.50 ± 0.51a3b3 3.60 ± 0.97a3b3

7 0.23 ± 0.43 3.50 ± 0.51a3c2 4.13 ± 0.73a3c2

K075
1 0.23 ± 0.43 2.93 ± 0.78a3b3 4.36 ± 0.72a3b3

7 0.46 ± 0.61 3.80 ± 0.76a3b3c2 4.53 ± 0.73a3b3

Table 2.  The influence of various oximes (0.1LD50, 0.5LD50 or 1.0LD50) on the gastric injury (gut damage 
score, GDS) on day 1 and 7 following application. Statistical evaluation: The Kruskall-Wallis test (between 
columns), ANOVA test (within columns); b1, b3 - P < 0.005, 0.001 vs. asoxime-treated group; c2, c3 - P < 0.01, 
0.001 vs. 1st day.
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with moderate vascular changes, such as transmural oedema, massive hyperaemia of the lamina epithelial tunica 
mucosae, and the tunica submucosa. Focal, severe haemorrhages were present only in the tunica submucosa, pre-
dominantly in the perivascular areas. In all oximes-treated groups, various amount of the inflammatory cells 
(lymphocytes, neutrophils and plasma cells) were accumulated in the vicinity of the blood vessels or in all parts 
of the tunica mucosa. Mild, diffuse oedema and hyperaemia were seen in the tunica muscularis. These smooth 
muscular layers were infiltrated with oedema fluid. In some animals, sacrificed on the day 1, focal necrosis of 
the epithelial cells was caused a deep defect (gastric erosions) of the tunica mucosa, which was extending only 
into a superficial part of the mucosa. This superficial loss of normal mucosa accompanied by congestion and 
mild haemorrhages were the highest in rats treated by K048 (GDS = 2.50 ± 0.51), or K075 (GDS = 2.93 ± 0.78). 
The frequency and severity of these gastric lesions were significantly intensive in comparison to asoxime-treated 
rats or the control rats, sacrificed after day 1 (P < 0.001). The time-dependent differences were the higher in the 
K075-treated rats (P < 0.01), and the highest in the asoxime-treated, obidoxime-treated, K027-treated (Fig. 4b) 
or K048-treated (Fig. 4c) groups (P < 0.001) (Table 2).

Described pathohistological alterations were also seen in the groups of rats treated by 1.0LD50 of each oxime, 
but their intensity was more frequent. The most interesting findings were diffuse necrosis of mucosal epithelial 
cells which were leading to loss of the mucosal epithelium, especially in the K048 or K075-treated groups, sacri-
ficed after day 1, as well as in the obidoxime-treated animals sacrificed on the day 7 of the study. Consequently, 
there were presented collapse of the mucosa, focal ulcerations, massive haemorrhage and secondary inflamma-
tory cell infiltration. These defects of the mucosa were extending into the lamina propria tunica mucosae of the 
K027-treated rats (Fig. 4d) (GDS value was up to 3.47 ± 1.04; P < 0.001 vs. asoxime-treated or control groups), 
or into the tunica submucosa of the obidoxime-treated (Fig. 4e) or K075-treated rats (Fig. 4f) (GDS values were 
in the range of 4.13 ± 0.73 to 4.53 ± 0.73; P < 0.001 vs. asoxime-treated or control groups). These morphological 
changes were significantly intensive in the group of animals treated with K048 (P < 0.01), obidoxime or K027 
(P < 0.05) which were sacrificed on the seventh day of the study (Table 2).

Pathohistological and semiquantitative analysis of experimental animal’s hepatic alterations.  
In rats treated by 0.1LD50 of each oxime, isolated hepatocytes with intracytoplasmatic vacuoles were seen in 
central lobular areas. In these hepatic sections, mild oedema and hyperemia, as a result of the blood vessels dil-
atation, were presented in the sinusoids. Also, the extravascular cell infiltrate was observed in rats than treated 

Figure 4.  Gastric micrographs of rats on day 7 following oximes’ application; H&E staining; magnification 
at 200×; (a) The normal histological structure of the gastric wall of control rats; (b) The K027-treated group 
(0.5LD50 im), cellular debris in the bottom of the gastric pits - 1, oedema and hyperemia in tunica submucosa - 2; 
(c) The K048-treated group (0.5LD50 im), degeneration of glandular cells - 1; (d) The K027-treated group (1.0LD50 
im), gastric erosions in the tunica mucosa - 1, enlarged blood vessels and cellular infiltrations in the tunica 
submucosa - 2; (e) The obidoxime-treated group (1.0LD50 im), enlarged gastric pit filled with necrotic cellular 
debris - 1. focal haemorrhages - 2. (f) The K075-treated group (1.0LD50 im), massive gastric ulcerations - 1.
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by obidoxime, K048 or K075. In these groups of rats, sacrificed after day 1, the HDS values were in the range of 
0.27 ± 0.45 to 0.33 ± 0.48, and similar to other treated rat groups and control group (Fig. 5a and Table 3).

