
1Scientific Reports |         (2019) 9:16156  | https://doi.org/10.1038/s41598-019-52614-7

www.nature.com/scientificreports

Empirical design of a variant quality 
control pipeline for whole genome 
sequencing data using replicate 
discordance
Robert P. Adelson   1, Alan E. Renton2, Wentian Li3, Nir Barzilai3, Gil Atzmon4,5, 
Alison M. Goate   6, Peter Davies1 & Yun Freudenberg-Hua   1,7*

The success of next-generation sequencing depends on the accuracy of variant calls. Few objective 
protocols exist for QC following variant calling from whole genome sequencing (WGS) data. After 
applying QC filtering based on Genome Analysis Tool Kit (GATK) best practices, we used genotype 
discordance of eight samples that were sequenced twice each to evaluate the proportion of potentially 
inaccurate variant calls. We designed a QC pipeline involving hard filters to improve replicate genotype 
concordance, which indicates improved accuracy of genotype calls. Our pipeline analyzes the efficacy 
of each filtering step. We initially applied this strategy to well-characterized variants from the ClinVar 
database, and subsequently to the full WGS dataset. The genome-wide biallelic pipeline removed 
82.11% of discordant and 14.89% of concordant genotypes, and improved the concordance rate 
from 98.53% to 99.69%. The variant-level read depth filter most improved the genome-wide biallelic 
concordance rate. We also adapted this pipeline for triallelic sites, given the increasing proportion of 
multiallelic sites as sample sizes increase. For triallelic sites containing only SNVs, the concordance rate 
improved from 97.68% to 99.80%. Our QC pipeline removes many potentially false positive calls that 
pass in GATK, and may inform future WGS studies prior to variant effect analysis.

Next-generation sequencing (NGS), including whole genome sequencing (WGS) and whole exome sequencing 
(WES), is increasingly applied in clinical diagnostics and treatment development as the demand for precision 
medicine expands to more conditions and therefore more patients. There are a variety of error sources from 
sample collection through analysis, including sample contamination, the use of multiple operators, mispriming 
over or excesses of private variation, machine failure, and DNA degradation1,2. False positive variant calls may 
adversely affect genetic analysis by reducing the power to identify potential risk-modifying associations or by 
introducing spurious findings3,4. There are three general ways to validate NGS variant identification—Sanger 
sequencing, same-sample replicates, and reference samples5–8.

To ensure confidence in the NGS data used in research and clinical settings, NGS data require rigorous qual-
ity control (QC). Several WES QC pipelines have been described9,10, which use the Genome Analysis Tool Kit 
(GATK) Variant Quality Score Recalibration (VQSR) approach as their backbones while enhancing GATK’s out-
put by utilizing various hard filters to further screen data based on specific QC metrics. However, no objectively 
evaluated WGS QC pipeline had been developed until very recently11, and this pipeline did not utilize duplicate 
samples in determining QC filter thresholds or to prioritize filters based on efficacy, and it only considered bial-
lelic variants. WGS studies typically use at least one hard filter based on output parameters from variant calling, 
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but the exact filters and threshold values employed are often arbitrary or not empirically determined12–14. In 
previous studies, multiallelic (non-biallelic) variants were systematically removed in QC steps prior to down-
stream analysis11,15,16, as they were broadly deemed low in quality. However, as sample sizes in sequencing studies 
increase10,17,18, the prevalence of multiallelic variants rises19. There may be functional multiallelic variants, and 
their removal would impact the results of functional analysis of variants. Therefore, high-quality multiallelic vari-
ants need to be taken into account in order to calculate meaningful risk burdens and genetic associations, and for 
analysis pipelines and procedures to have the capacity to robustly scale up for very large datasets.

Here we designed a post-GATK WGS QC pipeline that uses replicate genotype discordance to optimize QC 
metrics derived from GATK best practices and VQSR, in a dataset-specific manner. Replicate genotype discord-
ance, rather than Sanger sequencing or using reference samples, was chosen as the validation method because of 
its ease of genome-wide application. Furthermore, replicate genotypes were used in determining high-confidence 
benchmark genotypes by the Genome in a Bottle Consortium20. Our pipeline, which includes variant-level, 
genotype-level, and sample-level filters, quantifies the efficacy of each filtering step.

Results
Empirical thresholds.  The three empirical variant-level QC thresholds—variant quality score log-odds 
(VQSLOD), mapping quality (MQ), and overall read depth (DP)—were derived from plots comparing the den-
sity curves of each parameter for discordant versus concordant ClinVar-indexed sites (Fig. 1). The VQSLOD for 
a given variant is a calibrated quality score estimated through the GATK VQSR process that attempts to balance 
sensitivity and specificity, through a machine learning approach21. These dataset-specific thresholds balanced 
maximization of the ratio of discordant to concordant genotypes removed at each step, as shown in Eq. (1), with 
removing a high percentage of all discordant genotypes (Supplementary Fig. S1). Thus, remaining sites were 
removed if VQSLOD was less than 7.81 (for SNVs only), total DP was less than 25,000, or MQ was less than 58.75 
or greater than 61.25. These variant-level thresholds were used in all three pipelines.

QC of ClinVar-indexed variants.  We first applied QC to ClinVar-indexed biallelic sites, because ClinVar 
variants have been extensively investigated by the genetics research community and expert panels22,23, and are 
more likely to be true positives. Statistics of variants retained after sequentially and independently applying each 
variant-level, genotype-level, and sample-level filter to ClinVar-indexed biallelic sites were gathered (Table 1) 
and to ClinVar-indexed triallelic sites (Supplementary Table S1). Applying each filter on its own, in addition to 
sequentially, allowed for each filter’s efficacy to be determined independently.

