
1Scientific RepoRtS |         (2019) 9:16037  | https://doi.org/10.1038/s41598-019-52514-w

www.nature.com/scientificreports

Effects of oxygen levels and a 
Lactobacillus plantarum strain on 
mortality and immune response of 
chickens at high altitude
Lihong Wang1, Guanhua Fu1, Suozhu Liu2, Long Li1 & Xin Zhao  1,3*

Chickens reared in high altitude regions suffer from a high mortality, possibly due to poor immune 
responses induced by hypoxia. This experiment was conducted to evaluate whether increasing the 
oxygen level or administration of a probiotic could improve mortality and immune response of chickens 
at high altitude (2,986 m above the sea level). One-d-old chickens were randomly allocated to 1 of 
6 treatments in a 2 × 3 factorial arrangement. The first factor was the oxygen level (low and high), 
while the second factor was the diet (basal diet, basal diet containing aureomycin, and basal diet plus 
L. plantarum). Increasing the oxygen level significantly reduced the mortality and improved immune 
responses. The levels of IgA, IgG, IL-10 and anti-BSA antibodies were significantly higher, while IL-1β, 
LITAF were significantly lower in chickens reared in the high-oxygen room. In the low-oxygen room, 
L. plantarum significantly decreased the mortality of chickens compared with the other 2 groups. 
Moreover, L. plantarum significantly increased the levels of IgA, anti-BSA antibodies, IL-10 and 
decreased IL-1β, LITAF compared with the control group. These results demonstrated that increasing 
oxygen level or administration of L. plantarum can improve health status of chickens in high altitude 
regions.

More commercial broiler chickens are being raised in Tibet, China to meet the requirement for increased con-
sumption. However, the mortality rates are high, causing great economic losses to farmers. Our previous study 
showed that the mortality of commercial broiler chickens reared in Linzhi city (average 2,986 m above the sea 
level) was about 30% during a 42 days rearing period, with approximately 50% of the death occurring dur-
ing the first 14 days1. In that study, all dead birds during the experimental period were necropsied to identify 
ascites-related mortality or non-ascites induced mortality. Non-ascites induced mortality accounted for 83.3% 
of the total mortality and ascites induced mortality accounted for 16.7% of the total mortality during the first 2 
weeks1. In addition, the production performance of chickens reared at high altitude is low1,2. Therefore, improving 
the production performance and decreasing the mortality are crucial for broiler production in Tibet and other 
high altitude regions.

High altitude hypoxia refers to a state in which oxygen supply is insufficient due to a low partial pressure of 
oxygen in air. Thus, increasing oxygen levels of chicken houses may decrease mortality and improve immune 
responses of broilers reared in high altitude regions. Hypoxia can influence the immune response of animals. 
Hypoxia could affect the differentiation and functions of immune cells, such as T and B lymphocytes3,4, thereby 
influencing the levels of immunoglobulins and cytokines. Kleessen et al.5 found that the levels of IgA and IgM 
in blood had a tendency to decrease in German mountaineers during expedition in Nepalese Himalayas. On 
the other hand, Chohan et al.6 found that the levels of IgG and IgA were significantly higher in high altitude 
natives and the sea level residents at high altitude for 2 years compared with the sea level residents. The lev-
els of cytokines can also be influenced by hypoxia, thereby disrupting the balance between proinflammatory 
and anti-inflammatory cytokines. Hartmann et al.7 found that the levels of pro-inflammatory cytokine IL-6, the 
inflammatory marker IL-1ra, and C-reactive protein were all significantly increased when 12 healthy people 
stayed at 3,458 meters above the sea level for 68 hours. Yang et al.8 found that hypoxia significantly increased the 
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secretion of IL-4 and decreased the secretion of IFN-γ in naïve CD4+ T cells. Nevertheless, the effects of hypo-
baric hypoxia on immunological changes of broiler chickens, which may be associated with high mortality of 
starter phase of chickens reared at high altitude, has not been reported. Therefore, one objective of this study was 
to evaluate whether increasing oxygen levels had beneficial effects on broilers reared at high altitude.

Probiotics can improve production performance9, maintain the balance of gut microbiota10, modulate the 
immune responses11,12, and protect chickens from pathogenic infections13,14. However, the effects of probiotics on 
mortality, and immunity function of broiler chickens under the hypobaric hypoxic condition are still unknown. 
So, another objective of this study was to determine the effects of a potential probiotic on broilers reared at high 
altitude.

Results
Blood parameters. As shown in Table 1, increasing the oxygen level did not influence the red blood cell 
(RBC) counts, hemoglobin (HGB) levels and hematocrit (HCT) values at day 7 (P > 0.05). However, chickens 
reared in the low-oxygen room exhibited significantly higher (P < 0.05) RBC counts, HGB levels and HCT val-
ues than the chickens reared in the high-oxygen room at day 14. The probiotic had no effect (P > 0.05) on RBC 
counts, HGB levels and HCT values.

Production performance. The body weight (BW) and average daily feed intake (ADFI) of broilers in the 
high-oxygen room were significantly higher (P < 0.05) on day 14 than those in the low-oxygen room. However, 
the probiotic had no effect (P > 0.05) on the BW and ADFI of broilers (Table 2). Both increasing oxygen levels and 
administration of the probiotic had no effect (P > 0.05) on the feed conversion ratio (FCR).