Hepatic injuries perceived in rats treated exposed acutely to 0.5LD50 of each oxime were ranged from vacuolar 
degeneration to necrosis of isolated hepatocytes, which were associated with focal, moderate haemorrhage. As the 
term implies, such hepatic injuries were the foremost in the central lobular areas. In rats treated by asoxime and 
K027, one day after treatment, intracellular oedema and the occurrence of individual intracytoplasmic vacuoles 
are the only signs of cellular alteration. In the sinusoidal and in the perisinusoidal spaces discreet oedema, hyper-
aemia, haemorrhages and inflammatory cells were seen. In these areas, Kupffer’s cells were enlarged and allocated 
on the sinusoidal surface of the endothelial cells. Based on these mild or moderate morphologic alterations, the 
HDS values of asoxime- or K027-treated groups were in the range of 1.90 ± 0.61 to 2.10 ± 0.76. In these groups 
of animals, the focal necrosis of hepatocytes was observed, too. Focal necrosis consisted of discrete areas of the 
hepatic necrotic lobule. The necrotic areas were frequently small, involving only three or four cells. In addition to 
the necrotic hepatocytes, a small number of mononuclear inflammatory cells are frequently found in the lesion. 
Small necrotic foci were observed throughout the whole hepatic tissue. No fibrosis was observed. On the other 
hand, the highest HDS values were established in the group’s rats treated by obidoxime, K075 or K048 (P < 0.001 
vs. control or asoxime-treated rats). Moreover, in these groups of animals, the presence of severe vacuolar or 
parenchymal degeneration, diffuse hyperaemia, large haemorrhagic foci and tissue infiltration with neutrophils, 
lymphocytes, plasma cells and macrophages were accompanied by central lobular necrosis. In addition, macro-
nodular vacuolization of hepatocytes was expressed in majority hepatic sections. These morphological changes 
of the hepatic cytoplasm were commonly associated with the pyknotic nucleus. In some areas of the same hepatic 
tissue section, central lobular necrosis could be seen. According to these facts, the highest HDS value was in the 
K075-treated animals sacrificed 24 hrs after treatment (3.06 ± 0.78). In the K048-treated group, HDS value was a 
little less, but also significantly different from those established in the asoxime-treated or control rats (P < 0.001). 
Similar differences were noticed in these groups of rats sacrificed at the end of the study (Fig. 5b,c). It was found 
that the time depends HDS values were less significant in the asoxime-treated, K027-treated or K048-treated rats 
(P < 0.01) (Table 3).

When rats were exposed to extremely high dose, 1.0LD50 of each oxime, hyaline degeneration accompanied 
by diffuse haemorrhages, as well as massive necrosis in all treated animals were presented. When adjacent lobules 

Figure 5.  Hepatic micrographs of rats on day 7 days following oximes’ application; H&E staining; 
magnification at 200×; (a) The normal histological structure of the hepatic tissue of control rats - 1; (b) K048-
treated group (0.5LD50 im), micronodular degeneration of the hepatocytes - 1, and focal hemorrhages - 2; (c) 
The K075-treated group (0.5LD50 im), small necrotic foci - 1, and focal hemorrhages - 2; (d) The asoxime-
treated group (1.0LD50 im), macronodular vacuolization of the hepatocytes - 1, and moderate hyperemia and 
oedema - 2; (e) The K027-treated group (1.0LD50 im), centrolobular necrotic cells - 1, and focal hemorrhages 
- 2; (f) The K048-treated group (1.0LD50 im), multilobular necrosis - 1, and accumulation of neutrophils, 
lymphocytes, plasma cells and macrophages - 2.
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affected, the necrosis was involved in large areas and all or nearly all hepatocytes in these areas. However, the 
enormous destroying of the lobular structure was surrounded by variably sized nodules with a normal lobular 
structure. In the early period, HDS values were the greatest in the K048-treated or K075-treated rats (4.33 ± 0.53 
and 4.27 ± 0.78, respectively), and noticeably higher in comparison to the asoxime-treated rats (Fig. 5d) or the 
control rats (P < 0.001). Within a week, the alterations were spread to the entire liver tissue, so HDS values were 
higher compared to those which were visible on the first day, but with highest differences only in the K027-treated 
(Fig. 5e) or K048-treated rats (Fig. 5f) (P < 0.05) (Table 3).

