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Characterization and Identification 
of Lysine Succinylation Sites based 
on Deep Learning Method
Kai-Yao Huang1, Justin Bo-Kai Hsu2 & tzong-Yi Lee3,4*

Succinylation is a type of protein post-translational modification (PTM), which can play important 
roles in a variety of cellular processes. Due to an increasing number of site-specific succinylated 
peptides obtained from high-throughput mass spectrometry (MS), various tools have been developed 
for computationally identifying succinylated sites on proteins. However, most of these tools predict 
succinylation sites based on traditional machine learning methods. Hence, this work aimed to carry 
out the succinylation site prediction based on a deep learning model. The abundance of MS-verified 
succinylated peptides enabled the investigation of substrate site specificity of succinylation sites 
through sequence-based attributes, such as position-specific amino acid composition, the composition 
of k-spaced amino acid pairs (CKSAAP), and position-specific scoring matrix (PSSM). Additionally, the 
maximal dependence decomposition (MDD) was adopted to detect the substrate signatures of lysine 
succinylation sites by dividing all succinylated sequences into several groups with conserved substrate 
motifs. According to the results of ten-fold cross-validation, the deep learning model trained using 
PSSM and informative CKSAAP attributes can reach the best predictive performance and also perform 
better than traditional machine-learning methods. Moreover, an independent testing dataset that 
truly did not exist in the training dataset was used to compare the proposed method with six existing 
prediction tools. The testing dataset comprised of 218 positive and 2621 negative instances, and the 
proposed model could yield a promising performance with 84.40% sensitivity, 86.99% specificity, 
86.79% accuracy, and an MCC value of 0.489. Finally, the proposed method has been implemented as a 
web-based prediction tool (CNN-SuccSite), which is now freely accessible at http://csb.cse.yzu.edu.tw/
cnn-SuccSite/.

Post-translational modifications (PTMs), which are biochemical reactions occurring on proteins, have been 
known to have crucial roles in cellular processes such as DNA repair, transcriptional regulation, signaling path-
ways, protein–protein interactions, apoptosis, cell death, and metabolic pathways1. Protein succinylation is a 
type of PTM involving the attachment of a succinyl group (-CO-CH2-CH2-CO-) to a specific lysine residue of 
a protein2. Protein lysine succinylation, mediated by succinyl-coenzyme A (succinyl-CoA), has been identified 
to play crucial roles in regulating a variety of cellular processes3,4. In recent years, high-throughput mass spec-
trometry (MS) has been widely adopted to identify large-scale datasets of site-specific succinylation peptides5–8. 
Proteome-wide profiling analyses have revealed the involvement of succinylation in multiple metabolic pathways8 
and cellular physiology9, especially for thermophilic and mesophilic bacteria7. In addition, a quantitative succi-
nylome analysis in breast cancer expanded our understanding of mechanisms of tumorigenesis and provided 
further characterization of the pathophysiological roles of succinylation in breast cancer progression, which can 
enable innovative therapies for breast cancer patients10. However, the functions of protein succinylation in dis-
eases and cancer are still not well studied. The limited number of studies involving functional investigations of 
protein succinylation has motivated us to provide a functional enrichment analysis for all succinylated proteins.

Due to the quantitative succinylome data obtained from MS-based proteomics techniques, a variety of bio-
informatics tools have been developed for predicting lysine succinylation sites based on protein sequences. A 
list of previously proposed approaches concerning computational annotation of succinylated sites is given in 
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Supplementary Table S1. SucPred11 is a succinylation site prediction tool designed by Zhao et al. based on support 
vector machine (SVM) with the consideration of multiple feature-encoding algorithms. SuccFind12 was developed 
based on sequence-derived features and evolutionary-derived sequence information with an enhanced feature 
optimization strategy. The iSuc-PseAAC was proposed by incorporating the peptide position-specific propen-
sity into the general form of pseudo amino acid composition13. Hasan et al. have proposed a web server, named 
SuccinSite, that incorporates three sequence encodings — k-spaced amino acid pairs and binary and amino acid 
index properties — for predicting succinylated lysine sites14. A computational tool termed iSuc-PseOpt has been 
developed to predict protein succinylation sites by incorporating the sequence-coupling effects into the gen-
eral pseudo amino acid composition and using K-nearest neighbors cleaning (KNNC) treatment and inserting 
hypothetical training samples (IHTS) treatment to optimize the training dataset15. In 2017, Hasan et al. further 
proposed the SccinSite 2.0 for a systematic identification of species-specific protein succinylation sites by using 
joint element features information16. Recently, a new method called Success was developed by integrating evolu-
tionary and structural characteristics to provide accurate predictions of protein succinylation sites17. Lopez et al. 
also published another succinylation site prediction tool namely SSEvol-Suc18 in 2018. In October 2018, Hasan et 
al. published the GPSuc for a global prediction of generic and species-specific succinylation sites by aggregating 
multiple sequence features19. In 2019, Hasan et al. further proposed a large-scale assessment of prediction tools 
for lysine succinylation sites20.

