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Unraveling oxidative stress 
response in the cestode parasite 
Echinococcus granulosus
Martín Cancela1,2,3*, Jéssica A. Paes1,3, Hercules Moura4, John R. Barr4, Arnaldo Zaha1,2,3,5 & 
Henrique B. Ferreira1,2,3,5*

Cystic hydatid disease (CHD) is a worldwide neglected zoonotic disease caused by Echinococcus 
granulosus. The parasite is well adapted to its host by producing protective molecules that modulate 
host immune response. An unexplored issue associated with the parasite’s persistence in its host is 
how the organism can survive the oxidative stress resulting from parasite endogenous metabolism 
and host defenses. Here, we used hydrogen peroxide (H2O2) to induce oxidative stress in E. granulosus 
protoescoleces (PSCs) to identify molecular pathways and antioxidant responses during H2O2 exposure. 
Using proteomics, we identified 550 unique proteins; including 474 in H2O2-exposed PSCs (H-PSCs) 
samples and 515 in non-exposed PSCs (C-PSCs) samples. Larger amounts of antioxidant proteins, 
including GSTs and novel carbonyl detoxifying enzymes, such as aldo-keto reductase and carbonyl 
reductase, were detected after H2O2 exposure. Increased concentrations of caspase-3 and cathepsin-D 
proteases and components of the 26S proteasome were also detected in H-PSCs. Reduction of lamin-B 
and other caspase-substrate, such as filamin, in H-PSCs suggested that molecular events related to 
early apoptosis were also induced. We present data that describe proteins expressed in response to 
oxidative stress in a metazoan parasite, including novel antioxidant enzymes and targets with potential 
application to treatment and prevention of CHD.

Echinococcus granulosus is the causative agent of cystic hydatid disease (CHD), a neglected zoonosis that harms 
human health and livestock farming worldwide1–3. The metacestode or hydatid cyst is the larval stage of E. granu-
losus, that develops in lungs and liver of mammalian intermediate hosts and is responsible for the pathogenesis of 
the infected organ and adjacent tissues4. The hydatid cyst is a fluid-filled cavity delimited by a carbohydrate-rich 
acellular laminar layer and an inner germinal layer5. The germinal layer is composed of stem cells capable of 
giving rise to the pre-adult forms or protoscoleces (PSCs). The parasite is well-adapted to its intermediate host, 
where it can persist for decades6, surviving and growing despite the adverse host responses. To secure this, the 
parasite developed mechanisms to subvert the host immune response7,8.

Antioxidant defenses are essential to combat reactive oxygen and nitrogen species (ROS and RNS, respec-
tively) produced during host immune response and intracellular oxidative metabolism. ROS and RNS are 
harmful to tissue components because they can damage proteins, lipids, carbohydrates, and DNA, altering their 
functions9. For this reason, unicellular and multicellular organisms have developed non-enzymatic and enzy-
matic machineries, which include a repertoire of molecules to manage oxidative stress, such as glutathione and 
Cys-rich oligopeptides (for non-enzymatic mechanisms), and superoxide dismutases and peroxiredoxins (for 
enzymatic mechanisms)10.

A well-characterized antioxidant defense in E. granulosus is the linked thioredoxin-glutathione system, includ-
ing the redox-associated proteins thioredoxin glutathione reductase, thioredoxin peroxidase, thioredoxin, glu-
tathione, and glutaredoxin11,12. Other detoxifying enzymes, including members of the glutathione-S-transferase 
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(GST) family, have also been reported in E. granulosus13,14. Despite the availability of genome data from various 
taenid species15, little is known about how parasitic flatworms respond to oxidative stress.

Hydrogen peroxide (H2O2) is an oxidant molecule previously used in studies as a model for oxidative stress 
damage9, wound repair16,17, and signaling18, and as an apoptosis inductor19,20. In E. granulosus, H2O2 was used as a 
prophylactic method to kill PSCs inside the hydatid cyst21, and in vitro exposure to H2O2 induced PSC apoptosis 
after 8 h of treatment22. Moreover, in Echinococcus multilocularis, the etiological agent of alveolar echinococcosis, 
H2O2 exposure induced expression of a tumor suppressor protein p53 homologue (Emp53), and apoptosis in 
metacestode vesicles cultured in vitro23. However, no study has assessed the molecular pathways activated upon 
oxidative stress response in the Echinococcus spp.

To unravel molecular mechanisms related to oxidative stress response in E. granulosus, we performed a com-
parative proteomic study between PSCs exposed and not exposed to H2O2. Overall, we identified 550 protein spe-
cies, including proteins with differential abundance in response to H2O2. Up-regulation of antioxidant enzymes, 
including GSTs, along with novel carbonyl detoxifying enzymes, such as aldo-keto reductase and carbonyl reduc-
tase, occurred after H2O2 exposure. Other proteins that are targets of the proteolytic pathway of apoptotic cell 
death were down-regulated in H2O2-exposed PSCs. Overall, our results shed light on novel antioxidant mecha-
nisms and cellular stress response in E. granulosus.

Results
MS-based proteomics analyses of PSC treated or not with H2O2.  To initially assess the overall sen-
sitivity of PSCs to oxidative stress, independent PSC cultures were treated with different H2O2 concentrations 
of 1.0, 2.5, and 5.0 mM and observed after 2 h and 4 h of treatment (Fig. 1). After 2 and 4 h incubation, it was 
observed that PSCs adopted a rounded shape in the presence of different H2O2 concentrations, but no viabil-
ity changes were noticed in comparison to the corresponding non-treated control cultures. Since previous data 
showed apoptosis induction in E. multilocularis vesicles treated with 5 mM H2O2 for 4 h, we chose a milder treat-
ment with 2.5 mM H2O2 concentration for 2 h to allow the detection of proteins induced at earlier stages of the 
oxidative stress response.