Pathohistological and semiquantitative analysis of experimental animal’s splenic alterations.  
Splenic histological structure of rats treated by 0.1LD50 of each oxime was almost the same as those observed in 
the control group (Fig. 6a). In several tissue sections in the sinusoids of the red pulp mild oedema and hyperemia 
were seen. The size, shape and presence of the macrophages, lymphocytes and plasma cells were normal. The his-
tological architectures of the white pulp were normal, too. The frequency of the vascular changes was the highest 
in the K075-treated rats. The difference between these SDS values, and those that were established in the other 
experimental groups was not expressed (Table 4).

The first observable spleen alterations were detected in the rats treated by 0.5LD50 of each oxime. Histologically, 
a mild to severe depletion of lymphocytes in the white pulp was observed. The lymphocyte depletion was the most 
intensive in the periarteriolar lymphocyte sheets (PALS), so-called T lymphocytes areas. The germinal centres 
without changes were persisted in the PALS of the lymphatic nodules. In several tissue sections, moderate dila-
tations of the central arterioles were seen, too. In the outer part of the PALS, normal B lymphocytes and a larger 
number of the plasma cells were presented. These histological alterations were associated with focal, moderate 
vascular changes of the red pulp and trabeculae, such as oedema, hyperaemia and haemorrhage. Also, observed 
microscopic findings were the most intensive in the inner parts of the spleen tissue, especially in the K048 and in 
the K-075-treated animals, sacrificed on day 1 and day 7 (Fig. 6b,c). The highest SDS value of 4.13 ± 0.78 was in 
the K075-treated rats, sacrificed on day 7 (P < 0.001 vs. the 1st day) (Table 4).

Described splenic injuries were also seen in the rats treated by 1.0LD50 of each oxime, but their intensity was 
more frequent. The prominent depletion of lymphocytes was presented, too. Depending on the time of sacri-
fication, these affected areas were containing a small or large number of the plasma cells, as the final refuge of 
lymphoid cells. Intensive vacuolisation of the endothelial with pyknotic nuclei could be seen. Diffuse haemor-
rhages which were associated with prominent fibrosis were presented in the red pulp of rats treated by K027, 
K048 (Fig. 6e) or K075 (Fig. 6f), during the whole study period. Their frequency was certainly higher than in 
asoxime-treated rats (Fig. 6d) or in the control rats (P < 0.001). On the other hand, the SDS values of each time of 
sacrification were statistically different in the asoxime- and obidoxime-treated rats (P < 0.001) (Table 4).

Discussion
Recognizing the exact mechanisms of oximes’ toxicity is the basic stage for not only in improving their safety test-
ing but also for an accurate risk assessment based on these adverse effects. Earlier researches were mainly focused 
on the oximes’ therapeutic efficacy, while preclinical studies of the safety of oxime usage were poorly provided27. 
In many cases, preclinical tests on animals serve to accurately predict the adverse effects of new drug candidates 
in humans and the overall risk assessment of their exposure. Therefore, our study was based on defining the 
basic mechanisms of oximes’ toxicity, using standard safety testing, without imposing new preclinical methods 
or techniques. Further improving oximes’ safety testing will allow for a successful risk assessment based upon 
mechanisms of their toxicity.

In accordance with this challenge, the present study aimed to prove our hypothesis that exposure to a toxic 
dose of different oxime induced visceral tissues injury as well. Therefore, this study was also conducted entirely 

Treatments
Days after 
treatment

HDS (5 livers/group x 6 specimens/liver) × ± S.D.

