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neurons in the pigeon nidopallium 
caudolaterale, but not the 
corticoidea dorsolateralis, display 
value and effort discounting 
activity
Madeline Dykes  *, Blake porter   & Michael colombo  *

We recorded from single neurons in two areas of the pigeon brain while birds were required to peck 
a stimulus indicating either a high effort task or a low effort task would follow. Upon completion of 
the task the birds received the same reward. We found that activity in the nidopallium caudolaterale, 
an area equivalent to the mammalian prefrontal cortex, was modulated by the value of the reward 
that would be received based on how much effort was required to obtain it. Value coding was most 
prominent during the presentation of the stimulus indicating a high or low effort task, and in the 
delay period immediately prior to carrying out the effort task. In contrast, activity in the corticoidea 
dorsolateralis was not modulated by value, however, population firing patterns suggest that it may 
be involved in associating actions with outcomes. Our findings support the view that activity in the 
nidopallium caudolaterale reflects value of reward as a function of effort discounting and as such may 
serve functions similar to the mammalian anterior cingulate cortex.

The value of an outcome is not based purely on the amount of reward expected, but also the costs that are required 
to obtain it. A number of studies have addressed the effects of effort cost in decision making paradigms by manip-
ulating the effort required to achieve a reward. For example, rats placed in a T-shaped maze having to decide 
between receiving a large reward associated with a high-effort cost (climbing a barrier; HCHR) or a small reward 
associated with a low-effort cost (no barrier; LCLR) chose the HCHR arm on the majority of trials1. The authors 
also found that when the barrier was increased in size, the preference shifted to favour the LCLR arm, indicating 
a change in the perception of the reward value as effort requirements were manipulated1. Similar changes in 
behaviour have also been shown in primates2. Overall, these data support the theory that the value of an outcome 
is discounted based on the effort cost required to obtain that outcome.

A number of studies in rats and humans indicate the anterior cingulate cortex (ACC), a region of the pre-
frontal cortex, is critical to processing effort-based information3–5. The ACC is an area connected to a number of 
sites in the brain including the ventral midbrain, amygdala, and motor areas, and is thought to play a vital role 
in learning and updating information to guide decision making6,7. These features may indicate that the ACC is 
involved in decisions regarding the cost of physical effort. Hillman and Bilkey8, and Cowen, Davis, and Nitz9 
recorded from neurons in the ACC of freely moving rats trained to choose between HCHR and LCLR arms in 
a maze, where climbing a barrier represented the effort cost. Hillman and Bilkey8 found that 63% of cells in the 
ACC increased firing prior to moving towards a specific reward outcome, and 94% of these cells fired more before 
moving towards the “best” option – in the first instance, HCHR rather than LCLR arm. When they manipulated 
the amount of reward given and the presence of barriers in both arms, ACC cells dynamically adjusted their firing 
rate to represent the most valuable option8. Cowen et al.9 reported similar patterns of activity, with ACC cells 
firing in relation to the most valuable option. These electrophysiological findings provide a neurological basis for 
effort-based decision making in the ACC of rodents, similar to that seen in humans.
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A more recent study by Porter, Hillman, and Bilkey10 recorded from ACC cells in rats during a task where 
the effort requirements were manipulated but the reward amounts remained constant. The design differed from 
previous studies of effort discounting because it did not require the rats to make a choice between high and low 
effort. The rats ran along a shuttle box that was tilted at different angles, creating different levels of effort required 
to get to the reward. Recordings from the ACC again demonstrated the same dynamic response patterns seen in 
their earlier study in that ACC firing was responsive to the most valuable actions and outcomes accounting for 
different effort states, but this time in a non-choice paradigm. The authors also found that cells fired differentially 
between high effort and low effort trials not only when they were carrying out the action, but also when they were 
receiving the reward10. These data indicate that the ACC may have a broader role in monitoring the effort costs of 
behaviours and their outcomes regardless of decision making demands.