The relative weight of immune organ. As shown in Table 2, the relative weights of thymus and spleen 
were significantly increased (P < 0.05) by the high-oxygen treatment. Similarly, the chickens in the probiotic 
(PRO) group had significantly higher (P < 0.05) relative weight of thymus than those in the other 2 groups.

Mortality. The mortality of chickens reared in the high-oxygen room was significant lower (P < 0.05) than 
the low-oxygen room (Fig. 1). In the low-oxygen room, the probiotic treatment significantly decreased (P < 0.05) 
the mortality of chickens compared with the control (CON) and the aureomycin (AUR) groups. However, the 
probiotic had no effect (P > 0.05) on the mortality of chickens reared in the high-oxygen room.

Items1

Day 7 Day 14

RBC, 1012/L HGB, g/L HCT, % RBC, 1012/L HGB, g/L HCT, %

Treatment

Low-oxygen

CON 1.69 71.17 25.95 2.40 126.00 30.03

AUR 1.66 72.00 26.72 2.42 130.83 31.72

PRO 1.68 74.67 27.44 2.36 128.67 30.50

High-oxygen

CON 1.65 70.83 26.78 2.27 120.17 27.87

AUR 1.67 69.50 26.99 2.22 123.67 28.12

PRO 1.69 73.67 27.41 2.25 118.00 28.32

SEM2 0.03 1.05 0.31 0.03 1.60 0.51

Main effect oxygen (n = 18)

Low-oxygen 1.67 72.61 26.70 2.39a 128.50a 30.75a

High-oxygen 1.68 71.33 27.06 2.25b 120.61b 28.10b

Main effect probiotic (n = 12)

CON 1.67 71.00 26.37 2.34 123.08 28.95

AUR 1.66 70.75 26.86 2.32 127.25 29.92

PRO 1.69 74.17 27.42 2.31 123.33 29.41

P-values

Oxygen 0.939 0.546 0.569 0.033 0.019 0.015

Probiotic 0.930 0.344 0.388 0.922 0.497 0.745

Oxygen × Probiotic 0.908 0.931 0.848 0.847 0.817 0.809

Table 1. Effects of different treatments on the blood parameters of chickens. 1RBC: red blood cell counts; 
HGB: hemoglobin level; HCT: hematocrit values. High-oxygen: chickens were reared in a room with oxygen 
percentages between 25.8% and 26.5%; Low-oxygen: chickens were reared in a room with oxygen percentages 
between 20.7% and 21.4%. CON: chickens were fed basal diet; AUR: chickens were fed basal diet supplemented 
with aureomycin (50 mg/kg diet); PRO: chickens were fed basal diet and inoculated with L. plantarum (109 
CFU/chicken) by gavage on day 1. 2SEM: standard error of a mean (n = 6 pens per treatment group). a,bDifferent 
superscripts indicate significant differences (P < 0.05).
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Items1

Performance (d 1–14) Relative weight of immune organs (d 14), g/kg

BW(d14), g ADFI, g FCR Thymus Spleen Fabricius

Treatment

Low-oxygen

CON 165.33 18.30 2.16 1.03 1.13 1.39

AUR 168.90 18.50 2.12 1.01 1.18 1.22

PRO 171.07 19.68 2.22 1.45 1.22 1.41

High-oxygen

CON 192.80 22.02 2.12 1.60 1.49 1.38

AUR 196.76 22.90 2.14 1.65 1.19 1.44

PRO 193.22 22.50 2.15 1.99 1.55 1.70

SEM2 2.01 0.22 0.03 0.07 0.05 0.07

Main effect oxygen (n = 18)

Low-oxygen 168.43b 18.83b 2.16 1.16b 1.18b 1.34

High-oxygen 194.26a 22.47a 2.14 1.74a 1.41a 1.51

Main effect probiotic (n = 12)

CON 179.07 20.16 2.14 1.31b 1.31 1.39

AUR 182.83 20.70 2.13 1.33b 1.18 1.33

PRO 182.14 21.09 2.19 1.72a 1.39 1.55

P-values

Oxygen 0.001 0.001 0.663 0.001 0.041 0.236

Probiotic 0.721 0.227 0. 667 0.021 0.312 0.393

Oxygen × Probiotic 0.813 0.340 0.789 0.937 0.385 0.657

Table 2. Effects of different treatments on production performance and relative weight of immune organs. 1BW: 
body weight; ADFI: average daily feed intake; FCR: feed conversion ratio. High-oxygen: chickens were reared in 
a room with oxygen percentages between 25.8% and 26.5%; Low-oxygen: chickens were reared in a room with 
oxygen percentages between 20.7% and 21.4%; CON: chickens were fed basal diet; AUR: chickens were fed basal 
diet supplemented with aureomycin (50 mg/kg diet); PRO: chickens were fed basal diet and inoculated with L. 
plantarum (109 CFU/chicken) by gavage on day 1. 2SEM: standard error of a mean (n = 6 pens per treatment 
group). a,bDifferent superscripts indicate significant differences (P < 0.05).

Figure 1. Effects of different treatments on mortality of chickens. High-oxygen: chickens were reared in a 
room with oxygen concentrations between 25.8% and 26.5%; Low-oxygen: chickens were reared in a room with 
oxygen concentrations between 20.7% and 21.4%. CON: chickens were fed basal diet; AUR: chickens were fed 
basal diet supplemented with aureomycin (50 mg/kg diet); PRO: chickens were fed basal diet and inoculated 
with L. plantarum (109 CFU/chicken) by gavage on day 1. *Indicates significant differences between high-
oxygen room and low-oxygen room (P < 0.05). a,bDifferent letters indicate significant dietary differences within 
the same room (P < 0.05).
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Plasma immunoglobulins and antibody responses to bovine serum albumin (BSA). Chickens 
reared in the high-oxygen room had significantly higher levels of IgA levels on day 7 and both IgA and IgG on 
day 14 than those in the low-oxygen room (P < 0.05) (Table 3). Compared with the CON and AUR groups, the 
probiotic significantly increased (P < 0.05) the levels of IgA, but not IgG and IgM, on day 7 and day 14.