Protein samples obtained from two E. granulosus biological replicates for each treatment (tests and control) 
and analyzed using 12% SDS-PAGE showed a complex pattern of proteins ranging from 10 to >225-kDa (Fig. S1). 
Biological replicates from control (C-PSCs) and H2O2-treated PSCs (H-PSCs) had nearly identical electrophoretic 
profiles.

LC-MS/MS analysis of the protein extracts from H-PSCs and C-PSCs in each experimental condition identi-
fied both shared and exclusive proteins. Reproducibility between replicates was assured, considering as valid only 
proteins identified in both biological replicates. For quantification, mass spectrometry data from the three tech-
nical replicates for each validated protein were condensed as an average of spectral counts. Overall, 550 unique 
proteins were identified, 474 in H-PSCs and 515 in C-PSCs (Tables S1, S2, respectively). Table S3 shows detailed 
peptide identification data. A total of 439 proteins were found in both H-PSCs and C-PSCs samples, while 76 
proteins were exclusively found in C-PSCs and 35 were exclusive to the H-PSCs (Fig. 2a).

Up- and down-regulated proteins in response to H2O2.  Quantitative analyses using normalized spec-
tral abundance factor (NSAF) values of the 439 proteins shared between H-PSCs and C-PSCs revealed that 52 
proteins showed quantitative differences among treated and control groups, with P < 0.05 and fold change >1.5 
(Fig. 2b). Among these 52 differentially represented proteins, 29 were down-regulated (Table 1) and 23 were 
up-regulated in H2O2-treated PSCs (Table 2).

Among the more abundant proteins in response to H2O2, we found enzymes related to oxido-reductase activ-
ity (estradiol 17 beta-dehydrogenase, protein disulfide isomerase), glycerol metabolism (glycerol-3-phosphate 
dehydrogenase), proteolytical activity (cathepsin D, 26S proteasome subunit), stress response (heat shock protein 
70), and basement membrane component (collagen alpha-1 type IV and XI) (Table 2). Enzymes with the highest 

Figure 1.  E. granulosus PSCs incubated with H2O2. PSCs were cultured with different H2O2 concentrations (0, 
1.0, 2.5, and 5.0 mM) and incubation times (2 h and 4 h). The figure represents the results obtained from two 
biological replicates (PSCs from two different cysts). Scale bar: 40 μm.
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fold change (FC) are related to stress response (Fig. 2b). Among them are enzymes with different functions, 
such as removal of reactive carbonyl groups produced during oxidative stress (estradiol 17 beta-dehydrogenase, 
FC = 18.7), hyperosmotic stress response (glycerol-3-phosphate dehydrogenase, FC = 16.9), matrix cellular 
remodeling (collagen alpha-1(XI) chain, FC = 6.8), and protein degradation process and cathepsin D, FC = 4.8). 
Interestingly, previously described antioxidant enzymes, like superoxide dismutase and components of the thi-
oredoxin system, were not differentially represented between H-PSCs and C-PSCs.

Among the 29 proteins down-regulated in H-PSCs (up-regulated in C-PSCs), we found structural proteins 
(lamin-B2, dynein-1 heavy chain, troponin I), proteins with oxido-reductase activity (dehydrogenase/reductase, 
aldehyde dehydrogenase, pyrroline 5-carboxylate reductase), inhibitors and proteolytic enzymes (serine protein-
ase inhibitor, dipeptidyl peptidase 3, aminopeptidase), and those involved in protein synthesis (asparaginyl and 
seryl tRNA synthetases) (Table 1). According to the volcano plot analysis, the most down-regulated proteins were 
lamin B-2 (FC = 12.8), aldehyde dehydrogenase (FC = 9.6), and seryl tRNA syntethase (FC = 7.7) (Fig. 2b). Two 
protein components of the vault complex (major vault protein and telomerase protein component 1) were also 
down-regulated (FC ~3) in H-PSCs.

Proteins exclusively detected in H-PSCs and C-PSCs.  We identified 76 proteins exclusive to C-PSCs 
and 35 proteins exclusive to H-PSCs (Table S3). In H-PSCs, these proteins included two GST detoxifying enzymes 
(EGR_07274 and EGR_09218), caspase-3 related to apoptosis (EgrG_000462900), proteolytic enzymes related 
to proteasome (EGR_04682, EgrG_000223600 and EGR_05037), and other carbonyl detoxifying enzymes, such 
as carbonyl reductase 1 (EgrG_000113500) and aldo-keto reductase family 1 (EgrG_000156300). Conversely, 
in C-PSCs, we found many expressed conserved proteins with unknown function (e.g., EgrG_000087900, 
EgrG_000097300, EgrG_000124000), proteins related with protein synthesis, such as ribosomal proteins and 
aminoacyl-tRNA synthetases (Table S3) and some cytoskeletal proteins (filamins, talin, tubulin-β, tropomyosin).

Functional annotation and gene ontology (GO) term enrichment analyses.  To unravel molecular 
pathways associated with oxidative stress response, we performed functional annotation for proteins differen-
tially represented in H-PSCs (58, being 35 exclusive plus 23 up-regulated) and C-PSCs (105, being 76 exclu-
sive plus 29 up-regulated). Using gene functional categories defined by the gene ontology and GO terms were 
summarized by REVIGO. Six REVIGO category clusters were enriched in H-PSCs samples: metabolic process, 
glycerol-3-phosphate catabolic process, oxidation-reduction process, carbohydrate metabolic process, organic 
substance metabolic process, and primary metabolic process. Eight REVIGO category clusters were enriched in 
C-PSCs samples. The top five among those eight included tricarboxylic acid metabolic process, cellular compo-
nent assembly involved in morphogenesis, mitotic cell cycle process, tRNA aminoacylation for protein transla-
tion, and cytoskeleton organization.