Genotypes were concordant if the non-reference genotypes at a particular variant site were identical among 
replicate samples. Before QC, 99.38% of the 9,946,118 genotypes at ClinVar-indexed biallelic sites (Table 2) and 
89.79% of the 197,876 genotypes at ClinVar-indexed triallelic sites (Supplementary Table S2) were concordant. 
Our QC steps improved the replicate concordance rate for biallelic variants in the ClinVar subset to 99.73% 
(Table 2)−99.80% for SNVs and 98.40% for indels. We demonstrated the effect of each filtering step on var-
iant removal, both as independent filters on the full dataset as well as when serially applied. The six sequen-
tial variant-level filters removed 7.99% of 38,857 ClinVar-indexed variants (Supplementary Data S1), including 
74.87% of 386 variants with at least one discordant genotype (Supplementary Data S2) and the two genotype-level 
filters removed 5.80% of the 9,259,509 remaining genotypes. The sample-level missingness filter did not remove 
any samples—missingness ranged from 5.63% to 7.19%. When applied independently, filtering on VQSLOD 
removed the most variant sites (4.57%), while at the genotype level the GQ filter removed the most genotypes 
(6.25%).

In order to gauge the efficacy of each variant-level filter at removing likely false-positive sites, concordance 
rate at each step was calculated under sequential conditions (Table 2) and independent conditions (Table 3). A 
filter was ranked higher if its removal rate of discordant genotypes relative to concordant genotypes was greater, 
calculated using Eq. (1). For ClinVar-indexed biallelic sites, the variant missingness filter was more than 5 times 

Figure 1.  Density plots used to empirically determine thresholds for (A) DP, (B) MQ, and (C) VQSLOD (for 
SNVs only). These plots compare the densities for discordant and concordant sites, and the thresholds are set in 
order to maximize the ratio of discordant to concordant sites filtered out. Sites were removed if their total DP was 
less than 25,000, MQ was less than 58.75 or greater than 61.25, or VQSLOD was less than 7.81 (for SNVs only). 
The minimum VQSLOD value to be designated “PASS” in GATK was –3.769 for SNVs and –0.961 for indels.

https://doi.org/10.1038/s41598-019-52614-7


3Scientific Reports |         (2019) 9:16156  | https://doi.org/10.1038/s41598-019-52614-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

more efficient at removing discordant genotypes than the next best filter, MQ. Throughout the sequential QC 
process, the concordance rate increased with each QC filter step (Table 2), an indication that applying any of these 
variant hard filters improves the dataset quality after using GATK, as measured using concordance as a proxy. 
For ClinVar-indexed triallelic sites, the concordance rate increased at higher magnitude with each QC step, but 

Variant Level Site Removal Criterion

Sequential Filtering Independent Filtering

# Pass (% Pass), Variants

— Monomorphic 38,402 (100) 38,402 (100)

1 Missingness ≥ 5% 38,359 (99.89) 38,776 (99.79)

2 Blacklisted region or LCR 38,359 (100) 38,402 (100)

3 DP < 25,000 37,771 (98.47) 38,098 (98.05)

4 MQ < 58.75 or MQ > 61.25 37,025 (98.02) 37,696 (97.01)

5 VQSLOD < 7.81 36,415 (98.35) 37,080 (95.43)

6 InbreedingCoeff < –0.8 35,751 (98.18) 38,102 (98.06)

Genotype Level Genotype Removal Criterion # Pass (% Pass), Genotypes

7 DP < 10 9,253,660 (99.94) 10,037,482 (99.74)

8 GQ < 20 8,722,641 (94.26) 9,435,150 (93.75)

Sample Level Sample Removal Criterion # Pass (% Pass), Samples

9 Missingness ≥ 10% 259 (100) 259 (100)

Table 1.  Outcome from the hard filters utilized in the QC pipeline, at the variant, genotype, and sample levels, 
for ClinVar-indexed biallelic sites only. The third column represents the number and percentage of variants, 
genotypes, and samples remaining following the serial application of all nine filters. The fourth column presents 
the outcome of applying each individual filter to the full ClinVar-indexed dataset (38,402 biallelic variants), 
indicating each filter’s absolute removal rate. Of 17,585,919 biallelic sites genome-wide, 38,402 matched to 
ClinVar (which contains 416,908 variants in the 2019-01-02 version used here). Matching was performed using 
ClinVar version 2019-01-02.

Variant Filter Site Removal Criterion
Concordance Rate of 
Passing Sites (%)

Change in 
Rate (%)

— Monomorphic 99.375 —

1 Missingness ≥ 5% 99.473 +0.098

2 Within blacklisted region or LCR 99.473 0

3 DP < 25,000 99.563 +0.090

4 MQ < 58.75 or MQ > 61.25 99.695 +0.132

5 VQSLOD < 7.81 99.725 +0.030

6 InbreedingCoeff < –0.8 99.729 +0.004

Table 2.  Non-reference concordance rates after running each variant-level filter in the QC pipeline in 
succession, for ClinVar-indexed biallelic sites only. These values were calculated following removal of non-
‘PASS’ sites according to GATK HaplotypeCaller. A pair of genotypes is concordant when the genotypes of a 
duplicate pair are identical. The concordance change was always positive or zero. Prior to QC, 99.375% of the 
9,946,118 replicate genotypes at ClinVar-indexed biallelic sites were concordant. Following QC, 99.729% of the 
8,722,641 remaining genotypes were concordant. Matching was performed using ClinVar version 2019-01-02.

