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Speeding up maximum population 
transfer in periodically driven multi-
level quantum systems
Sebastián carrasco1*, José Rogan1,2 & Juan Alejandro Valdivia1,2

A fast and robust approach to controlling the quantum state of a multi-level quantum system is 
investigated using a twofrequency time-varying potential. A comparison with other related approaches 
in the context of a two-level system is also presented, showing similar times and fidelities. As a concrete 
example, we study the problem of a particle in a box with a periodically oscillating infinite square-well 
potential, from which we obtain results that can be applied to systems with periodically oscillating 
boundary conditions. We show that the transition between the ground and first excited state is about 
20 times faster than the one performed using a single frequency, both with fidelity of 99.97%. The 
transition time is about 3.5 times the minimum allowed by quantum mechanics. A test of the robustness 
of the approach is presented, concluding that, counter-intuitively, it is not only faster but also easier to 
tune up two frequencies than one. this robustness makes the approach suitable for real applications.

The study of the time dependence in quantum systems, and in particular its applications for its control in a 
systematic an efficient manner, is a topic at the forefront of scientific research1–5. As an example, Doescher and 
Rice were the first to propose the problem of the infinite square well potential with moving wells, which was then 
analyzed with different approximations in several publications1–4. Recently, researchers have shown, using an 
analytical exacta approach, that it is possible to control the transition between two predefined states by a particu-
lar time-dependent wall motion of this system6, which extended the results obtained by Lenz et al.7 for a differ-
ent system. It is possible to derive analytical expressions that characterize this quantum variant of the classical 
Fermi acceleration problem8, and that has applicability in other systems that follow equations that are similar to 
Schroedinger’s, e.g., Bose-Einstein condensates, quantum, and classical optical systems, fluids, etc.

Hence, the problem of controlling the system has been systematically addressed, now we will address the effi-
ciency of the process problem, namely, how to induce faster transitions in multilevel quantum systems. In such 
context, a seemingly conflicting result is that such Rabi-like behavior produced by the moving walls involve more 
states as the oscillation amplitude grow, which compromises the fidelity when we want to drive the system to a 
specific level6. However, the well-known Rabi model suggests that larger amplitudes may induce faster oscillations 
between states which is certainly of interest for any application. Hence, a strategy that may speed up the dynamics 
overcoming such difficulty is highly desirable.

In the present report, we indeed overcome such difficulty and show how to drive the system from one quan-
tum state to another in a relevant fraction of the quantum speed limit. To do so, we propose the use of two (or 
more) frequencies in the movements of the walls, in such a way that one frequency drives the system to the 
desired state (so it must be set at the resonance frequency) while the other one brings back the population from 
the higher levels. Hence, the resonance frequency must be calculated, with the corresponding Bloch-Siegert (BS) 
shift.

As an illustration of this procedure, we offer the transition from the ground state to the first excited state in a 
infinite square-well potential. An analysis of the robustness of the procedure is presented and contrasted with the 
small amplitude limit with the same fidelity. We conclude that our strategy is not only faster, but also increases the 
robustness of the method by strongly reducing the need for tuning the parameters to obtained a complete mode 
transfer, as discussed below. It is worth mentioning that our results resemble the unexpected behavior reported 
recently by Chang et al., as is explained below9.
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This paper is organized as follows: after this Introduction, in Sec. 1 we discuss how to calculate the 
Bloch-Siegert shift in a multi-level quantum system, and present the results in the case of a square-well poten-
tial. In Sec. 2 we discuss how to achieve maximum population transfer using high amplitude movements in a 
multi-level system and use our approach to drive a system from the ground to the first excited state under an 
square-well potential. In Sec. 3 we test the robustness of the previous result. Finally, Sec. 4 closes the paper with 
our conclusions.

calculation of the Bloch-Siegert shift
The time evolution of the wave function of a particle of mass m under a one-dimensional harmonically moving 
potential ω= +

ω( )V x t V x t( , ) cos( )d  is given by the time-dependent Schrödinger equation, namely
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In the comoving reference frame ω= +
ω

q x tcos( )d  the Eq. (1) reads
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where 
ω
d  is the amplitude of the oscillation, ω the frequency and  the reduced planck constant. Here we observe 

the equivalence between this kind of movement of the whole potential with an AC field at the quantum level, 
which is true also in the context of waveguides10–12. Consequently, all these settings are situations in which these 
ideas about controlling and speeding up the transition of states can be applied.

