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A simple and flexible high-
throughput method for the study of 
cardiomyocyte proliferation
Abigail C. neininger, J. Hunter Long, Sophie M. Baillargeon & Dylan T. Burnette*

Cardiac muscle cells lack regenerative capacity in postnatal mammals. A concerted effort has been 
made in the field to determine regulators of cardiomyocyte proliferation and identify therapeutic 
strategies to induce division, with the ultimate goal of regenerating heart tissue after a myocardial 
infarct. We sought to optimize a high throughput screening protocol to facilitate this effort. We 
developed a straight-forward high throughput screen with simple readouts to identify small molecules 
that modulate cardiomyocyte proliferation. We identify human induced pluripotent stem cell-derived 
cardiomyocytes (hiCMs) as a model system for such a screen, as a very small subset of hiCMs have the 
potential to proliferate. The ability of hiCMs to proliferate is density-dependent, and cell density has 
no effect on the outcome of proliferation: cytokinesis or binucleation. Screening a compound library 
revealed many regulators of proliferation and cell death. We provide a comprehensive and flexible 
screening procedure and cellular phenotype information for each compound. We then provide an 
example of steps to follow after this screen is performed, using three of the identified small molecules 
at various concentrations, further implicating their target kinases in cardiomyocyte proliferation. 
This screening platform is flexible and cost-effective, opening the field of cardiovascular cell biology 
to laboratories without substantial funding or specialized training, thus diversifying this scientific 
community.

Cardiomyocytes are the essential muscle cells which drive the beating of the heart. These cells display a balance 
between hyperplastic growth by cell division and hypertrophic growth by cell enlargement during development. 
However, after birth, mammalian cardiomyocytes exit the cell cycle and rely solely on hypertrophic growth1. As 
a result, cardiomyocytes lost due to injury cannot be replaced. There has been a concerted effort to find factors 
that induce cardiomyocytes to reenter the cell cycle and successfully undergo cell division. Identification of these 
factors would facilitate the ultimate goal of regenerating heart muscle in vivo, so the heart can heal from injury. 
Overexpression of positive cell cycle regulators or transcription factors or deletion of negative cell cycle regula-
tors in rodent models has been shown to induce proliferation (summarized in Fig. 1). However, there is a limit to 
the amount of protein that can be overexpressed in a cell due to proteasome-mediated degradation of the excess 
protein2. Excitingly, a recent study has circumvented this by demonstrating a combinatorial approach utilizing 
both genetic manipulation and small molecule inhibitors which induced cell division in post-mitotic murine 
cardiomyocytes in vivo2. This treatment also improved cardiac function after a myocardial infarction, proving to 
be a promising approach to regenerate cardiomyocytes in vivo. Thus, identifying additional small molecules that 
induce cardiomyocyte proliferation could be beneficial for future combinatorial therapies.

Current technologies lend themselves to high-throughput screening to identify bioactive small molecules. 
Such a screening platform needs to be robust, sensitive, and large-scale, with a clear readout. There are several 
in vitro model systems that could be considered for such a screen, each with unique advantages and disadvan-
tages. Cardiomyocytes can be isolated from rodents and represent mature, adult cardiomyocytes. However, these 
primary rodent cardiomyocytes can only beat in culture for a few days, making them unsuitable for long-term 
screens. Beating can be inhibited, making these cells will last longer; however, they will dedifferentiate to a more 
immature state3. In addition, the isolation protocols can be variable, resulting in cell populations that differ 
between batches and laboratories. As such, we believe human induced pluripotent stem cells differentiated into 
cardiomyocytes likely to be a robust model system. These cells can be maintained in culture for weeks to months 
and beat continuously, facilitating long-term screens. Although these cardiomyocytes are more transcriptionally 
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similar to embryonic cardiomyocytes, this immature state maintains a slight proliferative potential that can be 
modulated by small molecules4. The long-term goal of many such studies are to test compounds in whole ani-
mals, such as with a high-throughput zebrafish screen or a more low-throughput treatment in rodents given a 
myocardial infarction.