To evaluate the special antibody response, the level of antibodies against BSA in plasma of chickens was 
assessed. Plasma of broilers in the high-oxygen room had a significantly higher (P < 0.05) level of IgG antibod-
ies against BSA compared with the low-oxygen room (Fig. 2). In addition, L. plantarum significantly increased 
(P < 0.05) anti-BSA IgG antibodies compared with the CON and AUR groups in both rooms.

Cytokines. To evaluate the effects of oxygen levels and L. plantarum treatments on cytokines production, 
ELISA was performed to examine levels of IL-1β, LITAF, IL-6, IL-10 and IL-12 in plasma. As shown in Table 4, 
on day 7, increasing oxygen levels significantly decreased the levels of IL-1β, LITAF, and IL-6 (P < 0.05) and 
increased (P < 0.05) the level of IL-10 compared with chickens in the low-oxygen room. There was no significant 
difference in the level of IL-12 between 2 rooms. L. plantarum significantly increased (P < 0.05) the level of IL-10 
and decreased the level of LITAF (P < 0.05) compared with the CON group, but had no effect (P > 0.05) on the 
levels of IL-1β, IL-6 and IL-12. Aureomycin significantly increased the level of IL-10 (P < 0.05), but had no effect 
on the other cytokines.

On day 14, no significant differences in the levels of IL-6 and IL-12 was observed among all groups. However, 
the levels of IL-1β and LITAF for the chickens in the low-oxygen room were higher (P < 0.05) than chickens in 
the high-oxygen room. Increasing oxygen levels caused the increase (P < 0.05) of IL-10 significantly. The levels of 
IL-1β and LITAF were decreased (P < 0.05) by the L. plantarum treatment. L. plantarum significantly increased 
the level of IL-10 (P < 0.05). Aureomycin decreased (P < 0.05) the levels of IL-1β and LITAF, but had no effect on 
the other cytokines.

Discussion
To the best of our knowledge, this study is the first to evaluate the effect of hypoxia on broilers by increasing the 
oxygen level at high altitude. In the past, researchers usually studied the effect of hypoxia on broilers by simulated 
high altitude in hypobaric chambers15,16. Since only two rooms were used in this study, all efforts were made to 
keep temperature, humidity, management, ventilation and sterilization measures same in these 2 rooms. So, the 
only major difference between the high-oxygen room and the low-oxygen room was oxygen levels. The inter-
esting result from the present study was that increasing the oxygen level significantly improved the production 
performance, evidenced by higher BW of the broilers reared in the high-oxygen room at day 14. Yersin et al.17 

Items1

Day 7 Day 14

IgA, ng/ml IgG, ng/ml IgM, ng/ml IgA, ng/ml IgG, ng/ml IgM, ng/ml

Treatment

Low-oxygen

CON 98.99 464.77 181.77 213.96b 611.10 336.90

AUR 100.19 466.72 189.65 228.74b 630.79 358.13

PRO 112.47 455.29 187.39 257.83a 627.58 363.56

High-oxygen

CON 109.14 488.90 192.19 263.86b 731.87 363.10

AUR 107.33 505.33 190.70 270.62b 721.04 380.10

PRO 116.43 472.53 195.02 303.93a 720.34 379.77

SEM2 1.75 7.96 4.85 4.87 12.00 5.33

Main effect oxygen (n = 18)

Low-oxygen 103.88 462.26 186.27 233.51b 623.16b 350.00

High-oxygen 110.97 488.92 192.64 279.14a 724.41a 374.32

Main effect probiotic (n = 12)

CON 104.07b 476.84 186.98 240.14b 671.48 350.00

AUR 103.76b 486.03 190.18 249.68b 675.92 369.11

PRO 114.45a 463.91 191.21 280.88a 673.96 371.67

P-values

Oxygen 0.050 0.110 0.516 0.001 0.001 0.059

Probiotic 0.026 0.510 0. 934 0.010 0.989 0.226

Oxygen × Probiotic 0.775 0.850 0.926 0.962 0.856 0.971

Table 3. Effects of different treatments on the plasma immunoglobulin of chickens. 1High-oxygen: chickens 
were reared in a room with oxygen percentages between 25.8% and 26.5%; Low-oxygen: chickens were reared in 
a room with oxygen percentages between 20.7% and 21.4%. CON: chickens were fed basal diet; AUR: chickens 
were fed basal diet supplemented with aureomycin (50 mg/kg diet); PRO: chickens were fed basal diet and 
inoculated with L. plantarum (109 CFU/chicken) by gavage on day 1. 2SEM: standard error of a mean (n = 6 
pens per treatment group). a,bDifferent superscripts indicate significant differences (P < 0.05).
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demonstrated that broilers reared at simulated high altitude (2,133 meters above sea level) had significantly lower 
body weights compared with chickens reared at natural low altitude (100 m above sea level) at day 14 and day 35. 
Li et al.1 found that the body weight of chickens reared in high altitude (Linzhi, China) at d 42 was significantly 

Figure 2. Effects of different treatments on anti-BSA antibodies of chickens. High-oxygen: chickens were 
reared in a room with oxygen concentrations between 25.8% and 26.5%; Low-oxygen: chickens were reared in a 
room with oxygen concentrations between 20.7% and 21.4%. CON: chickens were fed basal diet; AUR: chickens 
were fed basal diet supplemented with aureomycin (50 mg/kg diet); PRO: chickens were fed basal diet and 
inoculated with L. plantarum (109 CFU/chicken) by gavage on day 1. *Indicates significant differences between 
the high-oxygen room and the low-oxygen room (P < 0.05, n = 24). a,bDifferent letters indicate significant 
dietary differences within the same room (P < 0.05, n = 6).