Although many succinylation site prediction tools have been proposed, the performance of those approaches 
can still be improved. Moreover, the recent advancements of high-throughput techniques in biotechnology have 
identified more and more experimentally verified data of succinylation sites. The lack of deep learning-based 
approaches for identifying succinylation sites needed to be addressed. Therefore, we aimed to develop a 
new method for identifying protein succinylation sites based on a deep neural network21. In this work, four 
sequenced-based attributes, such as position-specific amino acid composition22,23, amino acid pairs compo-
sition24–26, position-specific scoring matrix (PSSM)27, and k-spaced amino acid pairs28,29, were considered 
for identifying protein succinylation sites. According to cross-validation evaluation, the model with the best 
cross-validation performance was further measured with an independent testing dataset.

Material and Methods
A flow chart of the proposed method is presented in Fig. 1, including (1) construction of the training dataset, (2) 
feature investigation and encoding, (3) model construction and performance evaluation, and (4) independent 
testing. First, the experimental data of known succinylated sites was mainly obtained from PLMD 3.030. After 
constructing positive and negative training datasets, four different types of sequence-based encoding schemes 
were adopted to transform the sequences to multi-dimensional vectors. Then, ten-fold cross-validation was uti-
lized to evaluate the performances of the predictive models trained based on deep convolutional neural networks. 
Finally, the model with the best predictive performance was further evaluated by an independent testing dataset, 
which was truly blind to the training dataset used for model construction. The detailed procedures are described 
in the following sections.

construction of positive and negative training datasets. In this study, the dataset of experimentally 
verified lysine succinylation sites was mainly extracted from PLMD30, which has accumulated 284,780 lysine 
modification sites from 53,501 proteins among 20 different types of PTMs. When considering only experimen-
tally confirmed lysine succinylation sites, a total of 18,593 sites were obtained from 6,377 unique proteins. After 
the removal of homologous protein sequences, a (2n + 1)-mer window size was adopted to extract fragmented 
sequences centered on modified sites with n left-hand and n right-hand neighboring amino acids. Given a spe-
cific number of succinylated proteins, the negative dataset was generated from non-succinylated sites which are 
those fragmented sequences centered on lysine residues that lack succinylation annotation. By evaluating differ-
ent values of window size (2n + 1, n is ranging from 5 to 20), the 31-mer window size (n = 15) performed best 
for predicting lysine succinylation sites (Supplementary Fig. S1), based on the basic feature—position-specific 
amino acid composition. After filtering out the fragmented sequences with sequence lengths less than 31 amino 
acids, a total of 17,637 and 137,974 fragmented sequences were retained for positive and negative training 
datasets, respectively. A training dataset with high sequence similarity will overestimate cross-validation per-
formance26,31–33. Therefore, after the removal of the duplicated and homologous sequences by employing the 
CD-HIT program34 with 30% sequence identity, we obtained a total of 1,268 non-homologous succinylated pro-
teins, which comprise 3,216 succinylated and 16,412 non-succinylated lysine residues for positive and negative 
training datasets, respectively. Table 1 provides the detailed statistics of positive and negative instances in accord-
ance with various sequence identity thresholds of CD-HIT.

feature investigation and encoding. This study aimed at the sequence-based characterization of protein 
succinylation site specificity. Not only the position-specific amino acid composition (PspAAC) but also the com-
position of k-spaced amino acid pairs (CKSAAPs) and position-specific scoring matrix (PSSM) were considered 
for use as the training attributes for constructing predictive models as well as measuring discriminating powers.

Position-specific Amino acid composition (PspAAC). Amino acid composition (AAC) has been regarded as a 
typical attribute for examining substrate site motifs on a variety of PTMs35–41. AAC was defined to determine the 
probability of amino acids occurring in the flanking region of PTM sites. Since a training sequence x has a length 
of 31 amino acids, the probability Px(k) of a specific amino acid k was elaborated as42
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where nx(k) represents the number of occurrences of a specific amino acid k. Refer to the method of positional 
weighted matrix (PWM) of amino acids around sulfation sites43, the position-specific amino acid composition 
(PspAAC) around the succinylated sites was determined using non-homologous training datasets. The PspAAC 
specified the relative frequency of twenty amino acids of each position that surrounded the succinylation sites, 
and was utilized in encoding the fragment sequences. A matrix of m × w elements was used to represent the 
PspAAC of a training dataset, where m stands for 20 types of amino acids and w is the window size ranging from 
−15 to +15. The matrix with 20 × 30 features was represented as:
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Figure 1. Flow chart of the proposed method. Four major steps were involved such as construction of training 
dataset, feature investigation and encoding, model construction and performance evaluation, and independent 
testing.
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Composition of k-spaced amino acid pairs (CKSAAP). The composition of k-spaced amino acid pairs 
(CKSAAP) has been extensively applied in analyses of protein functions28,33,41,44–49. This study transformed all 
training sequences into numeric vectors based on the encoding method of CKSAAP. Given k values ranging from 
zero to five, the number of occurrence of each k-spaced AAP can be determined from target sequences. If k is set 
as one, 