GST immunolocalization in PSC under H2O2 exposure.  We performed a whole-mount immunohisto-
fluorescence (WMIF) using a monoclonal antibody raised against Sj28GST in H-PSCs and C-PSCs. This antibody 
recognized a specific 27-kDa band, as expected for EgGST isoforms, in western blot assays using PSC soluble 
extract (data not shown). In WMIF experiments, the anti-Sj28GST allowed to detect differences in GST locali-
zation between H-PSCs and C-PSCs. In C-PSCs, GST was localized in cytoplasmic and parenchymal tissues. In 
H-PSCs, GST showed strong reactivity in the tegumental surface of protoescoleces (Fig. 3). This correlated with 
the differential GST expression between C-PSCs and H-PSCs and suggested a possible role for different EgGSTs 
in the protection of PSCs against oxidative damage induced by H2O2.

Figure 2.  Overview of the proteins identified in the C-PSCs and H-PSCs samples. (a) The numbers of proteins 
exclusively detected in each sample or shared between them are indicated in the diagram. Only proteins 
identified by at least two peptides and present in the two biological replicates were considered for analysis. (b) 
Volcano plot of proteins shared between C-PSCs and H-PSCs, with significant differences between samples. 
Proteins with a p value < 0.05 (−log10 = 1.3) and a fold-change (FC) > 1.5 (log2 = 0.5) were considered 
differentially abundant between H-PSC and C-PSC by both statistical and FC parameters and are represented by 
black dots and identified by their numbering in Table S4. Proteins without significant differences in abundance 
between samples according to the criteria above are shown as grey dots.
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Discussion
During the E. granulosus life cycle, onchospheres, hydatid cysts and PSCs are exposed to host and endogenous 
toxic compounds. As a consequence, the parasite makes use of different molecular mechanisms to eliminate 
them. For instance, PSCs are constantly exposed to ROS and RNS during infection, either within the hydatid 
cyst or upon their release in the definitive (primary infection) or intermediary hosts (secondary infections)24. 
In primary infection, as PSC passes though the digestive tract, it is activated by the action of pepsin and H+, at 
the stomach, and by bile salts, at the small intestine. During this process, PSCs evaginate and fix themselves to 
the gut mucosa, where they develop into adult tapeworms. At the intestine, ROS and RNS can be produced by 
phagocytic cells as part of the mucosal immune response and also by the epithelium and microbiota25. In second-
ary infections, caused by cyst content leakage or rupture, PSCs and additional cyst components can also activate 
host defenses, including phagocytic cells that can produce H2O2

26, which is toxic for PSCs21. Despite this hostile 
host environment, PSCs are able to survive and differentiate into secondary hydatid cysts27, relying for that on 
the production of antioxidant (AOX) molecules and enzymes that prevent oxidative damage to macromolecules.

In our study, we used hydrogen peroxide to induce oxidative stress in PSCs of the platyhelminth E. granulosus, 
which represents a condition found by the parasite when it infects mammalian hosts. We used mass spectrometry 
proteomics workflow to identify proteins and molecular pathways associated with oxidative stress response in the 
parasitic platyhelminth E. granulosus.

Our proteomic analysis identified many PSC proteins whose relative abundances were altered in response 
to H2O2. The generated data allowed to propose molecular pathways and functions that are activated upon E. 
granulosus PSCs exposure to H2O2 and likely contribute to protect the parasite against oxidative damage (Fig. 4). 
Unexpectedly, previously characterized antioxidant enzymes, like superoxide dismutase28 and components of the 
thioredoxin system11 were not up-regulated in H-PSCs. A possible explanation for that would be that we only 
analyzed PSCs collected after 2 h of exposure to H2O2. Possibly, these enzymes are not the main players in AOX 
response at this time point.

Protein name Accession codea
p-value 
(t-test)

Quantitative values (NSAF)

Fold change (FC)bC-PSCs H-PSCs

Acidic leucine rich nuclear phosphoprotein EgrG_001104800 0.013 0.0488735 0.0167205 2.92

Aldehyde dehydrogenase mitochondrial EgrG_000389100 0.0001 0.062014 0.00645025 9.61

Aminopeptidase EgrG_001105200 0.0063 0.0253525 0.0067329 3.76

Aminotransferase class III (Ornithine aminotransferase) EgrG_001032200 0.01 0.097817 0.039335 2.48

Asparaginyl tRNA synthetase cytoplasmic EgrG_000348600 0.0024 0.097845 0.040421 2.42

Aspartate aminotransferase EGR_07719 0.0039 0.087438 0.0411095 2.12

Betaine aldehyde dehydrogenase EgrG_000904200 0.021 0.0259865 0.00833905 3.11

Calcium-transporting ATPase EGR_06085 0.0024 0.00911835 0.002885 3.16

Calnexin EGR_06707 0.031 0.0343755 0.00996025 3.45

Cysteine and glycine rich protein 1 (Cysteine and 
glycine-rich protein) EgrG_000893500 0.043 0.107258 0.0514965 2.08

Cytoplasmic dynein 1 heavy chain EGR_01376 0.011 0.0028364 0.000907625 3.12

Dehydrogenase/reductase SDR family member EGR_07430 0.00069 0.029967 0.0089241 3.35

Dipeptidyl peptidase 3 (Dipeptidyl peptidase III) EgrG_001028100 0.017 0.024112 0.0086011 2.80

Endophilin B2 EgrG_000060900 0.022 0.129905 0.0405845 3.20

Glutathione S-transferase EGR_07276 0.041 0.24975 0.153215 1.63

Gynecophoral canal protein EgrG_000824400 0.038 0.0236955 0.00926185 2.55

Lamin-B2 EGR_02565 0.0082 0.021778 0.0016971 12.83

LIM zinc bindingdomain containing protein EgrG_000539800 0.0038 0.0350835 0.019154 1.83

Major vault protein EgrG_000142500 0.015 0.379795 0.12536 3.02

Mitochondrial dicarboxylate carrier EgrG_000595000 0.013 0.0510985 0.021425 2.38

Purine nucleoside phosphorylase (PNP) EgrG_000622900 0.039 0.098687 0.0269765 3.65