Items1

Day 7 Day 14

IL-6, pg/ml IL-1β, ng/ml LITAF, ng/ml IL-10, pg/ml IL-12, pg/ml IL-6, pg/ml IL-1β, ng/ml LITAF, ng/ml IL-10, pg/ml IL-12, pg/ml

Treatment

Low-oxygen

CON 106.32 4.43 2.57 450.68b 102.29 343.05 5.78a 3.52a 493.86 195.61

AUR 109.20 4.42 2.39 472.36b 90.19 310.04 4.55ab 2.93ab 532.62 185.08

PRO 116.04 4.35 1.84 554.66a 90.27 302.55 4.30b 2.59b 588.50 184.29

High-oxygen

CON 104.95 2.85 1.80 487.23b 91.15 308.94 4.36a 2.82a 605.37 188.96

AUR 103.80 2.90 1.34 602.50ab 93.53 325.91 3.19b 2.03b 609.21 168.02

PRO 104.45 3.04 1.34 617.72a 91.05 329.82 3.26b 1.92b 724.66 160.01

SEM2 1.51 0.20 0.07 13.25 3.03 9.95 0.15 0.11 16.84 5.26

Main effect oxygen (n = 18)

Low-oxygen 110.52 4.40a 2.27a 492.57b 94.24 318.55 4.88a 3.03a 538.33b 188.32

High-oxygen 104.40 2.93b 1.49b 569.15a 91.91 321.56 3.60b 2.25b 646.41a 172.34

Main effect Probiotic (n = 12)

CON 105.63 3.64 2.19a 468.96b 96.72 326.00 5.07a 3.19a 549.71b 192.28

AUR 106.50 3.66 1.87b 537.43a 91.86 317.97 3.87b 2.48b 570.91ab 176.55

PRO 110.24 3.70 1.59b 586.19a 90.66 316.19 3.78b 2.25b 656.58a 172.17

P-values

Oxygen 0.050 0.001 0.019 0.008 0.700 0.881 0.001 0.003 0.005 0.150

Probiotic 0.416 0.992 0.012 0.006 0.713 0.921 0.007 0.011 0.035 0.316

Oxygen × Probiotic 0.388 0.948 0.386 0.313 0.619 0.460 0.864 0.902 0.757 0.807

Table 4. Effects of different treatments on the plasma cytokines of broiler chickens. 1LITAF: 
Lipopolysaccharide-induced TNF-α factor; High-oxygen: chickens were reared in a room with oxygen 
percentages between 25.8% and 26.5%; Low-oxygen: chickens were reared in a room with oxygen percentages 
between 20.7% and 21.4%. CON: chickens were fed basal diet; AUR: chickens were fed basal diet supplemented 
with aureomycin (50 mg/kg diet); PRO: chickens were fed basal diet and inoculated with L. plantarum (109 
CFU/chicken) by gavage on day 1. 2SEM: standard error of a mean (n = 6 pens per treatment group). a,bDifferent 
superscripts indicate significant differences (P < 0.05).
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lower than the expected growth performance at 42 d based on NRC18. High altitude hypoxia caused severe intesti-
nal mucosal injury19 and depressed gut development1. These negative effects can result in reduced absorption effi-
ciency for nutrients20. In addition, animals may be anorectic under the hypoxic condition. ADFI of broilers reared 
in the low-oxygen room were lower than broilers reared in the high-oxygen room. Increasing oxygen levels also 
decreased the mortality of chickens significantly. In our previous study performed in the same location, the mor-
tality of chickens during the starter phase (first 14 days) account for half of the total mortality during the whole 
42 days experimental period1. The price of an oxygen generator is about RMB 3,000, and the power of an oxygen 
generator was less than 400 W. Therefore, increasing oxygen levels of chicken houses by an oxygen concentrator 
may be a cost-effective measure to improve production performance of broilers reared in high altitude regions.

Hematological changes are important physiological responses to the hypobaric hypoxic condition. In the cur-
rent study, hematological changes were obvious. The RBC counts, HGB level and HCT of broiler chickens reared 
in the low-oxygen room were all higher than the high-oxygen room on day 14. Our result is also supported by a 
previous study by Yersin et al.17, who showed that chickens reared at a simulated high altitude (2,133 meters above 
the sea level) had higher RBC counts, HGB level and HCT value than chickens reared at a low altitude (100 meters 
above the sea level). By increasing RBC counts and HGB levels, chickens increase the oxygen-carrying capacity by 
a compensatory mechanism to the hypobaric hypoxic condition.