Expanding ψ in terms of the eigenstates ϕn of the unperturbed problem (d = 0),
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where cn is the probability amplitude and En the eigenenergy of the eigenstate ϕn. Substituting the Eq. (3) into the 
Eq. (2), and projecting, we obtain
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where ϕ ϕ= | |̌p pn m n m,  and ωn,m = (En − Em)/, which is also the value of the resonance frequency between 
the state n and m in the limit d → 0. Here ̌p  is the momentum operator. This equation can be solved numerically 
using an integrator.

As it was established by Shirley et al.13, the resonance frequency between levels i and j is achieved when the 
value of the time-averaged transition probability 〈Pi,j〉, given by
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T

c t dt1 ( ) , (5)i j
T
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is maximum at fixed d. The value of 〈Pi,j〉 can be calculated following the time evolution of the system starting 
from the state |ϕi〉 through Eq. (4) for a sufficiently long time T to ensure convergence. Solving for the frequency 
ωres

ij that maximizes 〈Pi,j〉, at a fixed value of d, we can calculate the BS shift for a resonance between the state i and 
j using ΔωBS

ij = ωres
ij − ωij.

In the case of an infinite square-well potential, namely

=




< <
∞.

V q( ) 0, if 0 q L
elsewhere

,
(6)

follows that ϕ π= L n x L2/ sin( / )n . At this point, it results convenient to introduce the adimensional variables: 
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. By doing so, the time evolution of the probability amplitudes 
is now given by
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From now on, all the bar quantities are adimensional.
In Fig. 1 we observe the time-averaged transition probability from a starting state |ϕ1〉 to an objective state 

|ϕ2〉 as a function of d̄ and ω ̄. Note that a clear maximum is observed, and it becomes wider in frequencies as d ̄ 
grows. The BS shift is observed also in the displacement to lower frequencies of the maximum as we increase d̄. 
This result may seem at first sight curious because it is known that for a two-level system (TLS), the displacement 
goes to higher frequencies14, however in our case we see other levels that begin to participate as we increase d ̄. 
This is an interesting and unexpected result, but beyond the scope of the present manuscript, that will be analyzed 
in a future work.

In Fig. 2 we show the results of a numerical calculation of the BS shift, following the methodology described 
above. As it was pointed out before, the resonance is now at lower frequencies. In order to obtain an expression 
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of the BS shift for this particular system a polynomial regression was perform using the model Δω ̄ = ād̄2 + b̄d̄4, 
which gives the correct result at d ̄ = 0 and have the right parity. As it is seen in Fig. 2, the model agrees quite well 
with the results for the values of a ̄ = −0.651231 and b ̄ = 0.09955.

Maximum population transfer
Now we turn to our primary objective: achieve fast maximum population transfer. To do so, we make use of a 
system movement which is the superposition of two periodic movements, one to drive the system to the desired 
state and another to bring back the population from higher levels. Consequently, one movement must be set at the 
resonance frequency calculated in the previous section. However, it is not obvious what amplitude and frequency 
must have the second movement. Hence, as an illustration we will determine both parameters for the transition 
from the ground state to the first excited state in the case of a square-well potential. The dynamics are now given by

¯
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As we established before, we must set ω ̄1 = ωr̄es
1,2(d̄1) and the values of d̄2 and ω ̄2 remain to be solved, for a 

fixed value of d1̄.
A first approach to the solution could be derived from the following argument: the first frequency drive the 

system from the ground state to the first excited one, but carrying also some population to higher states, mainly 
the second excited state. As a first approximation the solution for ω̄2 and d̄2 should satisfy ω̄2 = ω̄res

2,3(d2̄), because 
at this frequency the population is transferred between the first excited state and the second one, and so the value 
of d̄2 remains to be found. However, we expect that only a small (but relevant) fraction of the population is in the 
second excited state during the process, so that it is not a strict requirement to set ω̄2 just at the resonance. For the 
same reason, we expect a small value of d̄2. In other words, it is enough that ω̄2 is near ω̄res

2,3(d2̄) ≈ ω2,3, which gives 
us a quite useful idea where to start to tune the system up.