Pyrroline 5 carboxylate reductase EgrG_000233100 0.0011 0.0099199 0.00361065 2.74

Serine protease inhibitor EgrG_001193100 0.015 0.060694 0.0244525 2.48

Seryl tRNA Synthetase EgrG_001197300 0.01 0.0484465 0.0062857 7.70

Tegumental protein EGR_08411 0.047 0.036927 0.01000965 3.69

Telomerase protein component 1 EgrG_001036600 0.041 0.022413 0.0065969 3.39

Transaldolase EGR_10111 0.009 0.0749545 0.0206575 3.62

Troponin I 4 EGR_06361 0.014 0.0929875 0.060291 1.54

Tubulin polymerization promoting protein family EgrG_000096900 0.016 0.073331 0.01876 3.90

Table 1.  Proteins up-regulated in C-PSCs samples. aProtein accession codes were retrieved from E. granulosus 
genome annotation available on WormBase ParaSite (http://www.parasite.wormbase.org/). bFold changes were 
based on NSAF values from ‘C-PSCs’ divided by those of ‘H-PSCs’.
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One of the major detoxification systems in helminths includes various isoforms of GSTs29–33. GSTs are multi-
functional enzymes that enable cellular detoxification of endogenous and exogenous toxic chemicals (xenobiot-
ics) by catalyzing their conjugation to glutathione. A previous report showed that E. granulosus expresses at least 
three GSTs isoforms, named EgGST1-332. Interestingly, different EgGST isoforms can form heterodimers in vitro34 
and this would be important to increase functional diversification. Overexpression of EgGST1 was observed 
after PSC incubation with the GST inducer phenobarbital13. In our study, we found two EgGSTs up-regulated 
in response to H2O2. EgGST1 and a fourth, previously uncharacterized EgGST in H-PSCs indicate that different 
E. granulosus GST isoforms are induced in response to different stressor agents. The two up-regulated EgGSTs 
identified here might protect PSCs against lipid peroxidation, generated by H2O2 and other ROS produced by 
the host35. Using an S. japonicum anti-GST antibody, we found immunoreactivity at the tegumental surface of 
PSC exposed to H2O2. In contrast, control PSCs showed a strong GST immunoreactivity in internal parenchymal 
tissues. These data suggest that GSTs isoforms are synthetized in cells lining the tegumental surface during oxi-
dative stress, protecting PSC from exogenous oxidants. In the parasitic trematode Clonorchis sinensis, differential 
activation of GST isoforms has occurred in response to bile salts or oxidative stress, with up-regulation of secreted 
isoforms upon oxidative stress36,37.

Many carbonyls (aldehydes and ketones) produced after oxidative stress are highly reactive, leading to cel-
lular damage through DNA adduct formation and protein and lipids modifications38. ROS and RNS can cause 
oxidation of macromolecules to reactive carbonyls. To counter carbonyl stress, cells express a group of enzymes 
involved in carbonyl metabolisms, including aldo-keto reductases (AKRs) and carbonyl reductases (CBRs)39. 
We found an estradiol-17 beta dehydrogenase with the highest fold change (FC ~19) and another member of 
the AKR family (EgrG_000156300) among the proteins up-regulated in PSCs exposed to H2O2. These enzymes 
belong to the aldo-keto reductase superfamily (AKR domain, pfam00248 identified). This protein superfamily 
is composed of >190 members distributed in 16 AKR families in humans. AKRs are present in all phyla acting 
as NADPH-dependent oxidoreductase enzymes with important role in reduction of aldehydes to alcohol40. For 
instance, an AKR enzyme was found as secreted by the trematode parasite Echinostoma caproni and assumed to 
contribute to withstand hostile Th1 pro-inflammatory environment induced in primary infections in mice41. In 
cancer cells, overexpression of some members of the AKR family protects against drug toxicity and apoptosis 
induced by reactive carbonyl42,43. In the parasitic protozoan Trypanosoma cruzi, the etiological agent of Chagas 
disease, T. cruzi AKR (TcAKR) was up-regulated in benznidazole-resistant strains44. Overexpression of TcAKR 
gene in a sensitive strain enhanced the resistance to benznidazole and reduced intracellular ROS after treatment45, 
supporting TcAKR antioxidant activity and involvement in drug metabolism. Moreover, in the protozoan Babesia 
microti, responsible for human babesiosis, AKR was up-regulated in response to oxidative stress and anti-parasitic 

Protein name Accession codea
p-value 
(t-test)

Quantitative values 
(NSAF)

Fold change (FC)bC-PSCs H-PSCs

26S proteasome non-ATPase regulatory subunit EgrG_000736900 0.048 0.00686595 0.0148795 2.17

40S ribosomal protein S13 EgrG_000856900 0.036 0.019052 0.058467 3.06

6 phosphogluconolactonase EgrG_000445200 0.025 0.0117905 0.029843 2.53

Adenosylhomocysteinase EGR_05478 0.026 0.0077762 0.0193915 2.49

Cathepsin d lysosomal aspartyl protease EgrG_000970500 0.016 0.0158975 0.075669 4.76

Collagen alpha-1(IV) chain EGR_08512 0.0035 0.0142325 0.021473 1.50

Collagen alpha-1(XXIV) chain EGR_03871 0.0018 0.0014417 0.0090935 6.30

Elongation factor 1-alpha EgrG_000982200 0.049 0.091483 0.15607 1.70

Estradiol 17 beta-dehydrogenase EGR_09847 0.0021 0.0098417 0.18411 18.70

Fatty acid amide hydrolase 1 EgrG_000743700 0.034 0.014514 0.03086 2.12

GDP L fucose synthase EgrG_000476900 0.0042 0.0196555 0.0427775 2.17

Glycerol-3-phosphate dehydrogenase NAD EgrG_000686100 0.00019 0.010596 0.027413 2.58