A number of behavioural studies in birds have shown that manipulating effort costs also change the perceived 
value of the associated reward11,12, suggesting that the same neural mechanisms may underlie effort-based deci-
sions in the avian brain. Studies in chicks focussing on the neural basis of effort have found that lesions to the 
arcopallium and the medial striatum decrease both foraging efforts and choices to exert greater effort to retrieve 
food, even when the food amount is large13–16. However, the neural encoding of effort discounting has not yet 
been explored in the pigeon brain. Given that in mammals the frontal areas are crucial to value discounting by 
effort costs, we examined whether the nidopallium caudolaterale (NCL), an area in the avian brain that has been 
defined as the equivalent of the mammalian prefrontal cortex (PFC)17,18, and whose neurons have been shown to 
code reward amount and reward value19–22, would serve a similar function in birds.

Pigeons were trained on high-effort (HE) and low-effort (LE) tasks. The HE task required the birds to peck 
a total of eight times across four spatially-distributed positions on the screen, whereas the LE task required four 
pecks to a single central location on the screen. If NCL neurons predicted the most valuable outcome, as they do 
in the mammalian ACC, then we would expect to see more firing towards a stimulus that predicts an upcoming 
LE task than HE task. We balanced the stimuli used for each condition across the birds so that any elevation 
in firing rate was due to the effort manipulation rather than simply visual selectivity. In addition to recording 
from NCL we also recorded from the area corticoidea dorsolateralis (CDL). CDL is a thin area on the outermost 
layer of the brain connecting the caudal pallium and the hippocampus23. Atoji and Wild23 (see also Csillag & 
Montagnese24) have compared the CDL to the cingulate cortex of the mammalian brain. For example, CDL has 
connections to the hippocampal complex, basal ganglia, and amygdala, as does the cingulate cortex in mammals. 
Unlike the mammalian cingulate cortex, however, CDL does not connect to higher order motor areas and to the 
brainstem, and CDL has connections to olfactory areas that do not exist in the cingulate cortex23. To our knowl-
edge, electrophysiological recordings have not been carried out in CDL. The effort task used in the current exper-
iment provided an opportunity to explore any functional similarities between CDL and the mammalian cingulate 
cortex in encoding the value of effortful behaviours.

Methods
Subjects. The subjects were six experimentally naïve adult homing pigeons (Columba livia). The birds had 
free access to grit and water and were maintained at 80–85% of their free feeding body weight and fed a mixture 
of wheat, corn, peas, pellets, and grains. They were housed in individual wire mesh cages with a 12 h to 12 h light–
dark cycle beginning at 07:00 h. The subjects were kept and treated in accordance with the University of Otago 
Code of Ethical Conduct for the Manipulation of Animals and the University of Otago Animal Ethics Committee 
approved the experiment.

Apparatus. The apparatus and the methods used were similar to that used by Dykes et al.25. The pigeons were 
trained and tested in standard operant chambers measuring 35 cm (length) x 43 cm (width) x 39 cm (height). 
At the front of the chamber was a 17-inch monitor. In front of each monitor sat a Carroll Touch infrared touch 
frame (EloTouch, baud rate 9600, transmission time 20 ms). In front of the touch frame sat a plexiglass panel with 
six square holes arranged in a 2-row by 3-column format. The size of each square hole was 6 cm × 6 cm and the 
center-to-center distance of each hole was 6.5 cm. Situated 20 cm below the center key was a hopper that could 
be illuminated and delivered the wheat reward. The stimuli used were four black and white pictures; a picture 
of a cactus flower, a picture of Arnold Schwarzenegger, a picture of a person on a skateboard, and a picture of a 
black crow. Each bird was assigned one of the pictures to represent high effort (HE) trials and a different picture 
to represent low effort (LE) trials. The stimuli used to predict HE and LE trials were balanced across the birds. 
The stimuli were 6 cm × 6 cm in size and appeared centered in the square hole. Every peck to the touch screen was 
accompanied by a 100 ms, 1000-Hz tone.