Figure 1. Factors involved in cardiomyocyte proliferation. A brief review of factors identified in rodents or 
using human iPSCs as regulators of cardiomyocyte proliferation. Circles, squares, and triangles show the model 
system used, experiment, and proliferation detection method, respectively. Arrows show activating factors, 
blunt arrowheads show inhibitory factors, and lines show factors determined to have no effect. A combination 
of two types of arrows for the same factor shows conflicting results. Numbers denote the studies for each factor, 
which can be found in the supplementary references.
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A second major consideration in developing a screening platform is accessibility to researchers from a wide 
range of disciplines. This requires a straight-forward procedure with a simple and quantitative output. The cost 
of such a screen also needs to be minimized as the initial investment into a project is often a hurdle for labora-
tories entering a new field of study. Taking these considerations, here we report a strategy for identifying small 
molecule regulators of cardiomyocyte proliferation. We use human iPSC-derived cardiomyocytes (hiCM) and 
relatively low-magnification microscopy to monitor the number of nuclei over time. This has allowed us to screen 
a library of small molecules to identify compounds that both increase and decrease proliferation. This procedure 
is straight-forward, flexible, and cost-effective.

Results
Identifying hiCMs as a model system for cardiomyocyte proliferation. It has been noted that 
hiCMs have a slight proliferative capacity5,6. The vast majority of studies have used methods such as BrdU incor-
poration into replicating DNA or Ki67 localization in the nucleus to mark cycling cells (Fig. 1). There are two 
potential outcomes of DNA synthesis: the nucleus becoming polyploid or mitosis. Following mitosis, the cell 
can either go through cytokinesis and create two new daughter cells (i.e., hyperplastic growth) or it can become 
binucleated (i.e., hypertrophic growth)7,8. While studying sarcomere assembly in hiCMs plated at sub-confluent 
densities9, we observed both hiCMs that appeared to go through cytokinesis (Figs 2B and S1A) and hiCMs which 
were binucleated (Fig. 2C). We confirmed these two outcomes by localizing β-catenin to mark the boundaries of 
cells (Figs 2B,C and S1D). We first attempted to use a live-cell membrane marker to identify division events ver-
sus binucleation events, but due to the high membrane turnover in cardiomyocytes, live-cell membrane markers 
immediately become cytoplasmic in localization. While this marker defined boundaries of HeLa cells, the bound-
aries of hiCMs cannot be defined (Fig. S1B,C). For this reason, we turned to fixed-cell imaging with β-catenin. By 
marking the boundaries of cells, we can identify if a cell has one or two nuclei.

Interestingly, we found it was rare to detect mitotic events in hiCM plated at high densities, such as a mon-
olayer. Density-dependent proliferation is well documented in other cell types10. Indeed, a previous study has 
shown that human embryonic stem cell-derived cardiomyocytes incorporate more BrdU when plated at “low” 
density (~268 cells/mm2) as opposed to “high” density (~3846 cells/mm2)11. Given our observations and this pre-
vious study, we sought to quantify the relationship between plating density and proliferation in hiCM.

We plated hiCMs at various densities to test if there was a relationship between cell density and proliferation 
(i.e., mitotic events). In order to get a direct measurement of proliferation, we turned to live-cell microscopy. 
Every nucleus was labeled with a live-cell nuclear marker, and each well was imaged every 12 hours for a week, 
followed by quantification to determine the proliferative capacity of the cells. Image stitching was used to visualize 
the entire population of nuclei in each well of a 96-well plate. This resulted in the monitoring of nuclei in approx-
imately 492,188 hiCMs over the course of 5 independent experiments. As expected, we found an inverse relation-
ship between cell density and proliferation from a range of 544 cells/mm2 to 136 cells/mm2 (Fig. 2D). Decreasing 
the density past 136 cells/mm2 did not yield corresponding increases in proliferation. 34 cells/mm2 was the den-
sity at which hiCMs were physically isolated from each other. We next tested whether these observed increases in 
proliferation were due to binucleation or cytokinesis. Surprisingly, the percentage of binucleated hiCMs was con-
sistent at all densities (Fig. 2E). Taken together, our data suggested that plating hiCMs at sub-confluent densities 
increases proliferation but does not influence whether a particular hiCM undergoes binucleation or cytokinesis. 
Based on these results, we next wanted to explore if hiCMs plated at sub-confluent densities could be used for 
high-content screening to identify modulators of cardiomyocyte proliferation.