Glycerol-3-phosphate dehydrogenase NAD(+) EGR_09089 0.003 0.00262725 0.044269 16.84

Glycogen debranching enzyme EgrG_000644500 0.039 0.00428925 0.018231 4.25

Heat shock protein 105 EgrG_000917000 0.02 0.018896 0.0419425 2.21

Histone EgrG_002016600 0.043 0.0710695 0.18414 2.59

Large subunit ribosomal protein 23 EgrG_000954600 0.0071 0.0174355 0.038076 2.18

Long chain fatty acid coenzyme A ligase 4 EgrG_000376500 0.0077 0.0084074 0.0242155 2.88

Nucleoside diphosphate kinase EGR_05582 0.048 0.074672 0.152835 2.04

Protein disulfide-isomerase EGR_08944 0.039 0.031717 0.051831 1.63

Splicing factor U2AF subunit (U2 small nuclear RNA 
auxiliary factor 2) EgrG_000625400 0.014 0.0037978 0.00622035 1.63

Succinyl-CoA synthetase subunit alpha EGR_08424 0.03 0.015809 0.047168 2.98

Zinc phosphodiesterase elac protein 1 EgrG_000149350 0.0089 0.00665745 0.0261045 3.92

Table 2.  Proteins up-regulated in H-PSCs samples. aProtein accession codes were retrieved from E. granulosus 
genome annotation available on WormBase ParaSite (http://www.parasite.wormbase.org/). bFold changes were 
based on NSAF values from ‘H-PSC’ divided by those of ‘C-PSC’.
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drugs, supporting the relevance and conserved functions of AKRs against oxidative damage and drug response46. 
The induction of some members of the AKR family upon PSCs exposure to H2O2 suggests that these enzymes play 
an important role in detoxifying reactive carbonyls, a protective response against ROS in E. granulosus. Carbonyl 
reductase 1, another carbonyl detoxifying enzyme, was up-regulated in H-PSCs. This enzyme belongs to the 
NADPH-dependent short-chain dehydrogenase/reductase (SDR) superfamily. Carbonyl reductase 1 catalyzes 
the reduction of various carbonyl compounds, including endogenous aliphatic aldehydes and ketones and xeno-
biotic quinones47. Human carbonyl reductase 1 plays an important role in neuronal48 and cancer cell survival49 
by decreasing oxidative stress and resistance to apoptosis. It protects cells against lipid peroxidation by reducing 
carbonyl aldehydes50. Moreover, human carbonyl reductase 3 is induced during pro-inflammatory stimuli and 
acts as a sensor of oxidative stress51. In the trematode parasite F. hepatica, the causative agent of fasciolosis, two 
xenobiotic metabolizing enzymes (carbonyl reductase and GST) showed an increased activity after in vivo treat-
ment with the anthelminthic drug triclabendazole, suggesting a detoxifying function for this enzyme52. In E. 
granulosus a high level of carbonyl reductase in PSCs exposed to H2O2 might act to detoxify reactive carbonyl, 
preventing macromolecules damage. Our data show the first strong evidence on the importance of this family of 
carbonyl detoxifying enzymes to combat oxidative stress in helminth parasites.

Cellular damage caused by oxidative stress can induce cell death by different pathways, including programmed 
cell death. Previous work showed that H2O2 induced apoptosis of E. multilocularis metacestode vesicles53, but the 
molecular aspect of oxidative stress that lead to cell death are yet unknown. In our study, we found evidence of 
the molecular event related to cell death of PSC after H2O2 treatment. Lamins (type-A and B) are components 
of the nuclear lamina and are major structural proteins. These proteins are located at the inner membrane of 
nuclear envelope and play important functions in nuclear architecture and maintenance of chromosome integ-
rity by ensuring proper spindle assembly54. In the present study, we found lamin-B down-regulated in PSC after 
H2O2 exposure (FC = 6). During apoptosis, lamins are degraded by caspases and considered to be among the 
initial nuclear target cleaved during the apoptotic process55,56. In our study, caspase-3 was exclusively detected 
in H-PSCs, suggesting that apoptotic pathway and cleavage of protein targets are active after exposure to H2O2.

Proteolytic enzymes other than caspases have been reported in apoptotic execution57,58. We found a cathep-
sin D lysosomal aspartic endopeptidase up-regulated in H-PSCs (FC = 4.8). Cathepsin D enzyme is important 
not only for protein catabolism but also for regulating many biological functions59, including programmed cell 

Figure 3.  In toto immunolocalization of GST during PSCs oxidative stress response. PSCs were incubated in 
RPMI-10% FBS (C-PSCs) (A to H) or RPMI-10% FBS supplemented with 2.5 mM H2O2 (H-PSCs) (I to L). After 
PFA fixing, PSCs were incubated with anti-GST antibody (G and K) (GST) (green) and counterstained with 
DAPI-phalloidin (DAPI/PHAL) (see Materials and Methods section). Negative control consisted of omission 
of primary antibody (C). A, E, and I show the bright field and merge of the three channels in D, H and L. Scale 
bar = 20 μm. P: parenchyma: S: sucker: Tg: tegument.
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death induced by apoptotic stimuli, such as ROS (e.g., H2O2)60,61 and cell senescence62. Pro-apoptotic activity 
of cathepsin D is related to the post-translational modification of cytosolic Bax and translocation to mitochon-
drial membrane in oxidative stress-treated cells63. This event results in loss of mitochondrial membrane stability 
and apoptosis. Other caspase substrates found down-regulated in H-PSCs are filamins, proteins involved in cell 
adhesion, which contributes to mechanical stability of the cell64. Previous work showed that filamins protect cells 
against force-induced apoptosis and also are a caspase substrate65, suggesting that lower expression of filamins in 
H-PSCs is related to active apoptotic pathway and cellular changes induced by H2O2.