0.1LD50 0.5LD50 1.0LD50

control
1 0.20 ± 0.41 0.20 ± 0.41 0.20 ± 0.41

7 0.17 ± 0.38 0.17 ± 0.38 0.17 ± 0.38

asoxime
1 0.20 ± 0.41 1.90 ± 0.61a3 2.70 ± 0.70a3

7 0.20 ± 0.41 2.67 ± 0.48a3c2 2.73 ± 0.69a3

obidoxime
1 0.33 ± 0.48 2.73 ± 0.69a3b2 3.26 ± 0.69a3b1

7 0.20 ± 0.41 3.13 ± 0.51a3c1 3.50 ± 0.73a3

K027
1 0.20 ± 0.41 2.10 ± 0.76 a3 2.83 ± 0.79a3

7 0.27 ± 0.45 3.07 ± 0.45a3c2 3.43 ± 0.50a3c2

K048
1 0.27 ± 0.45 2.93 ± 0.87a3b3 3.87 ± 0.78a3b3

7 0.20 ± 0.41 3.87 ± 0.78a3c2 4.33 ± 0.53a3b3c1

K075
1 0.33 ± 0.48 3.06 ± 0.78a3b3 4.00 ± 0.64a3b3

7 0.27 ± 0.45 3.50 ± 0.51a3 4.27 ± 0.78a3b3

Table 3.  The influence of various oximes (0.1LD50, 0.5LD50 or 1.0LD50) on the hepatic injury (hepatic 
damage score, HDS) on day 1 and 7 following application. Statistical evaluation: The Kruskall-Wallis test 
(between columns), ANOVA test (within columns); b1, b2, b3 - P < 0.05, 0.01, 0.001 vs. asoxime-treated 
group; c1, c2 - P < 0.05, 0.01 vs. 1st day.
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with male rats and followed our 7-day protocol, and gut, lung, liver and spleen injury was confirmed by histopa-
thology and semiquantitative analyses. Our previous study has confirmed that exposure to low, injury-free oxime 
concentration, which was unable to cause muscle cells’ damage. Further increase in their doses leads to differ-
ent muscular tissue damages due to their potent cytotoxic and pro-inflammatory effect25. Several investigators 

Figure 6.  Splenic micrographs of rats on day 7 following oximes’ application; H&E staining; magnification 
at 200×; (a) The control group, normal histological structure of the splenic tissue - 1; (b) The K048-treated 
group (0.5LD50 im), focal hemorrhages in the red pulp - 1; (c) The K075-treated group (0.5LD50 im), diffuse 
hemorrhages - 1, and accumulation of the plasma cells in the red pulp - 2; (d) The asoxime-treated group 
(1.0LD50 im), moderate oedema and hyperemia in the trabeculae - 1, diffuse lymphocytes depletion - 2; (e) The 
K048-treated group (1.0LD50 im), inverted splenic architectures - 1; (f) The K075-treated group (1.0LD50 im), 
necrotic foci - 1, focal and massive hemorrhages, moderate fibrosis in the red pulp - 2.

Treatments
Days after 
treatment

SDS (5 spleens/group x 6 specimens/spleen) × ± S.D.

0.1LD50 0.5LD50 1.0LD50

control
1 0.10 ± 0.31 0.10 ± 0.31 0.10 ± 0.31

7 0.17 ± 0.38 0.17 ± 0.38 0.17 ± 0.38

asoxime
1 0.20 ± 0.41 1.70 ± 0.70a3 2.10 ± 0.76a3

7 0.20 ± 0.41 2.40 ± 0.50a3c2 3.00 ± 0.64a3c2

obidoxime
1 0.20 ± 0.41 2.03 ± 0.61a3 2.10 ± 0.65 a3

7 0.27 ± 0.45 2.77 ± 0.69a3c1 3.03 ± 0.69a3b1c2

K027
1 0.17 ± 0.38 2.10 ± 0.76a3 3.43 ± 0.50a3b2

7 0.23 ± 0.43 2.87 ± 0.82a3c2 4.17 ± 0.70a3b3c2

K048
1 0.23 ± 0.43 2.73 ± 0.87a3b3 4.20 ± 0.85a3b3

7 0.23 ± 0.43 3.27 ± 0.69a3b3c2 4.53 ± 0.51a3b3

K075
1 0.30 ± 0.47 3.03 ± 0.76 a3b3 4.10 ± 0.84a3 b3

7 0.33 ± 0.48 4.13 ± 0.78a3b3c3 4.33 ± 0.71a3 b3

Table 4.  The influence of various oximes (0.1LD50, 0.5LD50 or 1.0LD50) on the splenic injury (splenic damage 
score, SDS) on day 1 and 7 following application. Statistical evaluation: The Kruskall-Wallis test (between 
columns), ANOVA test (within columns); b1, b2, b3 - P < 0.05, 0.01, 0.001 vs. asoxime-treated group; c1, c2, c3 - 
P < 0.05, 0.01, 0.001 vs. 1st day.
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confirmed this statement in vitro18,19, but not so far in vivo18,19. Namely, K-oximes showed better antidotal efficacy 
than HI-6 at doses of 5% or 25% of their LD50