Developing a screen to identify modulators of hiCM proliferation. We next wanted to identify a 
plating density that would facilitate detection of both positive and negative modulation of hiCM proliferation, 
lying in the middle of the inverse relationship between density and proliferation (i.e., 544 cells/mm2 to 136 cells/
mm2). This density would be ~340 cells/mm2. Due to the nature of making dilutions of cultured hiCMs, we 
ultimately chose 333 cells/mm2 as our experimental density. To facilitate a high content screen, we also needed 
to scale-up the number of samples that could be imaged over time. Our experiments presented in Fig. 2 were 
performed in individual wells of a 96-well plate, however, this can limit the number of molecules that can be 
tested at once. Thus, we moved to culturing hiCMs in 384-well plates (Fig. 3A). This is cost-effective and allows 
for the usage of fewer cells per well, and increases the number of possible compounds that can be tested. Of note, 
cultured hiCMs are fragile and as such are sensitive to physical perturbation during media changes. This rules out 
less gentle methods of media transfer such as automatic liquid handling, and as such, all media exchanges should 
be done by hand.

We chose a small molecule library of well-characterized kinase inhibitors from Vanderbilt University’s High 
Throughput Screening Core. This allows for any results of our screen to be immediately informative as to which 
signaling pathways are controlling hiCM proliferation. Small molecules were plated into a 384-well plate at 
10 mM in DMSO using an automatic liquid handling system. To reduce the concentration to 10 µM, cardiomyo-
cyte maintenance media with a nuclear marker was added to each well of the plate. hiCMs were previously plated 
into a separate 384-well plate, then the hiCM media was replaced with the small molecule-containing media using 
a multichannel pipette (Fig. 3B). This allowed for each nucleus in each well to be imaged, masked, and quantified 
over time (Fig. 3C). We first tested if the nuclear marker we used had any effect on cardiomyocyte proliferation 
and found no difference in Ki67-positive nuclei in control or labeled cells (Fig. S3C). A detailed protocol is pro-
vided in the Supplement.

Quantifying the effects of small molecules on cardiomyocyte proliferation. Utilizing this pro-
tocol, we quantified nuclei count per image over time, taking images every 12 hours for six days. We normalized 
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Figure 2. Identifying iPSC-derived human cardiomyocytes as a model for cardiomyocyte proliferation. (A) 
Three possibilities resulting from DNA synthesis: proliferation and polyploidization (i.e., endoreduplication), 
and two possibilities resulting from mitosis: cytokinesis and binucleation. (B) Live montage of dividing hiCM 
using phase contrast and widefield fluorescence microscopy, visualizing nuclei using a live-cell fluorescent 
nuclear probe. hiCM were then fixed and stained for β-catenin to confirm division. Arrow: cell-cell boundary. 
(C) Live montage of binucleating hiCM using phase contrast and widefield fluorescence microscopy as in (B). 
Single-headed arrow: metaphase. Double-headed arrow: midbody. (D) Proliferative capacity of hiCMs increases 
with decreasing cell density. Percent change in nuclei count normalized to confluent hiCM so that confluent 
cells have a 0% change. N = 5 experiments per data point, approximately 500,000 hiCM in total; mean +/− SEM 
over 5 independent experiments. *p < 0.05. **p < 0.01. (E) Binucleation proportion does not change when 
cells are plated at various densities. Binucleation proportion measured post-fixation stained with β-catenin over 
three independent experiments. N = 4678 total cells; mean +/− SEM. NS by One-Way ANOVA.
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nuclear increase to control and repeated the screen three more times, resulting in four independent screens using 
the same small molecules. Interestingly, there was a wide range of changes in hiCM proliferation due to small 
molecule administration. Some small molecules increased hiCM proliferation, some stopped proliferation alto-
gether, and some caused cell death. The nuclei in each well were quantified as a fold change over time (See equa-
tion in the Methods). We averaged the nuclear fold change over four screens (Fig. 4A).