Rank Filter

Negative Predictive Value Specificity

Discordances among Discarded Genotypes (%) % of Discordant Genotypes Removed

ClinVar Biallelic All Biallelic All Triallelic ClinVar Biallelic All Biallelic All Triallelic

1 Missingness 87.65 1.98 42.55 18.39 0.03 34.92

2 MQ 16.19 8.85 42.91 48.70 55.38 79.98

3 DP 13.97 20.72 45.97 27.46 19.21 53.34

4 VQSLOD* 12.16 6.77 41.15 55.96 68.65 99.03

5 InbreedingCoeff 2.25 2.31 29.62 4.40 3.65 37.76

Table 3.  Ranking of variant-level filters for ClinVar-indexed biallelic sites, and genome-wide biallelic and 
triallelic sites. The filters are ranked in order from greatest to lowest preference for filtering out discordant 
genotypes. Negative predictive value refers to a filter’s ability to remove discordant genotypes (true negatives) 
and minimize the number of concordant genotypes removed (false negatives). Specificity refers to a filter’s 
ability to identify and remove discordant genotypes (true negatives) and minimize the number of discordant 
genotypes retained (false positives). Matching was performed using ClinVar version 2019-01-02. *Filter applied 
to biallelic and triallelic sites involving only SNVs.
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reached a lower final concordance rate of 94.22% (Supplementary Table S2). Although 7.32% of concordant gen-
otypes were removed in QC, 74.87% of discordant genotypes were removed at ClinVar-indexed biallelic sites. The 
VQSLOD filter, which is commonly used in practice, accounted for removal of 55.96% of discordant genotypes 
when applied to all ClinVar-indexed biallelic sites (only 12.16% of all genotypes removed by the VQSLOD filter, 
however, were discordant).

There are assertion criteria for each variant entry in the ClinVar23. These assertion criteria indicate the number 
of submitters (one or multiple), whether or not assertion criteria or evidence were provided in the submissions, 
and whether the assertion criteria conflict between multiple submitters. The six different assertion criteria for the 
ClinVar-indexed variants in this study vary from no assertion criteria provided (0 stars) to 3 stars (reviewed by 
an expert panel, the strongest assertion in our dataset). For ClinVar-indexed biallelic sites, the percentage of total 
sites removed (p = 0.022 by Fisher’s exact test), concordances removed (p < 0.0001), and discordances removed 
(p < 0.0001) varied significantly among the different assertion criteria (Supplementary Table S3). Notably, one 
discordant and three concordant 3-star ClinVar-indexed variants, all located with 400 kilobases on chromosome 
2, were removed in QC (Supplementary Table S4).

QC of genome-wide biallelic and triallelic sites.  We applied the QC pipeline designed for 
ClinVar-indexed variants to genome-wide biallelic and triallelic sites. Before QC, 98.53% of 30,137,375 
non-reference replicate genotypes at genome-wide biallelic sites (98.69% at SNVs and 96.89% at indels) and 
84.16% of 2,604,018 non-reference replicate genotypes at genome-wide triallelic sites were concordant. Variant, 
genotype, and sample counts of all biallelic and triallelic sites throughout the QC process show the removal rate 
at each step (Table 4). Our QC steps improved the replicate non-reference concordance rate for genome-wide 
biallelic variants from 98.53% to 99.69% (Table 5)—from 98.69% to 99.81% for SNVs and from 96.89% to 98.53% 
for indels. Among genome-wide triallelic sites, the replicate non-reference concordance rate increased from 
84.16% to 94.36%. The six sequential variant-level filters removed 16.06% of all biallelic sites and 42.20% of all 
triallelic sites. Among the 9,260,109 removed non-reference genotypes at biallelic sites, 1,941,431 (20.97%) were 
discordant. Additionally, 16.45% of biallelic SNVs and 12.03% of biallelic indels were filtered out (Fig. 2). The two 
genotype-level filters removed 0.54% of the remaining genotypes among biallelic sites and 8.18% of the remaining 
genotypes among triallelic sites. The sample-level missingness filter in the biallelic pipeline did not remove any 
samples—missingness ranged from 0.26% to 1.07% following QC. When considering all triallelic sites after QC, 
sample-level missingness was considerable, ranging from 6.87% to 13.67%. However, when only triallelic sites con-
taining two SNVs were considered, no samples failed QC, with post-QC sample-level missingness ranging from 
4.85% to 8.31%. Following QC, triallelic sites containing only SNVs comprised 2.32% of sites (Supplementary 
Table S5). This fraction is similar to the proportion of multiallelic SNVs identified in Phase 3 of the 1000 Genomes 
Project, but lower than the 6.4% from the Exome Aggregation Consortium (ExAc) data19, likely due to the smaller 
sample size in our study and the non-linear increase in the proportion of multiallelic sites with sample size.