Protein oxidation can cause protein misfolding and aggregation, with harmful effect on cell physiology. Thus, 
mechanisms preventing or retarding accumulations of non-functional proteins can help cells survive. Heat-shock 
proteins (HSPs) are a family of highly conserved proteins in all domains of life66. Many HSPs have chaperone 
activity, assisting folding of nascent proteins and refolding, maintaining protein homeostasis in physiological 
and stress conditions67. In our study, we found up-regulation of E. granulosus 70-kDa HSP (HSP70) in PSCs 
exposed to H2O2. Previous data showed that HSP70 induced during oxidative stress conferred protection against 
apoptotic death by sequestering protein aggregates68 and stabilizing pro-apoptotic proteins69. Additional HSP70 
anti-oxidant activity was associated to the ability to attenuate membrane lipid peroxidation during oxidative 
stress induced by H2O2

70. Protein-disulfide-isomerase (PDI) is a member of the thioredoxin superfamily of redox 
proteins located at the endoplasmic reticulum lumen. PDI catalyzes disulfide formation and reduction (oxidore-
ductase activity) and the rearrangement of incorrect disulfide (isomerase activity), assisting folding and matura-
tion of newly synthetized proteins, redox cell signaling, and homeostasis71. Because oxidative stress profoundly 

Figure 4.  Molecular pathway linked to oxidative stress response in E. granulosus PSCs. Exposure to H2O2 
and other ROS/RNS can cause macromolecule oxidation at the tegumental surface of PSC leading to reactive 
carbonyls production. Expression of GST at the parasite surface can contribute with the detoxification of some 
toxic aldehydes (i.e., trans-2-nonenal). Other carbonyl detoxifying enzymes (AKRs, CBRs, and GSTs) are 
up-regulated to prevent lipid, protein, and DNA damage. Protein modification can cause protein aggregation 
that can be inhibited by Hsp70 chaperone or degraded by targeting ubiquitinated proteins to 26S proteasome 
(ADRM1, PSMD2, UCH-L3, and 26S ATP). Damaged mitochondrial membrane and nuclear/mitochondrial 
DNA could be responsible for initial events of apoptosis, inducing caspase-3 activation and cleavage of protein 
substrates such as filamins and lamins. ER stress induced by oxidative stress can also be associated with PSC 
apoptosis. Glycerol production can protect cells from hyperosmotic and oxidative stress. EV: extracellular 
vesicle, Cytc: cytochrome c, CatD: cathepsin D, Cnx: calnexin, PDI: protein disulfide isomerase.
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affects cysteine oxidation within proteins72, E. granulosus PDI up-regulation after exposure to 2.5 mM H2O2 could 
be important to maintain the protein redox status to prevent misfolding and aggregation. Although PDI was orig-
inally identified in the endoplasmic reticulum (ER) lumen, this enzyme was also detected on the cell surface of 
mammalian cells and in the secretion of various parasitic helminths (Clonorchis sinensis73, Fasciola hepatica74, and 
Angiostrongylus cantonensis75). HSP, together with other chaperones, could help restore protein folding during 
cytotoxic or proteotoxic stress, allowing parasite survival in stressing conditions.

Calnexin (Cnx), another ER resident chaperone, is an integral membrane protein that assists protein fold-
ing and quality control of proteins through the secretory pathway76. During oxidative stress, protein oxidation 
can cause protein misfolding and accumulation in the ER lumen, leading to a condition termed ER stress77. 
Down-regulation of the Cnx chaperone by microRNA or RNAi silencing has been implicated in ER stress and 
induction of apoptosis in mammalian cells78–80. Because PSC exposed to H2O2 showed a significant decrease in 
Cnx (FC = 3.4), this protein might be important in ER stress-induced apoptosis after ROS stimuli in E. granulo-
sus. In line with our results, a recent work evaluated the cytotoxic effect of arsenic trioxide (As2O3) in E. granulo-
sus PSCs. The authors showed that As2O3 cytotoxicity was due to elevation of ROS production and induction of 
ER stress-induced apoptosis81.

Another way to prevent accumulation of misfolded or oxidized proteins during oxidative stress is through deg-
radation by the ubiquitin-proteasome system (UPS)82. Up-regulation of proteasome subunits in response to oxi-
dative stress has occurred in yeast and mammalian cells83. In accordance with this, up-regulation of many protein 
components of the UPS system were observed in H-PSCs. Among these proteins, we found two ubiquitin-binding 
proteasome subunits (ADRM1 and PSMD2) that act as ubiquitin receptors, important to recruit ubiquitinated 
proteins to the proteasome84. We also observed some structural components of the 26S proteasome and ubiquitin 
carboxy-terminal hydrolase L3 (UCH-L3), a deubiquitinated enzyme involved in ubiquitin and ubiquitin-like 
nedd8 cleavage from ubiquitinated proteins85, up-regulated in H-PSCS. Members of the UCH family are impor-
tant in the control of cell growth86, cell survival87, and in preventing proteotoxic effect of protein accumulation in 
mice skeletal muscles88. Recent work supports the importance of proteasome in regulating apoptosis by degrada-
tion of pro-apoptotic proteins89 as a mechanism of resistance to apoptotic cell death.

Adaptation to osmolality changes is fundamental for cellular and organism survival in different environ-
ments90. Hyperosmotic stress promotes water efflux, inducing cellular shrinkage, DNA and protein damage, and 
cell death90. Cell exposure to H2O2 showed a marked alteration in membrane fluidity, increasing drug permeabil-
ity91, changes in membrane potential26, and cell shrinkage92. Production of organic osmolytes, such as glycerol, 
is an adaptive mechanism to circumvent this stress93. Glycerol-3-phosphate dehydrogenase (GPDH), an enzyme 
involved in glycerol production, was up-regulated under hyperosmotic stress in the yeast Sacharomyces cerevi-
siae94 and the free-living nematode Caenorhabditis elegans95. Transfection of Chinese hamster ovary (CHO) cells 
with a cytosolic isoform of GPDH (cGPDH) showed a marked cell resistance to H2O2, demonstrating the impor-
tance of this enzyme in hyperosmotic and oxidative stress protection96. Likewise, up-regulation of two cytosolic E. 
granulosus GPDHs occurred after H2O2 exposure. One of these cGPDHs was 19 times more abundant in H-PSCs 
than in untreated PSC. A mitochondrial GPDH E. granulosus was down-regulated in H-PSCs, suggesting that 
mitochondrial isoform of GPDH is involved in other functions unrelated with stress response.