Behavioural task. At the end of a 5 sec intertrial interval (ITI), one stimulus appeared in the top center 
square hole (see Fig. 1). Three pecks to the stimulus turned it off and initiated a 2 sec Pre-Effort delay period, 
followed by either a high-effort (HE) or low-effort (LE) Effort period. On HE trials four dots appeared, one in 
each of the top-left, top-right, bottom-left, and bottom-right holes, and the pigeon was required to peck each dot 
twice. The pigeon was allowed to peck the dots in any order, and each dot disappeared after it had been pecked 
twice. On LE trials, a dot appeared in the top center hole and the pigeon was required to peck it four times. If the 
pigeon pecked at a dot location after the dot had disappeared, the peck tone sounded, but the trial sequence was 
not otherwise interrupted. After all dots had been pecked in the Effort period there followed a 2 sec Post-Effort 
period, followed by a Reward period during which the pigeon was given 2 sec access to wheat, irrespective of 
whether the effort condition was HE or LE. Each session consisted of 64 trials with 32 trials dedicated to each of 
the stimuli, randomly intermixed.
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Surgery. After behavioural training the birds were implanted with a lightweight microdrive to allow 
single-unit recording. They were anesthetized with a mixture of ketamine (25 mg/kg) and xylazine (5 mg/kg). 
After pruning the feathers on the scalp and overlaying the ears, the head was immobilized using a Revzin stere-
otaxic adapter26. The scalp was first sprayed with a topical anesthetic (10% xylocaine) and the skin overlying the 
skull was cut and retracted to expose the skull. For the four NCL birds, a hole was drilled above the NCL at AP 
+5.5, and ML ±7.527. The tips of the electrodes of the microdrive were lowered to position them above the NCL. 
For CDL birds, the microdrive was built so that the electrodes were angled at 27° and the electrodes lowered into 
the brain so the tips were at AP +6.0 and ML ±4.0. Six stainless steel screws were placed into the skull (one serv-
ing as an electrical ground screw). The microdrive was attached to the skull with dental acrylic. The incision was 
sutured and sprayed with xylocaine. The bird recovered in a padded and heated cage until fully alert and mobile 
before returned to its home cage. There it was allowed to recover for at least seven days before the recording ses-
sions started.

Neural recording. Eight 25 µm formvar-coated nichrome wires mounted in the microdrive were used for 
recording the extracellular activity of single neurons in the NCL. For each session one electrode was used to 
record the neural activity and a second electrode with minimal activity served as the indifferent. The signal was 
passed through a FET headstage, then a Grass P511K preamplifier (Grass Instruments, Quincy, Massachusetts, 
United States) where it was amplified and filtered to remove 50 Hz noise. An oscilloscope and speaker were 
used to monitor the signals. A CED micro1401 system (Cambridge Electronic Design Limited, Cambridge, 
United Kingdom) collected the electrophysiological data, and CED Spike2 software was used for behavioural 
time-tagging of all events and analysis of the spike data. Good isolation of a cell and a signal-to-noise ratio of at 
least 2:1 were the criteria for cell selections.

After cell isolation the behavioural program was started. A recording session lasted approximately 45 minutes. 
At the end of the session, the electrodes were advanced approximately 40 µm. The birds were tested once a day.

Data analysis. Data analysis was similar to that used in Dykes et al.25 The 300 ms sample period (Sample), the 
2 sec Pre-Effort period (Pre-Effort), the 300 ms effort period (Effort), the 2 sec Post-Effort period (Post-Effort) and 
the 2 sec reward period (Reward) were all subject to analysis. With respect to the Sample period, unlike studies 
with primates where one can monitor the exact position of the eyes, it is difficult in pigeons to monitor when they 
are looking at the visual stimulus. Colombo, Frost, and Steedman28 adopted a convention that neural activity to a 
visual stimulus was measured during a period from −400 ms to −100 ms prior to the first peck to that stimulus. 
The reason the period ends 100 ms prior to contact with the keys is because pigeons close their eyes approximately 
80 ms prior to a key peck28. In the ITI, the Pre-Effort, and the Post-Effort periods, the first 500 ms of each period 
was excluded from analysis in order to avoid including residual activity driven by the period that took place 
immediately before (Reward, Sample, and Effort periods, respectively). With respect to the Effort period analysis, 
the LE and HE periods differed in both latency to complete the effort requirement and in the number of pecks 
required. Therefore, the 300 ms period prior to making the first effort peck was analysed rather than then entire 
Effort period.