As before, to determine the efficacy of each variant-level filter in the biallelic and triallelic pipelines at remov-
ing likely lower-quality sites, the non-reference concordance rate at each step was calculated under sequential 
conditions (Table 5) and as a stand-alone independent filter (Table 3). In the biallelic pipeline, the variant-level 
DP filter was more than twice as efficient at removing discordant genotypes (while retaining concordant sites) 
than the next best filter (MQ), while the variant-level missingness filter removed very few discordant sites. In the 
triallelic pipeline, most variant-level filters achieved a discordant to concordant genotype removal ratio of approx-
imately 2-to-3. Throughout the sequential QC process, the concordance rate generally increased with each step 
(Table 5). Among biallelic sites, the six variant-level hard filters removed 14.89% of concordant genotypes and 
82.11% of discordant genotypes. The VQSLOD filter accounted for removal of 68.65% of all discordant genotypes 

Variant Level Site Removal Criterion

Biallelic, Sequential Filtering Triallelic, Sequential Filtering

# Pass (% Pass), Variants

– Monomorphic 17,585,919 (100) 1,536,657 (100)

1 Missingness ≥ 5% 17,584,990 (99.99) 1,536,085 (99.96)

2 Blacklisted region or LCR 17,584,990 (100) 1,536,085 (100)

3 DP < 25,000 17,346,931 (98.65) 1,345,292 (87.58)

4 MQ < 58.75 or MQ > 61.25 15,971,098 (92.17) 968,987 (72.03)

5 InbreedingCoeff < –0.8 15,661,311 (98.06) 949,810 (98.02)

6 VQSLOD < 7.81 14,760,982 (94.25) 888,194 (93.51)

Genotype Level Genotype Removal Criterion # Pass (% Pass), Genotypes

7 DP < 10 3,819,276,086 (99.96) 202,424,447 (98.89)

8 GQ < 20 3,800,347,137 (99.50) 187,956,031 (92.85)

Sample Level Sample Removal Criterion # Pass (% Pass), Samples

9 Missingness ≥ 10% 259 (100) 193 (74.52)

Table 4.  Outcome from the hard filters utilized in the QC pipeline, at the variant, genotype, and sample levels, 
for genome-wide biallelic and triallelic sites. These values were calculated following removal of non-‘PASS’ sites 
according to GATK HaplotypeCaller. The third and fourth columns include results when only variants passing the 
preceding filter move on to the subsequent filter. If only SNV-SNV triallelic sites are considered for the triallelic 
pipeline, zero samples are removed in the triallelic pipeline (the missingness for all samples remained below 8.5%).
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when applied on its own. Among triallelic sites, 34.46% of concordant genotypes and 79.19% of discordant gen-
otypes were removed; the VQSLOD filter removed 66.82% of discordant genotypes when applied independently.

The transition/transversion (Ti/Tv) ratio was calculated at each step in the biallelic and triallelic pipelines 
(Table 6) as a broad quality check for sequencing and SNV quality, as is common practice9,24–27. The biallelic sites 
originally had a Ti/Tv ratio of 2.04, which increased nearly constantly as variant-level filters were applied, reach-
ing a final value of approximately 2.16—similar to the Ti/Tv ratio expected for known variants from reported 
WGS data28. This indicates that, among biallelic sites in this QC process, transversions were removed at a higher 
rate than transitions. The triallelic SNV-SNV sites (with two SNV alternate alleles) originally had a Ti/Tv ratio of 
0.94, which generally decreased as variant-level filters were applied until the final ratio of 0.85 was reached. This 
change was opposite that of the biallelic Ti/Tv ratio—sites containing a transition were removed at a significantly 
higher rate than sites containing two transversions in the triallelic pipeline (56.63% and 51.21%, respectively; 
p < 0.0001 by Fisher’s exact test). As indicated in a density plot of VQSLOD (Supplementary Fig. S2), differenti-
ating between transitions and transversions, a greater proportion of transversions than transitions had VQSLOD 
values below the threshold of 7.81.

Further analysis was conducted to compare the removal rate and discordance rate of rare (MAF ≤ 1%) ver-
sus common (MAF ≥ 5%) variants (Supplementary Table S6). The percentage of concordances removed (false 
negative rate) was not significantly different between rare and common variants (p = 0.57). The percentage of 
discordances removed (true negative rate) was significantly higher for rare variants than for common variants 
(p < 0.0001).

Variant Filter Site Removal Criterion

Concordance Rate of Passing Sites (%)

All Biallelic Biallelic SNVs Biallelic Indels All Triallelic

— Monomorphic 98.532 98.690 96.887 84.155

1 Missingness ≥ 5% 98.533 98.690 96.887 84.155

2 Within blacklisted region or 
LCR 98.533 98.690 96.887 84.155

3 DP < 25,000 98.798 98.904 97.673 87.570

4 MQ < 58.75 or MQ > 61.25 99.401 99.482 98.536 92.704

5 InbreedingCoeff < –0.8 99.404 99.486 98.529 92.671

6 VQSLOD < 7.81 99.694 99.810 98.529 94.358

Table 5.  Non-reference concordance rate after running each hard filter in the QC pipeline in succession at the 
variant level, for biallelic and triallelic variants. These values were calculated following removal of non-‘PASS’ 
sites according to GATK HaplotypeCaller. A pair of genotypes is concordant when the genotypes of a duplicate 
pair are identical. The change in concordance rate was always positive. Prior to QC, 98.532% of the 30,137,375 
replicate non-reference genotypes at genome-wide biallelic sites were concordant; following QC, 99.694% of 
the 25,180,411 remaining non-reference genotypes were concordant. Prior to QC, 84.155% of the 2,604,018 
replicate genotypes at genome-wide triallelic sites were concordant; following QC, 94.358% of the 1,522,106 
remaining genotypes were concordant.