The top small molecules that had the highest average increase in nuclei over time (Fig. 4B), the middle small 
molecules with no effect on nuclei count (Fig. 4C), and the small molecules that led to death reproducibly in all 
four screens (Fig. 4D) were identified. We confirmed by manually observing each well (Fig. 4E–G). However, 
several of these compounds had high standard deviations across screens and did not have a reproducible effect on 
nuclei count over time, producing false positives. In order to focus on small molecules that reproducibly affected 
proliferation, we sorted the compounds that had a nuclear fold change greater than 1 by their standard deviation 
(Fig. 4H). Interestingly, several of these hits have been identified previously as modulators of the cardiomyo-
cyte cell cycle, including GSK-3β inhibitor BIO12,13 and a p38-inhibitor SB239063 related to previously identified 
SB20358014,15.

Phenotypic analysis and small molecule compound follow-up. After the high-throughput screen, 
we manually observed each well over 7 days and completed a detailed phenotypic analysis. We noted time of 
death (quantified post-drug addition) for each well that had total cell death within the 7 day timeframe (Fig. 5A). 
Interestingly, several of the small molecules led to eventual cell death, which further supports that many potential 
therapeutic molecules might be cardiotoxic. We then noted wells in which there were division events, “spin-
dly” cell edges, elongated cells, particularly large cells, and cells which had prominent stress fibers (Fig. 5B–G, 
Supplemental Spreadsheet 2).

Once a high-throughput screen is completed specific small molecules need to be identified and further pur-
sued. As an example of such a next step, we chose three small molecules which had high increase in nuclear count 
over the four screens, but a low variance between screens (Fig. 4H), and that we found of particular interest based 
on the literature. These three hits included Acadesine, an AMPK activator, Palomid-529, an mTORC inhibitor, 
and SB216763, a GSK-3 β inhibitor (Fig. 5H). Interestingly, activating AMPK in the heart has been shown to 
be protective against hypertrophy16. In addition, a another small molecule inhibition of GSK-3β using BIO and 
CHIR99021 has been shown to increase hiCM proliferation12,13,17. On average over the four screens, these com-
pounds led to a 20% increase in nuclei count. As we performed our initial screen using small molecules at 10 µM, 
we next tested the effectiveness of these compounds at lower concentrations. We found that each compound 
indeed increased proliferation of hiCM at doses lower than the screening concentration (Fig. 5I), and that this 
induction of proliferation does not affect the baseline balance of cytokinesis and binucleation (Fig. 5J).

Comparing the number of division events to the overall number of cycling cells. We next wanted 
to compare our method to a standard method for identifying cycling cells. We chose the localization of Ki67 using 
immunofluorescence18. We treated hiCMs with the identified small molecules and localized Ki67 and α actinin 2 
post-fixation (Fig. 6A). In this way, we can identify cycling cells and simultaneously confirm the cardiomyocyte 