All cells that fired at less than 0.1 spikes/sec in the ITI were excluded from further analysis. Each cell’s Sample, 
Pre-Effort, Effort, Post-Effort, and Reward period data was subjected to a two-way repeated-measures ANOVA 
with period (2: ITI and defined period) and stimulus (2: HE and LE) as factors. The dependent variable was the 
firing rate on each trial of a cell during the ITI and defined period. An effect of Stimulus indicated that the cell 
responded differently on HE and LE trials. A Period effect indicated that a cell either increased or decreased its 
firing rate in the defined period compared to the ITI. The cell’s data was entered into a population plot on the basis 
of whether the main effect of Stimulus (HE vs LE) was significant, thereby illustrating the firing pattern of cells 
that differentiate between HE and LE trials in a given period.

Those cells that did show an effect of stimulus were defined as “Effort Selective”. In other words, they fired 
differentially to LE and HE trials. We then also examined whether the Effort Selective cells, as a group, showed 
a LE Value Preference. In order to establish whether they showed a LE Value Preference, the data in the Sample, 
Pre-Effort, Effort, Post-Effort, and Reward period of the sub-population of all Effort Selective cells for the defined 
period was subject to a repeated-measures two-way ANOVA with Stimulus (2: HE or LE) and Bin (all bins 50 ms, 

Figure 1. Behavioural procedure. At the end of the ITI, either a high-effort (HE) or low-effort (LE) sample 
stimulus was presented in the centre top hole. Three pecks to the stimulus turned it off and initiated a 2 sec Pre-
Effort period. On HE trials, four dots appeared, one in each corner of the screen. The bird was required to peck 
each dot twice before being rewarded. On LE trials, the bird was simply required to peck one dot in the middle 
of the screen four times. Following the Effort period was a 2 sec Post-Effort period, followed by 2 sec of access to 
reward.
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6: bins 1–6 for the Sample and Effort periods; 30: bins 1–30 for Pre-Effort and Post-Effort periods; 40: bins 1–40 
for the Reward period) as factors, with repeated measures over bins (Greenhouse-Geisser corrected). If the 
sub-population of Effort Selective cells fired significantly more during LE trials compared to HE in the defined 
period, they were characterized as having a LE Value Preference.

Results
Histology. For NCL and CDL birds all electrode tracks were within the targeted region as defined by Karten 
and Hodos26, and the histology results are shown in Fig. 2. The intended track positions for NCL electrodes were 
AP +5.5 and ML ±7.5. The track position for the right hemisphere NCL bird Eli was AP +6.75 and ML +8.9, 
differing from the intended AP position by 1.25 mm and the intended ML position by 1.4 mm. The track position 
for the right hemisphere NCL bird Eva was AP +6.25 and ML +8, differing from the intended AP position by 
0.75 mm and the intended ML position by 0.5 mm. The track position for the left hemisphere NCL bird Leo was 
AP +6 and ML −9, differing from the intended AP position by 0.5 mm and the intended ML position by 1.5 mm. 
We were unable to identify the electrode tracks in the remaining left hemisphere bird, Mac, although the entry 
point was located at AP +5.3, differing from the intended AP position by only 0.2 mm. The intended entry point 
for CDL electrodes were AP +6 and ML ±4. The entry point for the right hemisphere CDL bird D2 was AP +6.75 
and ML +4, differing from the intended AP position by 0.75 mm. The entry point for the left hemisphere CDL 
bird M9 was AP +6.5 and ML −3.5, differing from the intended AP position and ML position by 0.5 mm.