Figure 2.  The distribution of biallelic and triallelic sites. This distribution is shown for the original dataset, 
following removal of non-‘PASS’ variants (according to GATK HaplotypeCaller), and following application of 
all variant-level filters.
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Triallelic pipeline particulars.  The outputs of the triallelic pipeline were also measured by distinguishing 
between four types of triallelic sites—SNV-SNV (two SNV alternate alleles), SNV-indel (one SNV alternate allele 
and one indel alternate allele), indel-indel (two indel alternate alleles), and other-indel (one indel alternate allele 
and one symbolic alternate allele such as ‘*’, which indicates a spanning deletion)29. Variant counts of these four 
types of triallelic sites throughout the QC process show the removal rate at each step (Supplementary Table S7). 
The six sequential variant-level filters removed 49.92% of SNV-SNV (41.92% without the VQSLOD filter), 32.92% 
of SNV-indel, 21.88% of indel-indel, and 52.68% of other-indel sites. The concordance rate at each step was cal-
culated under sequential conditions (Supplementary Table S8) and with independent application of the filters. 
Among triallelic sites, the VQSLOD filter was only applied to SNV-SNV sites; this filter was the most effective of 
the variant-level filters at removing discordant SNV-SNV genotypes. The DP filter was most effective at removing 
discordant SNV-indel, indel-indel, and other-indel genotypes while retaining concordant genotypes, and compa-
rable to the VQSLOD filter when eliminating poor SNV-SNV genotypes (Supplementary Table S9).

For all four triallelic subtypes, the concordance rate almost always increased with the sequential application of 
variant-level filters, as was the case for triallelic sites overall (Supplementary Table S8). At triallelic sites, without 
applying the VQSLOD filter, the sequential QC process removed 93.40% of SNV-SNV, 62.57% of SNV-indel, 
69.49% of indel-indel, and 72.25% of other-indel discordant non-reference genotypes. Due to the use of the 
VQSLOD filter, a higher percentage of SNV-SNV sites were removed compared to SNV-indel and indel-indel 
sites (all removed using the same filter thresholds, besides VQSLOD). Our QC pipeline was more effective at 
removing SNV-SNV discordant genotypes than such genotypes at SNV-indel and indel-indel sites. The removal 
rate of transition- and transversion-containing triallelic sites is shown in the supplementary data (Supplementary 
Table S10). The decrease in the Ti/Tv ratio of triallelic sites with sequential application of the variant-level filters 
was driven by removal of transition-indel sites, while the Ti/Tv ratio of SNV-SNV sites increased.

Discussion
Our study found that large numbers of variants that passed GATK VQSR contained substantial numbers of dis-
cordant genotypes in our cohort (Supplementary Fig. S3). This implies that NGS studies performed on differ-
ent sequencing platforms may introduce errors that could affect association studies. Many of our findings—the 
importance of considering triallelic SNV-SNV sites, the benefits of applying hard filters to a GATK variant callset, 
and the utility of a small number of replicate samples in quality control—can be applied generally to WGS data-
sets. While the three empirical filter thresholds are dataset-specific, VQSLOD can be filtered on without replicate 
sites by removing the lower peak in its bimodal distribution. The filters for inbreeding coefficient, variant- and 
sample-level missingness, GQ, and genotype-level DP can be used across many datasets. Given that the false 
negative rate did not significantly differ between rare and common variants, this pipeline can be utilized for 
populations including various ethnicities (given that variant allele frequencies may differ between ethnicities).

The QC pipeline that we implemented worked similarly well for biallelic SNVs and indels (final non-reference 
concordance rates of 99.81% and 98.53%, respectively) and very well for triallelic SNV-SNV sites (final 
non-reference concordance rate of 99.80%), but was less successful for other triallelic sites (final non-reference 
concordance rates ranging from 84.78% to 97.29%). The six hard variant-level filters used in our pipeline removed 
nearly 75% of discordant genotypes at ClinVar-indexed biallelic sites and more than 82% of discordant gen-
otypes at genome-wide biallelic sites. The genome-wide biallelic pipeline had a specificity (for removing dis-
cordances) of 82.11% and sensitivity (for retaining concordances) of 85.11%, while the genome-wide triallelic 
pipeline had a specificity of 79.19% and sensitivity of 65.54%. However, the removal of triallelic SNV-SNV sites 
had a specificity of 93.40% and sensitivity of 76.84%. The performance of genome-wide biallelic sites was certainly 
stronger than that of triallelic sites as a whole, but the triallelic SNV-SNV subset was comparable in performance 
to genome-wide biallelic sites.