Figure 3. Workflow: identifying small molecule regulators of cardiomyocyte proliferation. (A) Cardiomyocyte 
plating scheme and example plate map. (B) Small molecule addition procedure. (C) Nuclei imaging and 
quantification scheme. For more information, see Supplemental Protocol.
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Figure 4. Effect of small molecules on cardiomyocyte proliferation. (A) Results of small molecule drug screen 
on nuclei count over a period of 72 hours, normalized to control, averaged over three independent screens. 
A value of 1 indicates an equivalent rate of nuclei increase to control cells, that is, there is no apparent change 
in death or proliferation compared to control. A value of 0 indicates cell death, and a value of 2 indicates a 
doubling of nuclei count over time compared to control. (B) Top small molecules that, on average, increased 
nuclei count. Note that these calculations do not account for variance between screens. (C) Middle small 
molecules that had no observed effect on nuclei count over time. (D) Small molecules that led to 100% cell 
death reproducibly in each screen. (E) Example time-lapse of dividing cardiomyocyte over 24 h post-small 
molecule addition. (F) Example time-lapse of cardiomyocytes over 24 h post-small molecule addition. Note 
no effect on cardiomyocyte proliferation or death. (G) Example time-lapse of cardiomyocytes undergoing cell 
death after small molecule addition. (H) All small molecule compounds with a mean nuclear count increase 
greater than 1, sorted from top to bottom by smallest to largest standard error of the mean.
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Figure 5. Phenotypic analysis and small molecule compound follow-up. (A) Time of death (days) for each well 
that died within the time frame of the screen, averaged over the three screens. 0 represents that the cells died 
within the 20 minutes between small molecule addition and initial imaging. 1 represents that cells died before 
24 hours post-addition (i.e., between 12 hours and 24 hours). If cells did not die, they are not represented in this 
graph. Nuclei count was unreliable for cells which died, as there was debris created which fluoresced. Thus, time 
of death was manually quantified. (B) Phenotypic analysis of cardiomyocytes over three screens given 429 small 
molecules. (C) Example of a cluster of approximately 7–8 healthy cardiomyocytes. Small molecule: PD318088. 
(D) Example of a cluster of cardiomyocytes that are especially unhealthy, giving the cells a “spindly” appearance. 
Small molecule: AT7867. (E) Example of an elongated cardiomyocyte (arrow). Note cardiomyocytes directly 
above the elongated cardiomyocyte that have normal appearances. Small molecule: WAY-600. (F) Example 
of a particularly large cardiomyocyte (arrow). Small molecule: PD318088. (G) Example of a cardiomyocyte 
with stress-fiber like striations on its edge (arrow). Small molecule: APTSTAT3-9R. (H) Three small molecules 
identified by screen as potential regulators of hiCM proliferation. (I) Three small molecules from (H) tested at 
0.01, 0.1, 1, and 10 µM (i.e., 10, 100, 1000, and 10000 nM) over five independent experiments. Shown as mean. 
(J) Binucleation proportion does not change when cells are treated with these small molecules at their most 
effective concentrations (Palomid-529 5 µM, SB216763 3 µM, and Acadesine 3 µM), measured post-fixation 
stained with β-catenin. N = 6624 total cells over three independent experiments; mean +/− SEM. NS by One-
Way ANOVA.
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identity of the hiCMs in control conditions and with the identified small molecules. We also localized Ki67 in 
hiCMs treated with a previously identified small molecule that has been shown to induce cardiomyocyte prolifer-
ation, a p38 inhibitor14. Each of the three identified compounds increased the percentage of Ki67-positive nuclei 
to similar or even higher levels than the previously identified p38 inhibitor (Fig. 6B). However, the identification 
of cycling cells using Ki67 accounts for more cells than those which actually subsequently divide19.

We also wanted to compare the cost of performing a screen using live-cell nuclear localization with the cur-
rent method of fixed-cell Ki67 localization (Table 1) and found that our method of performing the screen was 
significantly more cost-effective. We also include a detailed protocol on how to complete both methods of screens, 
including step-by-step alternative approaches for laboratories with more limited resources with the goal to alle-
viate the significant financial investment typically required for starting research in the cardiovascular field. In 
conclusion, fixed-cell localization of cycling markers only allows for imaging one time point and provides an 
overestimate of cell division, and further, is more costly than live-cell imaging of nuclei.

Discussion
The diversity of the scientific community working on a problem is instrumental to the innovation of any field. 
Previously, the study of cardiomyocytes has been limited to researchers with substantial funding and special-
ized training to initiate in vivo studies or differentiation protocols from iPSCs. Here we present a method that 
is specifically designed to be straight-forward and accessible to a wide variety of researchers. hiCMs can be 

Figure 6. Using Ki67 to confirm three small molecules identified in screen increase hiCM proliferation. 
(A) Phase contrast, α actinin 2 and Ki67 in control hiCM and hiCMs treated with Palomid-529, SB216763, 
Acadesine, and SB203580. (B) Quantification of Ki67+ hiCMs in control and small molecule-treated hiCMs. 
*p < 0.05.
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purchased, which bypasses the typically rate-limiting and costly step of initiating in-house hiCM-differentiation. 
Furthermore, the experiments do not require advanced microscopy. Indeed, all the experiments in the main 
figures were completed using relatively low magnification imaging with a 4x, 10x, or 20x objective, though one 
objective would be sufficient. Indeed, we have provided a detailed protocol in the supplement that presents how 
our method can be modified to accommodate any microscope capable of performing fluorescence. Using our 
method, we present several datasets as a resource for determining small molecules that play an activating or 
inhibitory role in cardiomyocyte proliferation. Screening a limited compound library revealed many potential 
regulators of proliferation and cell death (Supplemental Spreadsheets 1, 3). We also provide additional cellular 
phenotype information for each compound (Supplemental Spreadsheet 2).