As an example of our approach, let us consider a value of d ̄1 = 0.754. It follows from the calculations of the 
previous section that the resonance between the ground and first excited state is at ω̄1 = ωr̄es

1,2(d1̄). Now, we must 

Figure 1. Time-averaged transition probability to the first excited state starting from the ground state for 
different values of d ̄ and ω̄. The numerical calculation was made by truncating the sum in Eq. (4) to NT = 10 
terms for an adimensional time of T ̄ = 1000, for every value of d ̄ and ω̄.

Figure 2. BS shift for a resonance between the ground and first excited state. The numerical calculation was 
made following 10 states for an adimensional time of T ̄ = 1000. The regression was performed using the model 
ΔωB̄S

1,2 = ād2̄ + b̄d4̄. Values of a ̄ = −0.651231 and b ̄ = 0.09955 were obtained.
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tune ω2̄ and d̄2. In the Fig. 3 we show the maximum population transfer for different values of d̄2 and ω ̄2, near 
the resonance frequency. We can observe a clear and wide maximum located at d ̄2 = −0.114 and ω2̄ = 4.630. As 
expected, the optimal value of ω̄2 is bellow ω̄2,3.

In Fig. 4 we observe the transition produced with the optimal values encountered while, at the top of the 
figure, a comparison with the slower transition that reaches the same population transfer to the first excited state 
but only with one driving movement of amplitude d̄ = 0.034 and frequency ω ̄ = ω ̄res

1,2(d̄). Both transitions have 
a fidelity of 99.97%, and so they are comparable. Note that we can observe a ladder-type transition structure in 
the probabilities, as is expected at high amplitude15. Note that for the two frequencies the transition is about 20 
times faster.

Now we can compare our transition times with the quantum speed limit16. The minimum time where a quan-
tum transition can be performed is given by

π
=

Δ
t

E
, (9)min

where ΔE is the energy gap between the initial and final state. The transition presented in Fig. 4 is performed 
in tour = 3.5tmin, thus approaching the quantum speed limit. Recent approaches to the two-level version of the 
problem, such as FIESTA17, where the amplitude of an AC field at the resonance frequency is modulated, achieve 
transitions in tFIESTA = 2.4tmin with a fidelity of 99.98%. Of course in our case we appeal to the existence of more 

Figure 3. Maximum population transfer to the first excited state starting from the ground state for different 
values of d2̄ and ω̄2, and ω̄res

2,3(d2̄) as the dashed line. The numerical calculation was made following 10 states for 
a time of T ̄ = 1000.

Figure 4. Comparison between the transitions between the ground and first excited state obtained with single 
frequency movement (dashed line) and two frequency movement (continuous line). At the top, we show the 
dynamics at large times. The numerical calculation was performed following 10 states. Both transitions reach 
99.97% of fidelity. The driver used in the dashed one are set at d ̄ = 0.034 and ω̄ = 2.99925. The drivers used in the 
continuous one is set at d ̄1 = 0.754, d̄2 = 0.114, ω̄1 = 2.662, and ω2̄ = 4.630.
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energy levels to speed up the transition, so our result is not only conceptually different from the TLS approach, 
but it is also more robust as we will now analyze.

An alternative approach for solving this problem, at least approximately, is to assume that ω̄2 = nω1̄, with n an 
integer, and then use a Floquet approach to solve for n, d1̄, d2̄, and ω̄1. Indeed, according to Fig. 3 such an approach 
is expected to lead to results with at least 95% of fidelity, assuming the same value of ω̄1 that we obtained. Hence, 
such an alternative approach should provide a result that is quite close to the solution that we found.