28. Unfortunately, their high acute toxicity is a limiting factor for 
potential therapeutic usage. Accordingly, the primary adverse effects were observed in rats 24 hrs after K027, HI-6 
and obidoxime application at a dose of 50% LD50

29. Previous studies indicate that early toxic injury and autoxi-
dative cellular injury are probably common mechanisms of oxime-induced cellular damage30,31. The presence of 
oximes, in high doses, might interfere with mitochondrial metabolism, eventually contributing to cell death and 
tissue necrosis, but it may also cause the development of reactive oxygen species (ROS) either directly or indi-
rectly, resulting in cell homeostasis disturbance32.

The first signs of disruption of cell homeostasis in our experiments were verified by semiquantitative histo-
pathological analysis 1 day after treatment with 0.5LD50 of different oxime, i.e. large areas of gastric, pulmonary, 
hepatic and spleen tissue had various tiny vacuoles and pale cytoplasm shape (mean GDS, PDS, HDS and SDS 
were in the range of 1.40 to 3.53), and discrete amounts of inflammatory cells were also identified. The most dis-
tinguished increase of GDS, PDS, HDS and SDS were detected in each tissue sample treated by 1.0LD50 of K048 
and K075 (the mean GDS, PDS, HDS and SDS ranged from 3.60 to 4.36, P < 0.001 vs. asoxime-treated groups). 
At the highest concentrations of K048 and K075, the initial event is tissue necrosis, which mainly results in the 
destruction of cell membranes, leading to enhanced autophagocytosis and cells’ disappearance33. Many reactive 
intermediates of toxic drug doses are electrophiles, free radicals, or free-radical generators, which may potenti-
ate the toxicity of tissue oxygen, depleting intracellular glutathione and biological antioxidants34. Moreover, the 
intensive release of reactive oxygen species (ROS) and free radicals that damage both DNA the cytoplasmic orga-
nelles and endoplasmic reticulum. The endoplasmic reticulum plays an important role within the intracellular 
quality control and sensitivity to oxidative stress34,35, and its stress is mainly related to the activation of apoptosis36. 
Several authors confirmed that ROS may act as messengers between the oxidative stress and endoplasmic reticu-
lum stress37,38. During oxidative stress, mitochondrial dysfunction leads to the impaired production of ATP and 
a further increase in ROS production39.

On the other hand, neutrophils excrete a huge amount of proinflammatory molecules (i.e. cytokines, chemok-
ine, and growth factors), and create a suitable microenvironment for monocytes and macrophages collecting40–44. 
Immediately after drug-induced tissue injuries, pro-inflammatory macrophages conduce to cell lysis and stimu-
late tissue proliferation, then a few days after toxic injury anti-inflammatory macrophages diminish the inflam-
matory reaction and stimulate tissue repair process45. The tissue regeneration process activated by low doses 
of the drug, while their high doses suppress compensatory tissue repair leading to improvement of tissue toxic 
injury46,47. In our study, after a period of 1 week, the prominent toxic tissue alterations were noticed in all visceral 
tissues following treatment with 0.5LD50 of obidoxime, K027, K048 and K075 (the mean PDS, GDS, HDS and 
SDS ranged from 2.63 to 4.13). Also, these tissue damage scores were the lowest at the end of the study only in 
the asoxime-treated group (the mean PDS, GDS, HDS and SDS ranged from 2.33 to 2.67). Afterwards, estimated 
PDS, GDS, HDS and SDS were enhanced after treatment by 1.0LD50 of asoxime but these scores were significantly 
lower in comparison to other oxime-treated groups (P < 0.001). The visceral tissues injuries with the highest were 
noticed after a week period in rats treated by 1.0LD50 of K048 and K075. The maximal calculated values of PDS, 
GDS, HDS and SDS were in the range of 4.13 to 4.53. These data, as well as ours previously published results25, 
confirm that the toxicity of oximes is time-dependent. Then, depending on the applied dose, the acute toxic tissue 
injury is associated with oximes-induced general toxicity.