We chose to use purchased hiCMs because the initial investment is far less than in-house differentiation proto-
cols. In-house hiCM differentiation protocols also do not produce pure populations of myocytes. These protocols 
can contain ~10% of nonmuscle cells20. Because the percentage of dividing hiCMs is so low, a small contamina-
tion of highly proliferative non-muscle cells, e.g., fibroblasts, could skew the results. Each batch of purchased 
cardiomyocytes comes with a certificate of purity, claiming >99%. However, even if 0.99% of the cells were highly 
proliferative, this would affect results. For this reason, we routinely localize α actinin 2 in our cultures. These 
cells are positive for α actinin 2. Of note, over the course of this study, we have only found 3 cells present in our 
cultures that do not express α actinin 2 out of the ~500,000 we have observed. Further, every dividing cell found 
in cultures stained for α actinin 2 has been α actinin 2-positive (Fig. 6A and S1A). Taken together, these cultures 
contain cardiomyocytes which have the capacity to divide.

Another factor to consider when using hiCMs for any experimental purpose is their ‘maturity’. It has been 
well-documented that hiCMs do not resemble in vivo adult human cardiomyocytes transcriptionally or morpho-
logically21. In addition, adult human cardiomyocytes have a very low potential for division5,6. Conversely, hiCMs 
transcriptionally resemble fetal/neonatal cardiomyocytes21, and obviously can divide. It is for this reason that 
we believe hiCMs are an ideal system to explore what regulates the cell cycle and cytokinesis in cardiomyocytes.

There are several reasons we chose to count nuclei as the basis of this screening protocol, rather than previ-
ously utilized methods. Proliferative markers such as Ki67 and PCNA give an overestimate of cell proliferation, as 
they mark any cell that is cycling in general. This can mark cells undergoing endoreduplication (i.e., polyploidi-
zation), cytokinesis, and binucleation. DNA synthesis markers such as BrdU/EdU detects these three outcomes 
as well as DNA damage repair19. To circumvent these issues, researchers have turned to midbody markers such as 
Aurora B kinase to more directly mark cytokinesis. However, groups have recently shown preliminary evidence 
that binucleating cells can form a midbody22,23. Interestingly, we also see examples of binucleating cells that have 
a clear midbody in a typical position (Fig. 2C, double-headed arrow). Thus, using midbody markers or even 
simply identifying mitotic figures does not unequivocally mark cardiomyocytes undergoing cytokinesis. Hesse & 
Doengi22 also propose using distance between nuclei after mitosis to differentiate between cytokinesis and binu-
cleation. However, some hiCMs have two nuclei that are well-separated (Supplemental Fig. 2F).

An in vivo approach to navigating cardiomyocyte proliferation is to use the MHC promoter to mark only car-
diomyocytes and use sophisticated tools such as mosaic analysis using double markers (MADM), etc., to measure 
CM proliferation2. However, the MHC promoter could be active in undifferentiated progenitor cells19 which 
could cloud results in mouse models. In fixed tissue, thin sections restrict the identification of binucleated cardio-
myocytes. In thicker sections, optical aberrations, limited axial resolution, and imprecise marking of cell bounda-
ries are limitations. Even so, in vivo approaches limit the throughput of identifying any compounds or factors that 
affect cardiomyocyte proliferation.

Given the ambiguity that results from other markers, we propose using live hiCMs for high-throughput 
screening of regulators of hiCM proliferation by simply counting nuclei. This method allows for a more accurate 
proliferation approximation. We present this dataset as a resource for other cardiac researchers to follow up on 
any small molecule or phenomenon of interest. With a nearly endless variety of live-cell markers available and 
the ease of this protocol, it can be adapted to study several aspects of cardiovascular cell biology. Here we used 
a small molecule library as a proof-of-concept; however, CRISPR-based screens can be easily incorporated into 
this platform. Such a simplistic experimental platform can bridge the gap between a limited screen providing 
preliminary data and a hypothesis-driven follow-up study. hiCMs have been shown to be amenable to genetic and 
pharmacological perturbations3,9. Indeed, we have provided suggestions in the supplemental protocol as to when 
genetic or pharmacological experiments can be incorporated.
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Reagent Cost per plate

384-well plate $5.84

384 small molecules aliquoted by the 
Vanderbilt HTS core $40

Cells $341.33

Media $18.93

NucLight $75.84 (two washes)

Ki67 $130

Table 1. Cost per 384 well plate of screening platform.
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