A xAi j  was used to represent the pair of amino acids Ai and Aj (i and j = 1, …, 20, corresponding to 20 

amino acids) which are separated by one residue of any amino acid x. If k is set as two, A xxA[ ]i j  represented the 
pair of amino acids Ai and Aj that are separated by two amino acids xx. The occurring count of a one-spaced AAP 
A xA[ ]i j  was represented by N A xA([ ])i j  and its conditional probability P A xA[ ]i j  was defined as:

=
⁎

P A xA
N A xA
N A xA
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i

where = ∑ = …⁎N A xA N A xA([ ]) ([ ])i j i j1, ,20 . In order to identify the difference of occurring frequency of a 
KSAAP between positive and negative sequences, for instance, the diversity of a one-spaced AAP [AixAj] can be 
obtained from:
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−P A xAi j  are the conditional probabilities of a one-spaced AAP 

A xAi j  in positive and 

negative training sequences, respectively. In this investigation, a higher positive value of 



C A xAi j  indicated that 

the one-spaced AAP 

A xAi j  is a more significant attribute in the positive dataset; otherwise, a smaller negative 

value of 



C A xAi j  revealed it is a more abundant attribute in negative dataset. Among a total of 2400 KSAAPs, we 

utilized a feature selection approach, minimum redundancy–maximum relevance (mRMR), to generate an index 
score for each KSPAAP50. A KSAAP with minimum redundancy and maximum relevance was regarded as the 
best attribute for classifying succinylated and non-succinylated sequences. The scoring function of mRMR was 
described as:
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where in ⊂f Sj n, ⊂f Si m, = −S S Sm n, in which Sm, Sn, and S were the attribute sets (m and n were the attribute 
sizes), and c is a classification variable with two possible classes. Additionally, the mutual information M x y( , ) was 
defined as:
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where p x y( , ), p x( ), and p y( ) were regarded as the probabilistic density functions between attributes x and y. In 
addition, the sequential forward selection (SFS) was employed to a final set of 400 most discriminating KSAAPs 
according to the ranking of mRMR index scores.

Position specific scoring matrix (PSSM). From a structural viewpoint, several amino acid residues can be mutated 
without changing a protein’s tertiary structure, and two proteins may have similar structures with different amino 
acid compositions51. PSSM profiles, which have been extensively utilized in protein secondary structure pre-
diction, subcellular localization, and other bioinformatics analyses51–54, were adopted herein with significant 
improvement. As presented in Fig. 2, the PSSM profile of each training sequence was generated by performing 
PSI-BLAST55 against the database of non-homologous succinylated peptides. The PSSM profile was composed of 

Sequence identity 
threshold

Number of 
succinylated proteins

Number of succinylated 
lysine sites

Number of non-
succinylated lysine sites

Full data 6,034 17,637 137,974

100% 5,539 15,691 117,813

90% 4,924 13,656 97,629

80% 4,422 12,031 86,192

70% 3,812 10,908 69,656

60% 3,105 8,855 51,456

50% 2,517 6,201 33,904

40% 1,869 4,509 23,577

30% (Training 
data) 1,268 3,216 16,412

Table 1. Data statistics of positive and negative training datasets using CD-HIT with various values of sequence 
identity threshold.
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a matrix with w × m elements, where w stands for the sequence length (ranging from −15 to +15) and m repre-
sents 20 types of amino acids, which is row-centered at modified site.
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Then, the w × m matrix was transformed into a matrix with 20 × 20 features Sx (i, j), where i and j range from 
1 to 20, by summing up the rows that were involved in the same type of amino acid i.
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Finally, each element in the 20 × 20 matrix was divided by the window length w and then normalized using a 
sigmoid function:
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characterization of substrate site signatures. To investigate into the substrate-site specificity of succi-
nylated sites, the maximal dependence decomposition (MDD)40 was employed to divide positive training 
sequences into several groups with potentially conserved motifs. The MDD has been reported to having the 
ability to enhance the predictive effectiveness of computationally identifying substrate sites on different PTM 
types31,35,56. For reaching this purpose, a chi-squared test χ P P( , )2

i j  is adopted to examine the intrinsic interde-
pendence between two positions, Pi and Pj, which are in the neighboring upstream and downstream regions of 
succinylation sites. Amino acids, 20 in total, are categorized into five groups, based on their physicochemical 
properties: polar, acidic, basic, hydrophobic, and aromatic. Given two positions Pi and Pj, the occurring frequency 
of the presence of each amino acid group is determined for the elements of a contingency table. The chi-squared 
test is defined as:

∑ ∑χ =
−
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where Kmn is the number of positive training sequences containing amino acids in group m at position Pi and 
containing amino acids in group n at position Pj, for each pair ( )P P,i j  and ≠i j. The expectation value Qmn is 
obtained from

Figure 2. Flow chart of generating a 20 × 20 matrix based on the PSSM profile obtained from PSI-BLAST.
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where = + … +K K KmR m m1 5, = + … +K K KCn n n1 5  and K stands for the total number of positive training 
sequences. The χ P P( , )2

i j  is a significant dependence if its value is larger than 34.3, based on the p-value of 0.01 
with degree of freedom at 1657. When performing MDD on the dataset of all positive training sequences, the 
parameter of maximum cluster size should be specified with an appropriate cutoff value. The MDD clustering 
process will be terminated when all the group sizes are less than the specified value of maximum cluster size.