Based on the obtained data within this study, as well in the previous one25, we can assume that 10% LD50 of all 
tested oximes is safe. In the case of asoxime and K027, also 50% LD50 seems to be still safe. So that, dosage 10% 
LD50 could be in future considered as appropriate treatment dosage which will have no adverse effect on treated 
organism regardless of oxime choice. Higher dosage is a question of selected oxime reactivator. As resulted from 
the obtained data, asoxime seems to be the safest oxime reactivator tested within these studies. This fact is in very 
good agreement with its acute toxicity data.

Briefly, our research confirmed that each oxime given by a single, high, unitary dose regimen, has an adverse 
effect not only on the main visceral tissues but on the whole rat as well. In addition, our results provided certain 
evidence of beyond the adverse effects on the target tissues and general health condition of rats after exposure 
to different oximes. Moreover, basic histopathology analyses can help to establish toxicological dose-response 
attitude in a preclinical safety assessing for newel oximes. Therefore, our data can subserve for the choice of dose 
in further subacute, subchronic or chronic evaluation. The application of these results can be used in non-clinical 
safety evaluation and the development of new oximes in order increasing the ability to test and improve the iden-
tification of the first signs of oxime-induced target tissue adverse effects. Finally, these results together with other 
preclinical data have a crucial contribution in the examination of general safety and risk assessment of newly 
developed oximes.

Methods
Used chemicals.  Five AChE reactivators - two standard oximes (asoxime, obidoxime) and three experimen-
tal K-oximes (K027, K048, and K075) (Fig. 2) were used for in vivo experiments. All three experimental K-oximes 
were chosen for this evaluation according to previously published data48. Their detailed synthetic preparations 
have been described earlier in the literature49–51. Prior to the study, their purity was tested using the standard 
analytical methods52,53.

Experimental animals.  This study was performed on adult male Wistar rats (8 weeks old with body weight 
180–220 g) breed at the Institute of Medical Research, Military Medical Academy, Belgrade, Serbia. Plastic cages 
(Macrolon cage type 4, BIOSCAPE, Germany) filled with sawdust (VERSELE-LAGA, Belgium) were used for the 
accommodation of rats. Ambient conditions, monitored by the central computerized system, were set up in the 
following range: temperature 22 ± 2 °C, relative humidity 55 ± 15%, 15–20 air change/h, and 12 hrs light/dark 
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cycles. Animals had free access to filtered water and commercial pellets for rats, produced by Veterinary Institute 
Subotica, Serbia.

The Ethics Committee for Experiments on Animals, of the Military Medical Academy, Belgrade, Serbia 
approved (i) animal welfare procedures and study design (No. 282-12/2002); (ii) experimental protocol was per-
formed according to the Guidelines for Animal Welfare of the Ethics Committee for Experiments on Animals of 
the Military Medical Academy, Belgrade, Serbia (No. 323-07-04943/2014-05/1), and the National Guidelines for 
Animal Welfare, Belgrade, Serbia (No. 41/2009).

Acute toxicity.  Each oxime was preliminarily tested in animals using standard experimental procedure pub-
lished earlier in the literature54. Thereafter, each oxime was used in the present study at a single dose of 0.1LD50, 
0.5LD50 and 1.0LD50.

Experimental design.  Wistar rats were divided into sixteen experimental groups as shown in Table 5.
Immediately before the intramuscular application, each oxime is dissolved in a freshly prepared solution of 

normal saline (0.9% sodium chloride in distilled water). A single injection of each oxime was applied in lateral 
thigh muscle of the right leg55. The general health condition of animals was monitored daily throughout the study, 
while a standard post-mortem examination was performed for 7 days.

The selected doses for this histopathological study was described in our previously published studies25. As we 
mentioned in those studies, the selection of dose levels for careful histopathology analysis was primarily based 
on the results of acute toxicity testing26. The following 4 dose levels were selected to evaluate dose-dependent 
acute toxicity for different tissues at two different time intervals: control group; low dose group (5–10% of LD50), 
medium-dose group (≈50% of LD50) and high dose group (≈1.0 LD50). Specifically, in line with the OECD 
GLP-compliant guidelines, at the end of the acute toxicity tests, a pathohistological analysis is required to assess 
the safety of the chemicals being investigated56–58.

Histopathological procedure.  Five animals from each experimental group were sacrificed, using light 
ether anaesthesia, on the 1st and 7th after the applied treatments25,59.