In our study, we introduce several novel proteins involved in the response to oxidative stress in the helminth 
parasite E. granulosus. Our proteomic approach allowed us to identify a broad spectrum of enzymes and path-
ways activated in E. granulosus PSCs upon exposure to H2O2. Novel antioxidant enzymes related to the reactive 
carbonyl detoxification pathway, including AKRs and CBRs, were up-regulated in H-PSCs. AKRs and CBRs are 
important for preventing macromolecule damage and cell death. Up-regulation of proteolytic enzymes related 
to apoptotic pathways (i.e., caspase-3 and cathepsin D) and down-regulation of caspase-substrates (i.e., lamin-B 
and filamins) suggest that early apoptotic events were induced by H2O2 exposure. Components of the 26S pro-
teasome involved in degradation of ubiquitinated proteins were induced in response to oxidative stress. Some of 
these enzymes are targets for chemotherapy in cancer and associated with protozoan drug resistance (Table 3). 
Repositioning of drugs for use as anti-helminth, together with the identification of novel drug targets, can con-
tribute to the development of more effective treatment or circumvent resistance problem associated with parasitic 
diseases.

Methods
Parasites.  Hydatid cyst from E. granulosus sensu stricto (G1-G3 genotypes) were obtained as described 
before97. E. granulosus-contaminated livers and lungs were donated by a commercial slaughterhouse for use in 
this work. Liver and lung cysts were aseptically punctured, and PSCs were washed several times with PBS. PSCs 
viability were determined by trypan blue exclusion. Only batches with viability greater than 90% were used for 
further analysis. E. granulosus PSCs genotyping was carried out for each collected individual cyst, according to a 
previously reported protocol98.

In vitro cultures of E. granulosus PSCs.  E. granulosus sensu stricto PSCs were cultured in RPMI medium 
(SIGMA) supplemented with 10% fetal bovine serum (FBS) (ThermoFisher, Illinois, USA) for 2 h and 4 h at 37 °C 
in 5% CO2 (20 μL PSCs in 2 mL of medium) in the presence of different concentrations of H2O2 (Fischer, Illinois, 
USA). PSCs viability was determined by trypan blue exclusion. PSCs incubated without H2O2 were used as a 
control group.

For mass spectrometry analysis, PSCs obtained from two different cysts were independently cultured in RPMI 
10% FBS (50-μL PSCs in 5 mL medium/well) for 2 h at 37 °C in the presence of 2.5 mM H2O2 or without H2O2 
(control). These two biological replicates were separately harvested by sedimentation and washed four times with 
PBS at 37 °C. The PSC pellets were frozen in liquid nitrogen and stored at −80 °C until use.
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Preparation of PSC protein extracts for mass spectrometry analysis.  For mass spectrometry analy-
sis, protein extracts were prepared using RapiGest SF (Waters, Massachusetts, USA). Briefly, PSC pellets (obtained 
as described above) were suspended in 400 μL 0.1% RapiGest in 25 mM ammonium bicarbonate and sonicated 
for 5 cycles of 30 s with 60 s interval between pulses (30% power) with an ultrasonic homogenizer (Qsonica 
Sonicator, New York, USA) and then centrifuged at 20,000 x g for 30 min at 4 °C. Protein concentration in each 
extract was determined in the obtained supernatant fraction using Micro BCA protein assay kit (ThermoFisher, 
Illinois, USA) and 20 μg of each sample (H-PSCs and C-PSCs) were analyzed by 12% SDS-PAGE99 and stained 
with Coomassie’s brilliant blue R-250 (CBB-R250). Samples containing 100 μg of total protein were processed 
for mass spectrometry analysis according to the RapiGest SF surfactant protocol. The proteins were reduced 
with 5 mM DTT at 60 °C for 30 min, then alkylated using 15 mM iodoacetamide for 30 min in the dark at room 
temperature and incubated with mass spectrometry grade trypsin gold (Promega, Wisconsin, USA) at a ratio of 
1 μg/100 μg protein. Samples were treated with 1 μg of trypsin for 4 h at 37 °C. After an additional aliquot of 1 
μg of trypsin was added, samples were incubated for 16 h at 37 °C. After removing the RapiGest using 0.5% TFA, 
the resulting peptides were desalted using OASIS HLB cartridges (Waters, Massachusetts, USA), eluted in 50% 
acetonitrile and 0.1% TFA and lyophilized in a Concentrator Plus (Eppendorf, Hamburg, Germany).

Mass spectrometry analysis.  Lyophilized peptides were reconstituted in 0.1% formic acid and analyzed 
by LC-MS/MS. Samples were analyzed on an Orbitrap Elite tandem mass spectrometer (ThermoFisher, Illinois, 
USA) equipped with a nanoAcquity ultra performance liquid chromatography system (Waters, Massachusetts, 
USA). LC separations were performed as described previously100. Briefly, mobile phase solvents consisted of (sol-
vent A) 0.1% formic acid in water and (solvent B) 0.1% formic acid in acetonitrile (Burdick & Jackson, Michigan, 
USA). A 8-μl volume of each sample (corresponding to 5 μg of tryptic peptides) was loaded onto a PepMap 100 
C18 LC Column (03 mm × 5 mm) ThermoFisher, Illinois, USA at a flow rate of 5 μl/min. Peptides were eluted 
to an Easy Spray Column PepMap RSLC C18 (75 μm × 15 cm) using a nanoAcquity UPLC system (Waters 
Corporation, Milford, MA) and separated using a gradient elution at a flow rate of 300 nl/min. The LC gradient 
included a hold at 5% B for 5 min, followed by a ramp up to 35% B over 25 min, then a ramp up to 95% B in 5 min, 
a hold at 95% for 5 min before returning to 5% B in 5 min and re-equilibration at 5% B for 20 min. Mass spectra 
were collected in the data-dependent acquisition mode by scanning the mass range from mass-to-charge (m/z) 
400 to 1600 at a nominal resolution setting of 60,000 for precursor ion acquisition in the Orbitrap. For the MS/MS 
analysis, the mass spectrometer was programmed to select the top 15 most intense ions with two or more charges. 
The spray voltage applied to the electrospray tip was 2.0 kV. Two biological and three technical replicates were 
analyzed. Each biological sample was composed of PSCs collected from one hydatid cyst.