Construction of deep neural networks. This study involved a binary classification of lysine residues into 
succinylated and non-succinylated sites. Due to the emergence of applying deep learning methods in bioinfor-
matics58, we utilized a deep convolutional neural network (CNN), which is an extension of an artificial neural 
network (ANN) with multiple hidden layers between input and output layers (Supplementary Fig. S2). With the 
increasing number and complexity of high-throughput biological datasets, CNNs can decipher more complicated 
patterns and relationships within the investigated attributes than a traditional ANN, which only includes one 
hidden layer. A significant increase in the data count of MS/MS-identified protein succinylation would enable the 
number of neurons required in each layer to increase exponentially along with the potential patterns. Hence, this 
work exploited a CNN to learn the predictive models using various types of sequence-based attributes. In recent 
years, CNNs have been extended to incorporate convolution and pooling strategies in hidden layers to reduce 
the quantity of weights and complexity of calculations, respectively, when generating network structure. When 
implementing a CNN model, it is necessary to determine the number of convolution and pooling layers and 
choose a classification function for the output layer. As presented in Fig. 3, the first layer of CNN is the input layer. 
The AAPC attribute, represented as a matrix with 20 × 20 elements, was used as an example for constructing the 
CNN model.

When developing a CNN model, the convolution layer is the core layer, which functions as a pattern scanner 
and contains two major parameters: filters (or kernels) and stride. Each filter, which can be regarded as a small 
pattern with specified matrix size (e.g. 3 × 3 used in this work), is convolved across the width (20) and height 
(20) of the input data, based on the dot product between the elements of the filter and the input data in order to 
create new feature maps. We specified the value of stride as 1, then moved the filter one pixel at a time, and the 
input data with a 20 × 20 matrix size can be transformed into a new feature map with a matrix size of (20–3 + 1) 
× (20–3 + 1). The number of filters controls the depth (the number of neurons) in the convolution layer that may 
detect a specific type of pattern connecting to the input data. In addition to filters and stride, zero padding is a 
convenient approach to pad the input with zeros on the border of the matrix. Zero padding can be used to control 
the matrix size of input data.

Figure 3. Schematic diagram of incorporating deep convolutional neural network with CKSAAP attribute 
(K = 0) to learn a predictive model with two-node output layer. A total of eight layers were implemented in this 
work, such as one input layer, two convolution layers, two max pooling layers, two fully connected layers, and 
one output layer. For each dense layer, the ReLU activation function was applied to avoid gradient diffusion. In 
addition, the dropout step was conducted in the hidden layers with an attempt to reduce overfitting. Finally, the 
output layer is composed of two nodes corresponding to the classifying results based on a softmax function.
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The pooling layers, which comprise another critical part of a CNN model, usually immediately follow the con-
volution layers. Max pooling is a sort of non-linear down-sampling strategy used frequently for CNN construction. 
Typically, the max pooling layer can split the input matrix into a set of non-overlapping rectangles and can form 
a smaller matrix containing maximal outputs of each sub-region. Two major parameters used in max pooling are 
kernel size and stride, which are usually set as 2 × 2 and 2, respectively, for moving the 2 × 2 kernel along width or 
height 2 pixels at a time, discarding 75% of the activations. For instance, a feature map with matrix size of 18 × 18 
in the convolution layer can be transformed into a smaller feature map with matrix size of 9 × 9 in the following 
max pooling layer. The function of max pooling is to reduce the amount of computing time in a CNN model and 
examine if the patterns extracted from the corresponding convolution layer exist in the input data or not59.

After two convolution and max pooling layers, the highly complicated CNN modeling was accomplished by 
fully connected layers. Before getting into the fully connected layer, the flattening step (flatten layer) is a necessity 
that can be used to convert the matrix of input data into a vector. The flattening process is typically used prior to 
the fully connected layer. In a general CNN model, neurons in a fully connected layer have full links to all activa-
tions in the previous layer, as shown in Fig. 3. Thus, all the activations in the previous layer can be summarized by 
matrix multiplication along with a set of weight values on the links. Due to the occupation of most neurons in fully 
connected layers, an over-fitting problem might easily occur during CNN model construction. Herein, the drop-
out layer has been adopted to randomly mask a specified portion of its neurons in order to prevent CNN model 
construction from an over-fitting problem60. The dropout layer is carried out by dropping out the neurons with a 
specified probability P and retaining the neurons with probability 1 – P. The value of probability P ranges from 0 
to 1 with an attempt to determine the best P value for optimizing predictive performance. After that, we obtained 
a reduced network, in which the incoming and outgoing links to the dropped-out neurons are also eliminated.