The high mortality of chickens reared in low-oxygen room may be associated with the change of immune 
responses. The relative weights of lymphoid organs are often used to predict the immune status of broiler chick-
ens21. In this study, chickens reared in the low-oxygen room had significantly lower relative weight of thymus 
and spleen compared with chickens reared in the high-oxygen room. In addition, immunoglobulins play an 
important role in immune function of animals. In this study, the levels of IgA and IgG in chickens reared in the 
low-oxygen room were significantly lower than chickens reared in the high-oxygen room on day 14. In addi-
tion to non-specific antibody responses, hypoxia could also influence the specific immune response. The level of 
anti-BSA IgG of chickens reared in the low-oxygen was lower than chickens in the high-oxygen room, suggesting 
that increasing oxygen levels could improve the immune responses of broilers in high altitude regions. Hypoxia 
functioning as a danger signal for the immune system could also influence the synthesis of cytokines. In the 
present study, chickens reared in the low-oxygen level room had significantly higher levels of IL-1β and LITAF 
than chickens in the high-oxygen room at day 7 and day 14. In addition, hypoxia also increased the level of IL-6 
and decreased the level of IL-10 at day 7. LITAF, IL-1β, and IL-6 are proinflammatory cytokines that involved in 
inflammatory responses. IL-10 is an anti-inflammatory cytokine and responsible for downregulation inflamma-
tory responses. The increase of LITAF, IL-1β, and IL-6 and the decrease of IL-10 indicated an early inflammatory 
response in chickens reared in the low-oxygen room22.

To our best knowledge, this research is also the first to study the effects of the probiotics on the broilers reared 
in high altitude. During the experiment period, L. plantarum had no effect on production performance of broilers 
in both high-oxygen room and low-oxygen room. Although many studies have suggested the beneficial effects of 
probiotics in improving broiler performance, the growth-promoting efficacy of probiotics is more effective during 
the grower phase (from day 15 to day 28) and the finisher phase (from day 29 to day 42) rather than during the 
starter phase (from day 1 to day 14)10,23. Zhang et al.23 found that a diet supplemented with a mixture of L. acido-
philus, B. subtilis, and C. butyricum (1 × 105 and 2 × 105 CFU/kg of diet) significantly improved the body weight 
gain during day 22 to day 35, not during day 1 to day21. Similarly, Mountzouris et al.10 found that a diet supple-
mented with 5-bacterial species probiotic product (108 CFU probiotics/kg diet) significantly increased growth 
performance of broiler chickens during the grower and finisher phases, but had no effect on broiler production 
performance for the starter phase (day 1 to day14). In the present study, the focus was on the first 14 days because 
the young chicks were more sensitive to hypoxia than adult chickens, in terms of the mortality rate1.

Hypoxia is a challenge to animals. Cataldi et al.24 and Wang et al.25 reported that hypoxia could induce the 
secretion of large quantity of ROS which was involved in oxygen stress. In the present study, probiotic decreased 
mortality of chickens reared in low-oxygen room. However, probiotic had no effect on the mortality of chickens 
reared in the high-oxygen room. This was probably due to the fact that a probiotic is more effective when chick-
ens are under stress. For example, Zulkifli et al.26 found that probiotics could increase the antibody response 
against the Newcastle disease vaccine only after chickens were subjected to heat stress. The L. plantarum treat-
ment increased the level of IgA on day 14. In addition, chickens in the PRO group had stronger anti-BSA IgG 
responses. Finally, L. plantarum reduced the levels of proinflammatory cytokines and increased the level of 
anti-inflammatory cytokine. All these results suggest that L. plantarum improved the immune functions of chick-
ens in high altitude regions. Our results were in accordance with previous results by others. For example, Zhang 
et al.23 found that the levels of serum IgA were increased by administration of multistrain probiotics. Wang et al.27  
also demonstrated that a novel L. plantarum strain P-8 increased IgA+ lymphocytes in the jejunum and Peyer’s 
patches. Rajput et al.12 found that probiotics could increase the IgA positive cells significantly in the jeju-
num of broilers. This may be associated with the increase of the level of IgA. Brisbin et al.28 reported that L. 
salivarius-treated broilers had significantly more serum antibody to sheep red blood cell (SRBC) and keyhole 
limpet hemocyanin (KLH) than birds that were not treated with probiotics after they were immunized with SRBC 
and KLH. Feng et al.13 and Chen et al.14 found that probiotics could modulate the expression of proinflammatory 
and anti-inflammatory cytokines.

In conclusion, the results of the present study indicated that increasing oxygen levels of broiler houses can 
decrease mortality and modulate the immune response of broilers reared at high altitude during the starter phase. 
It may be a cost-effective measure to improve the production performance and decrease mortality of broilers in 
high altitude regions. In addition, L. plantarum can modulate the immune responses of broiler chickens reared at 
high altitude and it could act as an immunomodulator for improving the immune responses of broilers.
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Methods
Bacterial strain and growth conditions. Probiotic used in this study was isolated from intestine of a 
healthy Tibet local chicken, and identified as Lactobacillus plantarum (L. plantarum) by 16S rRNA sequencing. L. 
plantarum were cultured in the de Man, Rogosa and Sharp broth, grown at 37 °C until stationary growth phase. 
All bacteria were harvested by centrifugation (6,000 × g for 15 min) at the beginning of stationary growth phase. 
Pelleted bacteria were then washed 3 times using sterile phosphate-buffered saline (PBS) and diluted in PBS. 
One hundred μl of L. plantarum suspension was serially diluted in sterile PBS, then 100 μl diluted suspension 
was plated onto the de Man, Rogosa and Sharp agar to enumerate colonies after incubation at 37 °C for 24 h. L. 
plantarum counts were expressed as CFU per milliliter.