As larger numbers of samples are required for rare variant association studies, investigators often merge NGS 
data from many different sources in a meta-analysis. If an NGS case/control association study runs all cases on 
one platform and controls on another, spurious findings could result. Therefore it is preferable for all samples in 
a WGS dataset to be sequenced using the same platform to minimize the potential introduction of multifactorial 

Filter/Step

Biallelic Sites Triallelic Sites

Ti/Tv Change (%) Ti/Tv Change (%)

(1) Original 1.88322 — 1.88322 —

(2) Biallelic (or 
Triallelic) Only 2.04350 +8.511 0.94341 −0.940

(3) ‘PASS’ 2.14108 +4.775 0.96112 +0.018

(4) Missingness 2.14111 +0.001 0.96122 +0.0001

(5) DP 2.14874 +0.356 0.94256 −0.019

(6) MQ 2.14418 −0.212 0.85855 −0.084

(7) InbreedingCoeff 2.14707 +0.135 0.87857 +0.020

(8) SNV VQSLOD 2.16381 +0.780 0.85444 −0.024

Table 6.  Ti/Tv ratio at each variant-level step in the genome-wide biallelic and triallelic pipelines. Ti/Tv 
increases by 0.12 (5.9%) among biallelic SNVs, from before GATK is run (step 2) through the end of QC. Ti/Tv 
decreases by 0.089 (9.4%) among triallelic SNV-containing sites (SNV-SNV and SNV-indel).
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errors prior to alignment. Some of these discordances may be due to differences in the sequencing process and 
machines—the 98.53% concordance rate in this case was lower than the average 99.49% in a previous study that 
in part looked at concordance among replicate sample genotypes sequenced on identical machines28. The use of 
a small number of duplicate samples (where feasible) is a useful method for identifying variant calls of low con-
fidence in NGS and for determination of empirical thresholds for parameters such as VQSLOD, MQ, and overall 
DP. However, filtering thresholds derived from GATK’s recommendations or a literature consensus can be used 
even without the running of some samples in duplicate. Additionally, these QC filters are flexible—stringent or 
relaxed thresholds can be used depending on general knowledge of a dataset’s quality and the goals of a sequenc-
ing project, and any set of these filters can be used to improve different aspects of data quality. For example, if read 
depth and potential excess heterozygosity are of foremost concern, then filtering on DP and inbreeding coefficient 
would be useful in improving concordance and callset quality.

As expected, the VQSLOD filter removed the highest percentage of all discordant genotypes of all variant-level 
filters (55.96% for ClinVar-indexed and 68.65% for genome-wide biallelic sites). This is partly due to the GATK 
machine learning algorithm ranking all variants using the VQSLOD score, which accounts for multiple sequenc-
ing parameters depending on the user’s input into the software. Our empirically derived VQSLOD score cutoff 
maximized the ratio of removal of biallelic discordant genotypes to concordant genotypes, but it still removed 
14.89% the initial 30,137,375 concordant non-reference replicate biallelic genotypes. The generally lower confi-
dence of discordant genotype calls is evidenced by the lower VQSLOD scores indicated in a density plot of sites 
containing only concordant genotypes versus sites containing one or more discordances (Fig. 1c). Notably, the 
VQSLOD density plot indicated that this parameter had a bimodal distribution both for concordant and discord-
ant sites, with a majority of discordant sites in the lower-scored peak and a majority of concordant sites in the 
higher-scored peak. This bimodality was consistent with findings from a previous study21. Even without replicate 
sequencing, a filter which removes variants whose VQSLOD scores fall in the lower peak would remove a high 
percentage of potential false positives. Furthermore, the VQSLOD filter that we applied to our dataset showed 
particularly high specificity (99.03%) but low negative predictive value (41.15%) for discordant genotypes when 
removing triallelic SNV-SNV variants.

An additional interesting finding is the steady increase in Ti/Tv ratio for biallelic sites in all samples with 
the sequential application of the six variant-level filters. This indicates that a higher percentage of transversions 
are removed than are transitions, a result of the distribution of VQSLOD scores for transversions being slightly 
left-shifted (lower) compared to the distribution for transitions. The assignment of lower VQSLOD scores to 
transversions may originate from transversions being less prevalent than transitions in protein-coding regions 
of the human genome30,31, as well as the lower allele frequency of coding transversions32, which is also true in the 
training set (Ti/Tv = 2.00) utilized in VQSR28. Since transversions are less common, when the algorithm comes 
upon a real transversion in the test set it is less likely to have strong quality parameters and therefore more likely 
to be assigned a lower VQSLOD score.

Triallelic variants are understudied—with the few focused studies utilizing WES rather than WGS—and there-
fore studies typically investigate only biallelic variants (for which most sequence analysis tools are constructed)33. 
The results of the present study confirm that triallelic sites as a group are indeed lower in quality than biallelic 
sites. However, as indicated in our study, many triallelic sites—in particular, SNV-SNV sites—are high in quality 
and are thus retained through a rigorous QC process identical to that applied to biallelic variants. As would be 
expected given the higher removal rate of biallelic indels compared to biallelic SNVs, SNV-SNV sites were more 
concordant throughout QC than sites containing at least one indel variant. It is vital to consider likely true trial-
lelic sites, because there are several well-established Mendelian disease variants that appeared at triallelic sites. 
One triallelic site harbors the ΔF508 mutation in CFTR (rs113993960), causal for cystic fibrosis in the homozy-
gous state, an allele that is present in approximately 1% of Europeans and Americans34,35. In the 259-subject 
dataset used here, three individuals (1.16%) were heterozygous for this mutation, with no homozygotes observed. 
Additionally, the MDR1 (ABCB1) triallelic SNV G2677/T/A is well studied and relevant in inflammatory bowel 
disease36. Both of these ClinVar-indexed sites passed all QC steps in this study. Exclusion of all triallelic sites, a 
common practice in NGS studies such as the NHLBI Exome Sequencing Project (ESP)19,37, would have removed 
these well-known disease-causing variants from further consideration. In searching for disease-causing alleles in 
individuals (for diagnosis) and cohorts, especially with increasingly large NGS datasets, it is certainly important 
to consider including high-quality triallelic sites19.