As for the binary classification between succinylated and non-succinylated sites, the output layer comprised 
two neurons corresponding to the classification results based on a softmax function. The two nodes in the out-
put layer were fully connected to the neurons of the previous layer. The softmax function could be regarded as a 
loss function by specifying how to penalize the difference between the predicted and true classes. The softmax 
function (or normalized exponential function) is a kind of logistic function that can be used to represent a prob-
ability distribution over K different categories. In this work, the value of K was set as two for the succinylated and 
non-succinylated datasets. Given a sample vector x and a weight vector w, the predicted probability for j-th class 
by the softmax function is defined as

= =
∑

=
=

x e

e
jP(class j/ ) , 1 or 2

(12)

x w

i
K x w

1

T
j

T
i

This can be regarded as the probability of x for the j-th class against the composition of K linear functions: 
= …x w i K, 1, ,T

i . Additionally, the ReLU is frequently used as the activation function when generating a CNN 
model with an enhanced nonlinear property but without a significant penalty for generalization accuracy61. In 
this work, the ReLU function was also employed to avoid gradient diffusion during the process of CNN construc-
tion. The ReLU function is defined as: =x xReLU( ) max(0, ). Another two activation functions are the sigmoid 
function σ =

+ −x( )
e

1
1 x  and the hyperbolic tangent function = −

+

−

−xtanh( ) e e
e e

x x

x x .

performance evaluation of predictive models. In the generation of CNN models, the k-fold 
cross-validation was employed to evaluate their predictive performances. When implementing k-fold 
cross-validation, all the training data, including positive and negative sequences, were randomly clustered into 
k equal-sized subgroups. After having k subgroups, k-1 of them shall be regarded as the training sample and the 
remaining one subgroup was considered as the validation sample. In a round of k-fold cross-validation, each 
of the k subgroups should be considered as the validation sample once in turn. Sensitivity (Sn), specificity (Sp), 
accuracy (Acc), and Matthews correlation coefficient (MCC) have been used as the metrics to determine the per-
formance of the generated models. The four metrics are defined as:

=
+

Sn TP
TP FN (13)

=
+

Sp TN
TN FP (14)

=
+

+ + +
Acc TP TN

TP FP TN FN (15)

=
× − ×

+ × + × + × +
MCC TP TN FN FP

TP FN TN FP TP FP TN FN
( ) ( )

( ) ( ) ( ) ( ) (16)

where TP, FN, TN, and FP denote the instances of true positive, false negative, true negative, and false positives, 
respectively. Due to the unbalanced positive and negative training datasets in this work, we have decided to 
choose MCC value as a major benchmark for achieving a relatively balanced sensitivity and specificity. After 
evaluating the of k-fold cross-validation, the CNN model reaching the best predictive performance was further 
evaluated by an independent testing dataset that was not included at all in the training dataset.
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independent testing. Due to the potential over-fitting issue originating from the training dataset, the pre-
dictive power of the generated models might be overestimated. Thus, the use of an independent testing data-
set was necessary to further evaluate of the real case. In this study, the independent testing dataset was mainly 
collected from dbPTM44,45,62. Before the extraction of positive and negative testing sequences, the experimen-
tally verified succinylated proteins in testing dataset were compared with training dataset in order to eliminate 
the homologous protein sequences between the two datasets. When extracting sequence fragments using the 
same window length as used in constructing the training dataset, the fragmented sequences might be overlapped 
between the two datasets. Hence, CD-HIT software was used again to delete fragmented sequences with 30% sim-
ilarity. After that, the final dataset for independent testing contained 218 succinylated and 2621 non-succinylated 
entries. Moreover, the testing dataset was utilized to make a comparison between the proposed deep-learning 
models and other machine learning schemes in terms of predictive performance. Another cause of over-fitting 
might be due to the training process of the CNN. To avoid the over-fitting problem, we only used two convolution 
layers with lower filters to reduce the complexity of our model by minimizing the possible training parameters59.

Results and Discussion
Substrate site signatures of lysine succinylation. The amino acid composition (AAC) was a feasible 
scheme to explore the potential motif of conserved residues around the succinylation sites based on the fragments 
with 31-mer sequence length. Since comparing the AAC between positive and negative datasets, the residues hav-
ing significant differences could be regarded as useful attributes for succinylated sites prediction. Supplementary 
Fig. S3 showed that, for succinylated sites, the positively charged lysine (K) residue appeared to have the highest 
frequency around the substrate sites. In addition to AAC, the position-specific AAC neighboring the succinylation 
sites can be displayed by frequency plots of WebLogo63. As illustrated in Fig. 4A, there is no any amino acid having 
significantly high frequency near the succinylation sites, but the slightly prominent amino acid residues included 
Leucine (L), Lysine (K), Alanine (A), and Valine (V). Without conserved motifs observed in frequency plot, the 
TwoSampleLogo64 program was further applied to compare the differences of position-specific AAC between 
succinylated and non-succinylated sequences. As displayed in Fig. 4B, when comparing with the sequence logo of 
non-succinylated sites (Fig. 4C), the most conserved motifs appeared to be associated with charged residues, in 
particular the positively charged K and arginine (R) residues on positions −11~−4 and +3~+12. Additionally, 
the negatively charged amino acids, such as aspartic acid (E), located at positions −2, +1 and +2.