Chickens and housing. A total of 360 newly hatched 1-d-old healthy Arbor Acres broilers of mixed sex were 
purchased from a commercial hatchery at Chengdu (average altitude 500 m above the sea level), then transported 
to the experimental farm of Tibet Agriculture and Animal Husbandry College (average altitude 2,986 m above the 
sea level) by air for this study. The chicks were randomly allotted to 6 treatments, taking the sex into the consid-
eration. Same numbers of males and females were assigned in each pen. Each treatment consisted of 6 replicate 
pens with 10 chicks in each pen. The chicks were raised in 3-layer metal cages, the average stocking density was 15 
birds per square meter. The room temperature was maintained at 33 °C for the first week and 28 °C for the second 
week. The chicks were allowed ad libitum access to the experimental diets and water. Chicks were subjected to 
23 h of light and 1 h of dark throughout the trial. This research was approved by the Northwest Agriculture and 
Forestry (A&F) University Institutional Animal Care and Use Committee protocol number (NWAFAC2826), 
and all experimental protocols used in this study were in accordance with the relevant guidelines approved by 
the Northwest Agriculture and Forestry (A&F) University Institutional Animal Care. The institutional safety 
procedures were followed.

Experimental design. The experiment was in a 2 × 3 factorial design and last 22 days. The first factor con-
tained 2 levels: low-oxygen concentration (20.7% to 21.4%) and high-oxygen concentration (25.8% to 26.5%). 
The altitude will not affect the oxygen concentration in the air. However, the rising of the altitude decreases the 
atmospheric pressure and the oxygen level which equals to atmospheric pressure *oxygen concentrations. By 
increasing the oxygen concentration in a room, the oxygen level was increased in the air. The atmospheric pres-
sure in Linzhi is 519 mm Hg. High-oxygen level was achieved by supplementing a room with oxygen (3 L/min, 
purity 93% ± 3%) using an oxygen concentrator (Yuwell, 8F-3W, Jiangsu Yuyue medical equipment & supply Co., 
Ltd, China). The oxygen concentrator separates oxygen from air. The machine was put outside of the room and 
oxygen was imported into the room by a tube. Oxygen concentrations were measured using an oxygen monitor 
(AS8901, The Smart Sensor, Dongguan, China). All other factors including temperature, humidity, management, 
ventilation and sterilization measures were kept same for the two rooms. The second factor was diet, including a 
control diet, an aureomycin supplemented diet and a control diet supplemented with a probiotic. The birds in the 
control group (CON) and the probiotic group (PRO) were fed the basal diet alone. The birds in the aureomycin 
group (AUR) were fed the basal diet containing aureomycin at 50 mg/kg of diet. The chicks in the PRO group 
were inoculated via oral gavage with 0.2 ml PBS containing 109 CFU L. plantarum on the day of arriving at the 
experimental houses. PBS was used as a placebo for the other 2 groups. The basal diet was a corn-soybean starter 
broiler diet (12.6 MJ metabolizable energy/kg of diet, 220 g/kg crude protein) formulated without antibiotics 
or coccidiostats. The nutrient levels met or exceeded critical levels of nutrients recommended by the National 
Research Council18.

Immunization and oral antigen administration. In order to measure specific antibody responses, 
broiler chickens were immunized orally with BSA (Sigma-Aldrich, Zwijndrecht, The Netherlands). Our prelim-
inary experiment indicated that the BSA-antibodies were undetectable in serum if chickens were orally admin-
istrated with BSA before day 8. The level of BSA-antibodies 10 days after the last oral immunization was high if 
chickens were orally administrated with BSA between day 8 and day 12. Our observation was also supported by 
the results from Bar-Shira et al.29. Therefore, 2 broiler chickens of every replicate were randomly chosen to be 
immunized with BSA (5 mg/day per chicken) for 5 days from 8-day-old to 12-day-old, BSA was dissolved in ster-
ile water, and another 2 broiler chickens were inoculated with sterile water as the control. Oral immunization was 
performed by gently placing a blunt-tipped feeding needle above the tongue, and slowly dripping the solution into 
the pharynx, thus allowing the chickens to voluntarily swallow the solution. Ten days after the last immunization, 
blood samples were collected from the jugular vein. Samples were centrifuged for 10 min at 3,000 × g, and plasma 
was harvested and stored at −20 °C.

Production performance. Body weight for chickens in each pen and feed intake (FI) were obtained on 
day14. The FCR, defined as FI divided by the weight gain, was calculated for the first 2 weeks of the experiment. 
Mortality was recorded daily.

The relative weight of immune organ. On day 14, 1 broiler chicken per replicate was randomly selected 
from every group and euthanized via cervical dislocation immediately after weighing. The immune organs 
(spleen, thymus and bursa of Fabricius) were harvested and weighted and the relative weight of organ was calcu-
lated as the ratio of an organ weight divided by the body weight (g/kg).

Analyses of blood samples. Blood samples were collected from the jugular vein on day 7 and day 14. A 
part of blood sample was used for measuring RBC counts, HGB levels and HCT values by an automatic blood 
analyzer (XFA6000, Pulang Company, Nanjing, China) which had been standardized for analyses of chicken 
blood.
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The remaining blood samples were centrifuged for 10 min at 3,000 × g, and plasma were harvested and stored 
at −20 °C for analyses of IgA, IgG, IgM and cytokines. The levels of plasma IgA, IgG and IgM were measured 
by a sandwich enzyme-linked immunosorbent assay (ELISA) using chicken-specific IgA, IgG and IgM ELISA 
quantitation kits (Elabscience Biotechnology, Wuhan, China), following the instruction of the manufacturer. The 
levels of IgA, IgM, and IgG were determined using standard curves constructed from respective immunoglobulin 
standards and were expressed as nanogram of IgA, IgM, or IgG per milliliter of plasma.