At autopsy, different tissue samples (lung, stomach, liver, and spleen) of each rat were fixed (10% 
neutral-buffered formalin over 48 hrs) and prepared for further standard histopathological analysis. Tissue’s 
dehydration was carried out by immersing specimens in a series of ethanol solutions of increasing concentration 
until pure, water-free alcohol is reached. Ethanol is miscible with water in all proportions so that the water in 
the specimen was progressively replaced by the alcohol. A series of increasing concentrations was used to avoid 
excessive distortion of the tissue. A typical dehydration process for specimens, not more than 4 μm thick was: 
70% ethanol for 15 min, 90% ethanol for 15 min, 100% ethanol two times for 15 min, 100% ethanol for 30 min and 
100% ethanol for 45 min, respectively. At this point, all but a tiny residue of tightly bound molecular water were 
removed from the specimen.

After dehydration, each tissue sample was embedded into melted paraffin wax, the block was mounted on a 
microtome and cut into thin slices (2 µm). The slices were affixed to microscope slides at which point the wax 
was removed with a solvent and the tissue slices attached to the slides are rehydrated and were ready for staining. 
Finally, after the application of hematoxylin, followed by a rinse in a weak acid solution to remove excess staining, 
each tissue slice was counterstained with eosin60.

For detail histopathological and semiquantitative analyses, Olympus BKS-43 (OLYMPUS, Japan) with a digi-
tal camera and Cell D software (MUNSTER, Germany) were used. Complete histopathological and semiquanti-
tative analyses were performed by pathologists blind of the treatment groups.

Experimental 
group Treatments

Total number of 
animals/group (n) Dose (mg/kg im)

1. control 10 0.9% NaCl (1 ml/kg)

2. asoxime 10 0.1LD50 (63 mg/kg im)

3. asoxime 10 0.5LD50 (313 mg/kg im)

4. asoxime 20 1.0LD50 (626 mg/kg im)

5. obidoxime 10 0.1LD50 (16 mg/kg im)

6. obidoxime 10 0.5LD50 (82 mg/kg im)

7. obidoxime 20 1.0LD50 (164 mg/kg im)

8. K027 10 0.1LD50 (66 mg/kg im)

9. K027 10 0.5LD50 (332 mg/kg im)

10. K027 20 1.0LD50 (664 mg/kg im)

11. K048 10 0.1LD50 (23 mg/kg im)

12. K048 10 0.5LD50 (115 mg/kg im)

13. K048 20 1.0LD50 (230 mg/kg im)

14. K075 10 0.1LD50 (8 mg/kg im)

15. K075 10 0.5LD50 (41 mg/kg im)

16. K075 20 1.0LD50 (82 mg/kg im)

Table 5.  The experimental design and oximes’ doses.
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Semiquantitative analysis.  The intensity of degenerative and vascular lesions in the lungs, stomach, liver 
and spleen were scored and counted through a light microscope in 30 tissues’ slices per group (i.e., five tissues 
from each experimental group and six slices from each tissue) with a magnification of 200x according to previ-
ously published literature25,61–67.

As shown in Table 6, the severity grades were expressed as gastric damage score (GDS), pulmonary damage 
score (PDS), hepatic damage score (HDS), and splenic damage score (SDS). Besides, the precise procedures of 
their calculating are shown in Tables 1–4.

Statistical analysis.  For statistical evaluation, commercial statistical software (Stat for Windows, R.7, STAT 
SOFT, INC., USA, 2008) was used. All results shown in tables were expressed as the mean (x) ± the standard 
deviation (S.D.). Firstly, the normality of the data distribution was evaluated using a Kolmogorov-Smirnov test. 
Then, using these results the variances in the damage scores i.e. PDS, GDS, HDS and SDS, within and between the 
sets under discussion were evaluated through the nonparametric Kruskal-Wallis test (ANOVA for multiple eval-
uations). All variances were approximated at minimum P < 0.05 level of statistical significance.

Ehhthical approval.  The Ethics Committee for Experiments on Animals, of the Military Medical Academy, 
Belgrade, Serbia approved (i) animal welfare procedures and study design (No. 282-12/2002); (ii) experimental 
protocol was performed according to the Guidelines for Animal Welfare of the Ethics Committee for Experiments 
on Animals of the Military Medical Academy, Belgrade, Serbia (No. 323-07-04943/2014-05/1), and the National 
Guidelines for Animal Welfare, Belgrade, Serbia (No. 41/2009).
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