LC-MS/MS data analysis.  MS/MS raw data were processed using msConvert tool (ProteoWizard, version 
3)101. The peak lists were exported in Mascot generic format (.mgf). The MS/MS data were analyzed using Mascot 
search engine (Matrix Science, version 2.3.02) against a local E. granulosus database (21,764 sequences) contain-
ing the deduced amino acid sequences from the 2017 genome annotation available on WormBase ParaSite (http://
www.parasite.wormbase.org/). The search parameters included a fragment ion mass tolerance of 0.6 Da and a 
peptide ion tolerance of 50 ppm. Carbamidomethylation was specified as a fixed modification, and oxidation of 
methionine was specified as a variable modification. We used Scaffold (Proteome Software Inc., version 4.4.1) 
to validate the peptide and protein identifications. The peptide identifications were accepted if they could be 
established at greater than 95.0% probability as assigned by the Peptide Prophet algorithm102. The protein iden-
tifications were accepted if they could be established at greater than 99% probability as assigned by the Protein 
Prophet algorithm103 and contained at least two identified peptides. The false discovery rate (decoy) was 0.0% 
for proteins and 0.2% for peptides. The normalized spectral abundance factor104 was calculated for each protein 

Target Drug Mechanism of action
Disease or pathogen treatable 
by the drug Ref

Glycerol-3-phosphate dehydrogenase Anacardic acids Non-competitive enzyme 
inhibition Tumors and Bacterial pathogens 108

Carbonyl reductase Biphenyl compounds Enzyme inhibition Breast cancer 109

Cathepsin D
Amprenavira, Indinavira, 
Lopinavira, Nelfinavira, 
Ritonavira, Saquinavira

Enzyme inhibition
Human Immunodeficiency Virus 
Trypanosomatids: Leishmania 
species and T. cruzi

110,111

Estradiol 17-beta dehydrogenase Steroidal STX1040 and 
non-steroidal PBRM Enzyme inhibition Breast cancer 112

Glutathione-S-transferase Ethacrynic acid analoguesa Enzyme inhibition Cancers 113

Glutathione analogues: 
ezatiostat (TLK199) Myelodysplastic syndrome 114

Proteasome subunits Bortezomiba Inhibition of p53 
degradation? Multiple myeloma 115

Epoxomicin Proteasome inhibition Babesia divergens 116

Carmaphycin B analogs Proteasome inhibition Plasmodium falciparum 117

Table 3.  Protein targets for drug repositioning. E. granulosus H-PSCs up-regulated proteins for which there 
are available inhibitory drugs previously used for the treatment of different infections/diseases. aFDA-approved 
drugs.
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and the quantitative differences were statistically analyzed using Student’s t-test in Scaffold. The differences with 
P-values lower than 0.05 were considered statistically significant. The mass spectrometry proteomics data have 
been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier 
PXD015801.

In silico functional annotation of PSC proteins identified by LC-MS/MS.  Functional analyses of 
PSC proteins identified by LC-MS/MS were based on gene ontology (GO). The PSC identified proteins were 
submitted to hierarchical GO overrepresentation tests using the Cytoscape 2.6.3 plugin BiNGO 2.3105. Custom 
E. granulosus GO annotation files were provided by Wellcome Sanger Institute (Hinxton, UK). The ontology files 
were retrieved from the GO database (http://www.geneontology.org/). Annotation and ontology files were edited 
in-house as BiNGO input files. The hypergeometric overrepresentation tests were performed at a 0.05 level of 
significance, with the Benjamini-Hochberg false discovery rate multiple-testing correction. Enriched GO term 
lists were summarized by removing redundant GO terms using REVIGO (http://revigo.irb.hr/)106. The semantic 
similarity of the GO terms was calculated with SimRel (default allowed similarity = 0.7).

Immunolocalization of GST in E. granulosus PSCs.  Whole-mount immunofluorescence detection was 
performed as described by Fairweather et al., 1994107, with modifications. Intact PSCs were fixed for 3 h at room 
temperature in 4% (w/v) paraformaldehyde in PBS and then made permeable for 24 h at 4 °C in PBS contain-
ing 0.3% Triton X-100, 0.1% bovine serum albumin, and 0.2% sodium azide (P buffer). Primary S. japonicum 
anti-GST monoclonal antibody (SIGMA, Michigan, USA) was diluted 1:400 in P buffer and incubated 48 h at 
4 °C. PSCs were washed 24 h at 4 °C in P buffer and then incubated 24 h at 4 °C in anti-mouse IgG conjugated to 
Alexa 488 (ThermoFisher, Illinois, USA) (diluted 1:400). Specimens were washed for 24 h at 4 °C. Nuclei were 
stained with 100 nM 4′,6-diamidino-2-phenylindole (DAPI) (Molecular Probes, Oregon, USA). Actin filaments 
stained with 50 nM Alexa Fluor 594-conjugated phalloidin (ThermoFisher, Illinois, USA). PSCs were examined 
using an Olympus FluoView 1000 confocal microscope.
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