Consistent with our expectation, ClinVar-indexed variants had greater sequencing quality compared to 
the genome-wide biallelic callset—6.90% of ClinVar-indexed biallelic sites were removed, while 16.06% of 
genome-wide biallelic sites were filtered out through QC. This genome-wide removal rate is similar to the filter-
ing result in the ADSP WGS pipeline11. Additionally, ClinVar-indexed biallelic had a post-GATK concordance 
rate of 99.38%, while genome-wide biallelic sites had a post-GATK concordance rate of 98.53%. Our findings 
attest to the value of curated variant databases such as ClinVar, as many variants present in ClinVar have been 
quality-checked during clinical investigations. Despite this substantial difference in removal rate, both sets of 
variants had discordant sites as evidenced by the use of duplicate concordance testing. Our genome-wide biallelic 
pipeline resulted in a similar final concordance rate as the ClinVar-indexed biallelic pipeline (99.73% and 99.69%, 
respectively), which is evidence for the genome-wide efficacy of this QC methodology.

Although there are many potential follow up studies to this investigation, three particular avenues are of great 
interest. First, any sequencing study needs to factor in certain sequencing errors, as illustrated in our analysis of 
discordant genotypes in replicate samples (1.47% of genotypes at biallelic sites and 15.85% of genotypes at trial-
lelic sites were discordant post-GATK), and must determine the source of these errors in order to improve data 
quality for clinical or research interpretation. Potential sources of these discordances include operator error dur-
ing sequencing, machine-borne error, differences in sequencing accuracy between machines, DNA degradation 
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or contamination over time between sequencing runs, and differences in library prep kits and chemistry. The list 
of removed ClinVar-indexed variants is included as a supplementary file. Second, post-GATK analysis of both 
the original unfiltered data and the filtered data following QC will help determine whether such fine-tuning 
of hard filters improves the investigation of pathogenic variant burden and other clinically relevant features of 
interest. Third, the bias of GATK against transversions when assigning VQSLOD scores is interesting, and future 
investigation may shed more light on this observation. The findings here suggest that using callset-specific hard 
filters in QC can successfully remove discordant and other lower-quality sites, which is vital for the success of 
next-generation sequencing analysis.

In summary, we have designed a scalable dataset-specific QC pipeline applicable to GATK variant callsets, 
as well as other toolkits outputting similar QC parameters. By using replicate samples sequenced on different 
machines from the same manufacturer, we highlighted the discordant genotypes developed from the use of dis-
similar instruments and we utilized these discordances as a proxy for quantifying removal of likely false-positive 
variants. Triallelic sites were thoroughly investigated, and those sites involving only SNVs were found to be close 
in quality to biallelic sites. This QC pipeline can be utilized and adapted for many NGS studies of various diseases 
and control samples, providing a set of higher-quality variant calls and genotypes prior to ensuing analyses.

Methods
Ethics approval and consent to participate.  This study analyzed de-identified datasets and is not con-
sidered human subjects research according to the institutional review board (IRB) at Northwell Health. DNA 
samples for sequencing were collected with written informed consent in accordance with a protocol approved by 
the IRB at Montefiore Medical Center and the Committee on Clinical Investigation at the Albert Einstein College 
of Medicine, Northwell Health, and the National Institute on Aging Genetics Initiative for Late-Onset Alzheimer 
Disease/National Cell Repository for Alzheimer Disease (NIA-LOAD/NCRAD). This work was carried out in 
accordance with relevant institutional and governmental guidelines and regulations.

Whole genome sequencing, alignment, variant genotype calling, and variant annotation.  WGS was 
performed to an average depth of 30 × in 262 individuals, using purified DNA from peripheral whole blood. The 
details of subject enrollment were previously described38, and principal component analysis showed that 255 
subjects are of Ashkenazi Jewish ancestry and seven subjects have European ancestry.

The first batch of 125 subjects were sequenced via WGS by Illumina, Inc., in 2012 using the Illumina HiSeq. 
2500, at 30 × average coverage39. A second batch, consisting of 137 new subjects and eight subjects from the first 
batch (to serve as a subset for QC), was sequenced via WGS by New York Genome Center (NYGC) in 2016 using 
the Illumina HiSeq X Ten at 30 × average coverage28,39. Library preparation, sequencing protocols, alignment 
specifications, genotype calling, and primary annotation procedures are provided (Supplementary Text S1; 

Figure 3.  Schematic for the genome-wide biallelic, triallelic, and ClinVar-indexing pipelines. The pipelines 
include: indexing sites in the full VCF files to the ClinVar database (in the ClinVar-indexing pipeline only), several 
applications of pre-QC filters and annotations, variant-level filtration, sample-level filtration, genotype-level 
filtration, a recommended manual review of the final output, and study-specific statistical and association analyses.
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Supplementary Table S11). The WGS parameters differed slightly by sequencing center, while all subsequent 
alignment and calling parameters were identical (Supplementary Table S11). NYGC performed alignment against 
the GRCh37 human reference build using the Burrows-Wheeler Aligner (BWA) and variant calling using GATK 
to generate 25 single-chromosome files in the Variant Call Format (VCF)—one per autosome and sex chromo-
some, and one for mitochondrial DNA40. The quantities of biallelic and multiallelic (triallelic and ≥4 allele) sites 
were determined before proceeding, and again following the full QC (Supplementary Table S5).