Assays for anti-BSA antibodies. Anti-BSA antibody levels were determined by ELISA. Briefly, 96-well 
microplates were coated with BSA solution and incubated overnight at 4 °C. Blocking was performed with skim 
milk. The plates were washed before adding plasma samples (diluted to a proper concentration) to each well. 
Then, peroxidase labeled goat anti-chicken IgG was added to each well. Finally, bound antibodies were detected 
by 3,3′,5,5′-Tetramethylbenzidine followed by stop solution (2 mM H2SO4). The absorbance was measured at 
450 nm by a microplate reader (Varioskan Flash, Thermo Fisher Scientific, Waltham, USA). In our study, the 
plasma of a broiler from the PRO group in the high-oxygen room was randomly chosen as a reference. The con-
centration of the undiluted plasma was considered as 1,000 (arbitrary units). A standard curve was constructed 
from the serially double diluted plasma sample. The levels of anti-BSA IgG in all samples were calculated and 
compared. Negative control plasma samples (plasma of chickens which were not immunized with BSA) were 
included in each plate to account for plate-to-plate variations.

Assessment of IL-1β, IL-6, IL-10, lipopolysaccharide-induced TNF-α factor (LITAF) and IL-12 in 
chick plasma. Cytokines (IL-1β, IL-6, IL-10, LITAF and IL-12) were measured by the ELISA methods with 
specific antibodies against IL-1β, IL-6, IL-10, LITAF and IL-12 prepared in our laboratory. Briefly, plasma sample 
was added to each well, specific rabbit anti-chicken antibodies against IL-1β, IL-6, IL-10, LITAF and IL-12 were 
used as capturing antibodies. After washing, peroxidase labeled goat anti-chicken IgG was added to each well. 
3,3′,5,5′-Tetramethylbenzidine was served as a color indicator, and subsequently the color reaction was stopped 
by a stop solution (2 mM H2SO4). The absorbance values of well plates were measured at 450 nm wavelength by a 
microplate reader (Varioskan Flash, Thermo Fisher Scientific, Waltham, USA). The concentrations of cytokines 
in plasma were determined using standard curves constructed from respective cytokine standard.

Statistical analyses. All data from the experiment, except mortality, were subjected to a two-way ANOVA 
by the SPSS 13.0 software for windows (SPSS, Chicago, IL). The linear model to test the effect of treatments on 
response variables was as follows: yij = μ + oxygeni + probioticj + (oxygen × probiotic)ij + eij, where y = response 
variable, μ = population mean, oxygen = main effect of oxygen levels, probiotic = main effect of oral treatment 
of the probiotic, oxygen × probiotic = interaction effect of oxygen levels and oral treatment of the probiotic, and 
e = residual error [N (σ, μ; 0, 1)]. Mortality was analyzed by χ2 test. A P-value of less than 0.05 was considered to 
be statistically significant.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.

Received: 29 April 2019; Accepted: 17 October 2019;
Published: xx xx xxxx

References
 1. Li, L., Wang, H. H. & Zhao, X. Effects of Rhodiola on production, health and gut development of broilers reared at high altitude in 

Tibet. Sci. Rep. 4, 7166 (2014).
 2. Özkan, S. et al. The effects of feed restriction and ambient temperature on growth and ascites mortality of broilers reared at high 

altitude. Poult. Sci. 89, 974–985 (2010).
 3. Clambey, E. T. et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and 

function during inflammatory hypoxia of the mucosa. Proc. Natl. Acad. Sci. 109, E2784–E2793 (2012).
 4. McNamee, E. N., Korns Johnson, D., Homann, D. & Clambey, E. T. Hypoxia and hypoxia-inducible factors as regulators of T cell 

development, differentiation, and function. Immunol Res. 55, 58–70 (2013).
 5. Kleessen, B. et al. Microbial and immunological responses relative to high-altitude exposure in mountaineers. Med. Sci. Sports Exerc. 

37, 1313–1318 (2005).
 6. Chohan, I. S., Singh, I., Balakrishnan, K. & Talwar, G. P. Immune response in human subjects at high altitude. Int. J. Biometeorol. 19, 

137–143 (1975).
 7. Hartmann, G. et al. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. 

Cytokine. 12, 246–252 (2000).
 8. Yang, M. X. et al. Increased expression of surface CD44 in hypoxia-DCs skews helper T cells toward a Th2 polarization. Sci. Rep. 5, 

13674 (2015).
 9. Huang, M. K. et al. Effects of Lactobacilli and an acidophilic fungus on the production performance and immune responses in 

broiler chickens. Poult. Sci. 83, 788–795 (2004).
 10. Mountzouris, K. C. et al. Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, 

plasma immunoglobulins, and cecal microflora composition. Poult. Sci. 89, 58–67 (2010).
 11. Bai, S. P. et al. Effects of probiotic-supplemented diets on growth performance and intestinal immune characteristics of broiler 

chickens. Poult. Sci. 92, 663–670 (2013).
 12. Rajput, I. R. et al. Effect of Saccharomyces boulardi and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal 

immunity development mechanism in broiler chickens. Poult. Sci. 92, 956–965 (2013).
 13. Feng, J. C., Wang, L. H., Zhou, L. X., Yang, X. & Zhao, X. Using in vitro immunomodulatory properties of lactic acid bacteria for 

selection of probiotics against Salmonella infection in broiler chicks. PLoS One. 11, e0147630 (2016).
 14. Chen, Q. L. et al. Involvement of microRNAs in probiotics-induced reduction of the cecal inflammation by Salmonella 