A hierarchical clustering analysis was performed on the detection of motif signatures by categorizing all 
positive training sequences into seven subgroups that possess statistically significant dependencies of amino 
acid composition around the substrate sites. The MDD-clustered subgroups with motif signatures for the 5842 
non-homologous succinylated sites are presented in Fig. 5 based on a tree-like structure. The motif in Group1 
(933 sequences) is the significant occurrence of basic amino acids (K, R, and H) at position −5, with the highest 
dependence value among all subgroups. In the meantime, the remaining 4909 sequences are further analyzed 
based on the maximal dependency in the occurrence of amino acids neighboring the substrate sites. The Group2 
(466 sequences) possesses a similar motif of basic amino acids at position −4. Additionally, the Group3 (398 
sequences) and Group4 (832 sequences) also have the motif of basic amino acids at position +4 and +1, respec-
tively. This investigation demonstrates that the detected motif signatures are consistent with the observation in 
two-sample logo, which having positively charged residues conserved in the upstream and downstream regions 
of succinylated sites. On the other hand, the Group5 (905 sequences) has the conserved motif of acidic residues at 
position +1. The Group6 also reveals that the position +1 is potent that contains the motif signature of polar and 
uncharged amino acids. The remaining data in the Group7 contain a slightly significant character in position +1.

Performance evaluation of CNN models trained with single attributes. In an attempt to examine 
the optimal window size for yielding the best performance, various window size values were adopted to extract 
the training sequences for model construction. After comprehensive analyses of performance comparisons, the 
window size of 31 (−15 to +15; with the succinylated residue in the center) achieved the best prediction perfor-
mance, which is consistent with the difference of position-specific AACs between positive and negative training 
sequences. Based on the investigated features, their corresponding CNN models were built to determine the 
effectiveness of those features in identifying succinylation sites. As shown in Table 2, the CNN model trained with 
PspAAC reached an accuracy of 73.36% and an MCC value of 0.371. The AAPC model performed slightly better 
than the PspAAC model, which yielded an accuracy of 76.48% and an MCC value of 0.428. In the investigation of 
k-spaced amino acid pairs, the CNN model trained with the composition of one-spaced amino acid pairs (K = 1) 
provided the best performance at 77.95% sensitivity, 76.63% specificity, 76.85% accuracy, and MCC value of 
0.432. After extracting the top 400 k-spaced amino acid pairs (K = 1−5) based on mRMR, the performance of the 
CNN model trained with the selected CKSAAP (top400) showed remarkable improvement, reaching a sensitivity 
of 85.35%, specificity of 83.49%, accuracy of 83.79%, and MCC value of 0.569. Among these CNNs, the model 
trained with the PSSM feature performed best for discriminating between succinylated and non-succinylated 
lysine residues. The PSSM model yielded a sensitivity, specificity, accuracy, and MCC value of 85.51%, 84.16%, 
84.38%, and 0.579, respectively. Additionally, the ROC curve was generated to compare the predictive perfor-
mance and stability of different CNN models (Supplementary Fig. S4). Regarding to the comparison among single 
features, the CNN model trained from the PSSM feature gave the best predictive power, which is consistent with 
the results reported in PSSM-Suc65. The area under ROC curve (AUC) of the CNN model trained with PSSM is 
0.858. However, our investigation found that the CNN model trained with the composition of selected k-spaced 
amino acid pairs is comparable to that trained with the PSSM attribute.
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Performance evaluation of CNN models trained with hybrid attributes. In addition to the com-
parison of predictive powers among single attributes, we also consider a hybrid of multiple attributes to gen-
erate the predictive model. Based on the results of performance testing of single attributes, the PSSM, which 
can yield the best performance, was selected as the principal attribute for the combination with other single 
attributes. Consequently, a total of three hybrids, such as PSSM + PspAAC, PSSM + CKSAAP(top400), and 
PSSM + PspAAC + CKSAAP(top400), were further evaluated for uncovering their predictive capabilities in the 
succinylation site identification. As presented in the Table 2, the CNN model trained using the hybrid of PSSM 
and PspAAC attributes can reach a comparable performance with that trained using single PSSM attribute. In 
this investigation, the CNN model trained using the hybrid of PSSM and CKSAAP (top400) could perform best 
with the sensitivity of 86.94%, the specificity of 85.43%, the accuracy of 85.68%, and the MCC value of 0.608. 
However, the CNN model trained with the combination of all features performs slightly worse than that trained 
with the hybrid of PSSM and CKSAAP (top400). Additionally, Supplementary Fig. S4 revealed that the CNN 
model trained using the hybrid of PSSM and CKSAAP (top400) can outperform other CNN models in terms of 
ROC curves comparison. The AUC value of the CNN model trained with PSSM and CKSAAP (top400) is 0.886.