Prior to application of the variant-level filters, samples were removed if they fell under any of three criteria: 
(1) If it was a duplicate sample sequenced in an earlier batch; (2) if subjects were related with identity by descent 
(IBD) parameter PI-HAT ≥ 0.3, all members but one from that sibling group were removed; and (3) if a sample 
had an evidenced sequencing error. Three samples were removed due to first-degree kinship with subjects in the 
remainder of the cohort. Duplicate samples were used for concordance testing. Samples that were sequenced once 
were only used when calculating aggregate parameters, such as VQSLOD.

ClinVar-indexing, biallelic, and triallelic pipelines.  We created three distinct pipelines composed of 
overlapping components, referred to hereafter as the ClinVar-indexing, biallelic, and triallelic pipelines (Fig. 3).

For the ClinVar-indexing pipeline, monomorphic sites were removed. The remaining autosomal variants were 
checked for matches in the ClinVar database, version 2019-01-0222,23. Biallelic sites were read from the original 
variant callset, while triallelic sites were first split to yield two variant rows each (one per alternate allele). Each 
variant was disambiguated with a unique identifier of the format “chrom.pos.ref.alt” (CPRA), a concatenation 
of the chromosome number, GRCh37 position, reference allele, and alternate allele for the variant. Unmatched 
variants were removed from further consideration in this pipeline. Subsequently, only variants with a “PASS” 
in the FILTER column of the VCF were considered11, which in this instance included single nucleotide variants 
(SNVs) with a VQSLOD value ≥ –3.769 (Tranche 99.8%) and indels with a VQSLOD value ≥ –0.961 (Tranche 
99.0%). The individual ClinVar-indexed autosome VCFs were combined into a single file, and annotated with 
dbSNP reference SNP ID numbers (rsIDs) from their corresponding ClinVar entries41. Two further annotations 
were added—INDEL and SNV—to indicate the variant type. This annotated file was fed into the filtration por-
tion of the pipeline. Since ClinVar indexing reduces the number of variants substantially, the ClinVar-indexing 
pipeline was scripted in R using the packages seqMINER, VariantAnnotation, and Biostrings (Supplementary 
Text S2)42–44.

The biallelic pipeline was written in a series of shell scripts (Supplementary Text S3), using bcftools and 
vcftools, which are adaptable for workflow environments such as Snakemake40,45,46. Each autosome VCF was 
handled individually, rather than concatenating the files as in the ClinVar-indexing pipeline. Again, each variant 
was disambiguated with a CPRA identifier, and monomorphic and multiallelic sites were removed, and sites with 
a value besides “PASS” in the FILTER column were removed10,11,40.

The triallelic pipeline differed from the biallelic pipeline by the removal of non-triallelic sites and splitting of 
triallelic sites into one line per allele47.

Filters and threshold determination.  A total of nine QC filters were applied in each pipeline (Table 7). 
These QC filters were applied identically in all three pipelines, with six variant-level filters, two genotype-level 
filters, and one sample-level filter.

The six variant-level filters can be applied in any order. Each variant position was checked against the UCSC 
Blacklist and a list of low-complexity regions (LCRs)48–50, both of which refer to sequence regions that are difficult 
to map. Variants overlapping these regions were removed. Variant sites with missingness greater than or equal to 
5% were removed51; this stringent filter was selected due to our relatively small sample size, whereas more lenient 
variant missingness filters, such as 10% or 20%, are often used in studies of many thousands of individuals11,52. 
Three additional thresholds—variant-level DP, MQ, and VQSLOD—were empirically determined. These three 
hard filter thresholds were chosen to balance removing as many discordant genotypes as possible with maximiz-
ing the ratio of concordant to discordant genotypes retained, with the ratio based on the formula

Variant Level Site Removal Criterion

1 Missingness ≥ 5%

2 Within blacklisted region or LCR

3 DP < 25,000

4 MQ < 58.75 or MQ > 61.25

5 VQSLOD < 7.81

6 InbreedingCoeff < –0.8

Genotype Level Genotype Removal Criterion

7 DP < 10

8 GQ < 20

Sample Level Sample Removal Criterion

9 Missingness ≥ 10%

Table 7.  Hard filters utilized in the QC pipeline, at the variant, genotype, and sample levels. The thresholds for 
steps 4 through 6 (DP, MQ, and VQSLOD) were determined empirically, by comparing density plots for those 
parameters in concordant and discordant variants.
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− p
p

1
(1)

where p is the fraction of genotypes that are discordant and (1 – p) is the fraction of genotypes that are concord-
ant. Additional sites were removed if the inbreeding coefficient was less than –0.8, in order to remove sites with 
excess heterozygosity, as recommended by GATK10,24,27.

Genotype-level filters were then applied. A genotype was removed if its read depth (DP) was less than 10, a 
value used in several previous investigations using WGS at 30 × coverage10,11. Additionally, a genotype was 
removed if its genotype quality (GQ) was less than 20, because if GQ < 20 there is a > 1% likelihood of the geno-
type call being false9.

Following the removal of low-quality genotypes, missingness was calculated for each sample based on the 
remaining genotypes. A sample was removed if its missingness was greater than or equal to 10%, a conservative 
threshold11,51.

Data availability
All whole genome sequencing data reported in this article will be deposited to the National Institute on Aging 
Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS). We are currently performing further analyses on 
this data. In the meantime, reasonable requests for deidentified genomic data should be sent to the corresponding 
author.
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