Typhimurium. Front. Immunol. 8, 704 (2017).

https://doi.org/10.1038/s41598-019-52514-w


9Scientific RepoRtS |         (2019) 9:16037  | https://doi.org/10.1038/s41598-019-52514-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

 15. Balog, J. M. et al. Ascites syndrome and related pathologies in feed restricted broilers raised in a hypobaric chamber. Poult. Sci. 79, 
318–323 (2000).

 16. Solis de los Santos, F. et al. Effect of prebiotic on gut development and ascites incidence of broilers reared in a hypoxic environment. 
Poult. Sci. 84, 1092–1100 (2005).

 17. Yersin, A. G. et al. Changes in hematological, blood gas, and serum biochemical variables in broilers during exposure to simulated 
high altitude. Avian Dis. 36, 189–196 (1992).

 18. National Council Research. Nutrient Requirements of Poultry, 9th revised edition. National Academy Press, Washington, DC 
(1994).

 19. Zhou, Q. Q. et al. Over-starvation aggravates intestinal injury and promotes bacterial and endotoxin translocation under high-
altitude hypoxic environment. World J. Gastroenterol. 17, 1584–1593 (2011).

 20. Stappenbeck, T. S., Hooper, L. V. & Gordon, J. I. Developmental regulation of intestinal angiogenesis by indigenous microbes via 
Paneth cells. Proc. Natl. Acad. Sci. 99, 15451–15455 (2002).

 21. Zhang, Z. F., Cho, J. H. & Kim, I. H. Effects of Bacillus subtilis UBT-MO2 on growth performance, relative immune organ weight, gas 
concentration in excreta, and intestinal microbial shedding in broiler chickens. Livestock Science. 155, 343–347 (2013).

 22. Withanage, G. S. K. et al. Rapid expression of chemokines and proinflammatory cytokines in newly hatched chickens infected with 
Salmonella entericaserovar Typhimurium. Infect. Immun. 72, 2152–2159 (2004).

 23. Zhang, Z. F. & Kim, I. H. Effects of multistrain probiotics on growth performance, apparent ileal nutrient digestibility, blood 
characteristics, cecal microbial shedding, and excreta odor contents in broilers. Poult. Sci. 93, 364–370 (2014).

 24. Cataldi, A. et al. p53 and telomerase control rat myocardial tissue response to hypoxia and ageing. Eur. J. Histochem. 53, 209–216 
(2009).

 25. Wang, Y. P. et al. Telomere elongation protects heart andlung tissue cells from fatal damage in rats exposed to severe hypoxia. J. 
Physiol. Anthropol. 37, 5 (2018).

 26. Zulkifli, I., Abdullah, N., Azrin, N. & Ho, Y. W. Growth performance and immune response of two commercial broiler strains fed 
diets containing Lactobacillus cultures and oxytetracycline under heat stress conditions. Br. Poult. Sci. 41, 593–597 (2000).

 27. Wang, L. F. et al. A novel Lactobacillus plantarum strain P-8 activates beneficial immune response of broiler chickens. Int. 
Immunopharmacology. 29, 901–907 (2015).

 28. Brisbin, J. T. et al. Oral treatment of chickens with lactobacilli influences elicitation of immune responses. Clin. Vaccine Immunol. 
18, 1447–1455 (2011).

 29. Bar-Shira, E., Sklan, D. & Friedman, F. Establishment of immune competence in the avian GALT during the immediate post-hatch 
period. Dev. Comp. Immunol. 27, 147–157 (2003).

Acknowledgements
This work was supported by two grants from National Natural Science Foundation of China (31672445 and 
31560651).

Author contributions
L.W., L.L. and X.Z. contributed to the design of the trial and prepared the manuscript of this publication. L.W., 
G.F. and S.L. performed the experiments.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to X.Z.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-52514-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Effects of oxygen levels and a Lactobacillus plantarum strain on mortality and immune response of chickens at high altitude ...
	Results
	Blood parameters. 
	Production performance. 
	The relative weight of immune organ. 
	Mortality. 
	Plasma immunoglobulins and antibody responses to bovine serum albumin (BSA). 
	Cytokines. 

	Discussion
	Methods
	Bacterial strain and growth conditions. 
	Chickens and housing. 
	Experimental design. 
	Immunization and oral antigen administration. 
	Production performance. 
	The relative weight of immune organ. 
	Analyses of blood samples. 
	Assays for anti-BSA antibodies. 
	Assessment of IL-1β, IL-6, IL-10, lipopolysaccharide-induced TNF-α factor (LITAF) and IL-12 in chick plasma. 
	Statistical analyses. 

	Acknowledgements
	Figure 1 Effects of different treatments on mortality of chickens.
	Figure 2 Effects of different treatments on anti-BSA antibodies of chickens.
	Table 1 Effects of different treatments on the blood parameters of chickens.
	Table 2 Effects of different treatments on production performance and relative weight of immune organs.
	Table 3 Effects of different treatments on the plasma immunoglobulin of chickens.
	Table 4 Effects of different treatments on the plasma cytokines of broiler chickens.