Robustness
One of the main possible issues of setting up a real application is the need to tune up the precise frequency to 
observe such an effect. Hence it is desirable to have a robust behavior under frequency detuning. In order to test 
that, in Fig. 5 we compare the maximum population transfer under different detuned frequency for the optimal 
values encountered in the previous section and its counterpart using just one driving frequency. We can observe 
that the transition is far more robust with two frequencies instead of one. In Fig. 6 we compare the effect of a 
detuning in ω̄1 and ω̄2 from the optimal values. As we can see the process can become more robust with the intro-
duction of a second driving frequency.

Counter-intuitively, the transition process using two frequencies is far more robust than with just one fre-
quency. This comes from the fact that the use of two frequencies allows us to use larger amplitudes, which have a 
wider spectrum of resonance frequencies.

conclusions and Discussion
Summing up, we show how to speed up maximum population transfer in a multi-level quantum system. To do 
so, we make use of two frequency movements, with one frequency at a high amplitude and the second specifically 
designed to overcome the inherent difficulties when such amplitude is applied to multi-level quantum system. 
This approach allows us not only to speed up the transition to times in a quantum square-well potential close to 
the quantum speed limit, with a fidelity of 99.97% in comparison with a case that uses just one frequency; but 

Figure 5. Comparison of the maximum population transfer from the ground to the first excited state as 
a function of detuning, obtained with one and two frequency movements. The numerical calculation was 
performed following 10 states.

Figure 6. Maximum population transfer from the ground to first excited state as a function of detuning of both 
frequencies. The numerical calculation was performed following 10 states.
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also to make the transition more robust by strongly reducing the sensibility of the parameters, frequency and 
amplitude, required to tune-up the transition, which confirm the unexpected conclusion presented very recently 
by Chang et al.9 for a multilevel system.

In comparison with an approach designed for TLS systems, such as FIESTA17, the fidelities we obtained are 
equivalent while the transition times are similar but a little bit slower. However, we must recall that our work deals 
with the inherent nature of multi-level system instead of a TLS, so that we don’t require to establish amplitude 
restrictions, and therefore, it may have a wider applicability. Nevertheless, given that both approaches are not 
incompatible, it may be worth to seek a mixed approach. Finally, we must remark the simplicity of our approach, 
where only two parameters remain to be found instead of the four of FIESTA. This, along with the improvement 
in robustness discussed above, should lead to a feasible experimental implementation.

In the future, we would like to apply a similar strategy to increase the robustness of other effects like coherence 
destruction of tunneling, dynamic localization, reduction of scattering, etc. The approach could also be used to 
speed up other quantum transitions process, like molecular isomerization, etc. Along the same lines, it would 
be of interest to study the implementation of our protocol in many-body systems, especially how it relates with 
interesting many-body phenomena such as dynamical many-body freezing18,19, that has been observed recently 
in Ising chains at certain driving frequencies20. This is particularly interesting, as such phenomena could limit 
the frequencies that can be used to control the state of the system, and will be analyzed in a future manuscript. 
Another interesting phenomena is the so-called many-body localization, where a transition between localized to 
delocalized state can be produced by a single frequency driving21,22. This interesting result brings the questions as 
to whether a protocol like the one presented here can speed up such process? Finally, it has been recently demon-
strated the emergence of chaotic behavior in interacting many-body systems23,24. Moreover, it has been shown 
very recently that it can be suppressed if the driver strength is above a certain threshold25, which again shows 
the relevance of developing protocols that work in the strong amplitude regime, like the one we consider in the 
present manuscript.

Our results could be tested experimentally in photonic lattices, where Rabi oscillations have been observed 
using moving potentials, namely, a lattice that is transversely modulated in the perpendicular direction with an 
additional periodic refractive index26. Hence, in our case, the modulation must be the sum of two additional 
refractive indexes, which is doable with the current experimental capabilities.
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