Performance comparison between CNN and other machine learning methods. To demonstrate 
the effectiveness of the deep learning method in PTM prediction, the predictive performance of this CNN model 
was compared with that of three popular machine learning methods: decision tree (DT), support vector machine 
(SVM), and random forest (RF). As summarized in Supplementary Table S1, the SVM and RF algorithms have 
been widely utilized to identify protein succinylation sites. In this work, the Classification and Regression Trees 
(CART) was employed to generate binary DTs for classifying between positive and negative instances. Based on 
the scikit-learn package66, the function ‘DecisionTreeClassifier’ was used to construct a classification tree by a 
top-down recursion. During the construction process, the ‘best’ feature set was selected to classify the training 
tuples that make a split in the tree. In addition, the CART program specified the ‘Gini index’ as the feature set 
selection approach. For the construction of RFs, the CART was again adopted to generate multiple trees with the 

Figure 4. Position-specific amino acid composition of succinylated sites. (A) Position-specific amino 
acid composition of succinylated sequences based on the frequency plot of WebLogo. (B) Comparison of 
position-specific amino acid composition between succinylated and non-succinylated sequences based on 
TwoSampleLogo analysis. (C) Position-specific amino acid composition of non-succinylated sequences based 
on the frequency plot of WebLogo.
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‘bootstrap aggregation’ (bagging) of data sampling. In scikit-learn package, the function ‘RandomForestClassifier’ 
was applied to measure the importance of training features and to generate the RF models. More specifi-
cally, Gini importance is the average decreased impurity of each feature across all trees; this impurity was the 
least-randomness of the given data. Moreover, the function ‘svm.SVC’ in the scikit-learn package was used to 
train the binary SVM classifiers. The ‘radial basis function’ (RBF) was selected as the kernel function of SVM to 
transform the training data into a higher-dimensional vector space, with an attempt to search for a linearly opti-
mal separating hyperplane.

According to the predictive performance of previous studies that have incorporated SVM or RF into their 
model construction, the SVM or RF models trained with combinatorial attributes could perform with reliable 
prediction accuracies. Based on the evaluation of ten-fold cross-validation, among the sequence-based attributes, 
this investigation has revealed that the DT model trained with PspAAC performed better than other attribute 
types (Supplementary Table S2). Instead of the PSSM attribute, both SVM and RF methods could reach a better 
performance by using the composition of the top 400 k-spaced amino acid pairs. Herein, the RF model performs 
slightly better than the SVM model in terms of MCC value. In addition to the comparison of different models 
trained using single attribute type, a hybrid of multiple attribute types was further considered into the generation 
of predictive models. Table 3 shows the comparison of ten-fold cross-validation between deep learning method 
and other three learning methods, on the basis of combining various attributes. Based on these sequence-based 
features, this investigation revealed that the CNN model trained using PSSM and CKSAAP(top400), which can 

Figure 5. A hierarchical MDD-clustering process on the detection of motif signatures from 5842 succinylated 
sequences.

Attribute

Number 
of true 
positives

Number 
of false 
positives

Number 
of true 
negatives

Number 
of false 
negatives Sensitivity Specificity Accuracy MCC

PspAAC 2400 4411 12001 816 74.63% 73.12% 73.36% 0.371

CKSAAP (K = 0) 2512 3912 12500 704 78.11% 76.16% 76.48% 0.428

CKSAAP (K = 1) 2507 3835 12577 709 77.95% 76.63% 76.85% 0.432

CKSAAP (K = 2) 2501 3832 12580 715 77.77% 76.65% 76.83% 0.431

CKSAAP (K = 3) 2512 3912 12500 704 78.11% 76.16% 76.48% 0.428

CKSAAP (K = 4) 2494 3890 12522 722 77.55% 76.30% 76.50% 0.425

CKSAAP (K = 5) 2489 4079 12333 727 77.39% 75.15% 75.51% 0.412

CKSAAP (top400) 2745 2710 13702 471 85.35% 83.49% 83.79% 0.569

PSSM 2750 2600 13812 466 85.51% 84.16% 84.38% 0.579

PSSM + PspAAC 2759 2560 13852 457 85.79% 84.40% 84.63% 0.584

PSSM + CKSAAP (top 400) 2796 2391 14021 420 86.94% 85.43% 85.68% 0.608

PSSM + PspAAC + CKSAAP (top 400) 2789 2454 13958 427 86.72% 85.05% 85.32% 0.600

Table 2. Evaluation of ten-fold cross-validation on deep learning models trained with various types of 
sequence-based attributes.

https://doi.org/10.1038/s41598-019-52552-4


1 1Scientific RepoRtS |         (2019) 9:16175  | https://doi.org/10.1038/s41598-019-52552-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

yield the sensitivity, specificity, accuracy, and MCC values at 86.94%, 85.43%, 85.68%, and 0.608, respectively, can 
outperform other three learning methods. However, it is noteworthy that the RF model trained using the hybrid 
of PspAAC, PSSM, and CKSAAP(top400) attributes can yield a comparable performance (83.08% accuracy) to 
the CNN model. In conclusion, the proposed CNN model can outperform other three popular machine-learning 
methods, with reference to the comparison of predictive performances based on the evaluation of ten-fold 
cross-validation.

performance evaluation using an independent testing dataset. When discriminating between suc-
cinylated and non-succinylated sequences, it is possible to generate a predictive model whose prediction accuracy 
is over-estimated due to an over-fitting problem. To avoid presenting an over-estimating performance, this work 
compiled a dataset for independent testing. These independent testing instances, which are not present in the 
training dataset, were used to measure the real ability of the proposed model. The independent testing dataset 
comprised a total of 218 positive and 2621 negative instances. The CNN model trained using the PSSM and 
CKSAAP(top400) attributes can yield a promising performance with a sensitivity of 84.40%, specificity of 86.99%, 
accuracy of 86.79%, and MCC value of 0.489. Additionally, to judge the practicality of the proposed model, the 
comparison between our model and six existing prediction tools was performed using the testing dataset. As 
displayed in Table 4, our proposed model achieved the highest MCC value, reaching 0.489. In this comparison, 
the SuccinSite 2.0 can provide the best predictive accuracy (88.83%), while its specificity (91.22%) was much 
higher than its sensitivity (60.09%). However, the overall performance of SuccinSite 2.0 did not outperform our 
method in terms of MCC value. Interestingly, as presented in Supplementary Fig. S5, most of the existing predic-
tion tools can provide much better specificity values than sensitivity values. This might be because their models 
were generated by using the unbalanced positive and negative datasets. In an overall evaluation, the testing results 
have indicated that the proposed method can provide a more reliable and stable prediction capability than other 
existing prediction tools, in terms of balanced sensitivity and specificity.

Implementation of web-based prediction tool. To facilitate the functional analyses of protein suc-
cinylation, the proposed method has been utilized to implement a web-based tool, named CNN-SuccSite, for 
classifying between succinylated and non-succinylated sites. After submitting protein sequences in the FASTA 
format, the CNN-SuccSite will return the prediction results, including succinylated sites, their flanking amino 
acids, and the corresponding substrate motif signatures. A case study of succinylation site prediction on mouse 
Glutathione S-transferase P 1 (Gstp1) was utilized to demonstrate the effectiveness of CNN-SuccSite. The Gstp1 
contains six verified succinylation sites at Lys-82, Lys-103, Lys-116, Lys-121, Lys-128, and Lys-19167. As presented 
in Fig. 6, the CNN-SuccSite can achieve an accurate prediction at five validated succinylaion sites, according to 
the corresponding motif signatures.

conclusion
Due to the abundance of experimentally verified succinylation data obtained from public resources, we were 
motivated to develop a new method to predict protein succinylation sites based on a deep learning strategy. 
Systematic investigation of various attributes in the neighborhood of substrate sites were performed on large-scale 
succinyl-proteome data. In accordance with the results of 10-fold cross-validation, the CNN model trained with 

Method Attribute
Number of 
true positives

Number of 
false positives

Number of 
true negatives

Number of 
false negatives Sensitivity Specificity Accuracy MCC

Decision tree PspAAC + CKSAAP(top 400) 2282 4435 11977 934 70.96% 72.98% 72.64% 0.343

Support vector 
machine PSSM + CKSAAP(top 400) 2622 3211 13201 594 81.53% 80.44% 80.61% 0.502

Random forest PspAAC + PSSM + CKSAAP(top 400) 2605 2710 13702 611 81.00% 83.49% 83.08% 0.537

Deep learning PSSM + CKSAAP(top 400) 2796 2391 14021 420 86.94% 85.43% 85.68% 0.608

Table 3. Comparison of ten-fold cross-validation between deep learning method and other machine learning 
methods.

Method
Number of 
true positives

Number of 
false positives

Number of 
true negatives

Number of 
false negatives Sensitivity Specificity Accuracy MCC

iSuc-PseAAC 31 310 2311 187 14.22% 88.17% 82.49% 0.019

SuccFind 101 921 1700 117 46.33% 64.86% 63.44% 0.062

pSuc-Lys 112 421 2200 106 51.38% 83.94% 81.44% 0.241

SuccinSite 98 221 2400 120 44.95% 91.57% 87.99% 0.308

SuccinSite 2.0 131 230 2391 87 60.09% 91.22% 88.83% 0.410

GPSuc 159 380 2241 59 72.94% 85.50% 84.54% 0.397

Our method 184 341 2280 34 84.40% 86.99% 86.79% 0.489

Table 4. Performance comparison between our method and six existing available prediction tools based on the 
independent testing dataset.
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the hybrid of PSSM and CKSAAP(top400) attributes can outperform that trained with other attributes. Besides, 
this investigation also demonstrated that the CNN model could provide a better performance than three popular 
shallow machine learning methods, including DT, SVM, and RF. Moreover, the independent testing was per-
formed and the results demonstrated that the selected CNN model could outperform other existing prediction 
tools. Based on the usage of the independent testing dataset, the CNN model trained with the hybrid of PSSM and 
CKSAAP(top400) attributes could yield a promising performance. We truly believe that our proposed approach 
will help facilitate the determination of succinylated lysine residues of proteins. In the future, the physicochemical 
properties, such as solvent accessibility68, hydrophobicity69, and side-chain orientation70, can be considered for 
obtaining a better predictive performance. Additionally, the tertiary structures of succinylated proteins can be 

Figure 6. Case study of succinylation site prediction on Glutathione S-transferase P 1 (Gstp1).
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used to extract more useful information for the characterization of succinylated substrate sites. A stand-alone 
software will be developed for providing a practical means to facilitate the determination of succinylated targets 
from a large-scale proteome data.
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