Behavioural data. For each session, the median latency to the first peck of the sample stimulus (indicating 
either high or low effort) was calculated across the 32 trials dedicated to each stimuli. The latency to the first peck 
averaged across all sessions from which cells were recorded is displayed in Fig. 3. The latencies for each bird were 

Figure 2. Electrode track reconstruction. Electrode track position reconstructions for the two right NCL birds 
(Eli and Eva), the right CDL bird (D2), one left NCL bird (Leo), and one left CDL bird (M9). All recordings were 
within the full dorsal-ventral extent of NCL and CDL. We were unable to recover the electrode tracks of the 
second left NCL bird (Mac), but the termination point indicated by the depth records is represented by the star. 
The following are the brain regions as defined by Reiner et al.34 A, arcopallium; DA, tractus dorso-arcopallialis; 
CDL, area corticoidea dorsolateralis; Hp, hippocampus; N, nidopallium; Rt, nucleus rotundus; TeO, tectum 
opticum; TrO, tractus opticus; V, ventricle.

Figure 3. Behavioural performance. Mean latency to the first peck for the LE and HE stimuli for each of the 
four NCL birds (Mac, Eli, Leo, and Eva) and two CDL birds (D2 and M9), averaged across sessions during 
which neurons were recorded. Note that the shorter latencies indicate higher value to the pigeon. Error bars 
represent ± 1 SEM.
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subjected to a Wilcoxon’s signed rank test and in all cases, the latency to the stimulus indicating a HE trial was 
significantly longer than the latency to the LE stimulus (Mac: t(39) = 15.40, p < 0.001; Leo: t(43) = 8.92, p < 0.001; 
Eva t(31) = 9.98, p < 0.001; Eli t(44) = 9.85, p < 0.001; D2: t(29) = 11.01, p < 0.001; M9: t(20) = 7.64, p < 0.001).

Period selective and effort selective cells. We recorded from a total of 245 NCL cells. Four cells were 
removed on the basis that their average firing rate across the entire ITI period was less than 0.1 spikes per second, 
leaving 241 cells that were used for the NCL analysis. We recorded from a total of 57 cells in CDL. Two cells were 
removed because the firing rate in the ITI was less than 0.1 spikes per second, leaving 55 cells that were used for 
the CDL analysis. A repeated-measures two-way ANOVA with Stimulus (2: HE or LE) and Period (2: the defined 
period and ITI) as factors was carried out on each of the NCL and CDL cells, separately. The results are shown in 
Table 1.

Effort selective cells in the Sample period. NCL cells. The population plot of the 31 Effort Selective 
NCL cells, irrespective of whether they fired more in HE or LE trials, is shown in Fig. 4. Twenty one of the 
cells fired more to the LE stimulus, while the remaining 10 cells fired more in response to the HE stimulus. A 
Chi-squared test revealed that the number firing more to LE than HE was greater than expected by chance, X2 (1, 
n = 31) = 3.90, p < 0.05. The data in the Sample, Pre-Effort, Effort, Post-Effort, and Reward period was subject 
to a repeated-measures two-way ANOVA, with Stimulus (2: HE or LE) and Bin (all bins 50 ms, 6: bins 1–6 for 
the Sample and Effort periods; 30: bins 1–30 for Pre-Effort and Post-Effort periods; 40: bins 1–40 for the Reward 
period) as factors, with repeated measures over bins (Greenhouse-Geisser corrected). There was a significant 
effect of Stimulus during the Sample period, F(1, 30) = 4.49, p < 0.05, and in the Pre-Effort period, F(1, 30) = 6.46, 
p < 0.05, with cells firing more during LE trials than HE trials, and therefore the Effort Selective cells, as a pop-
ulation, showed a LE Value Preference. There was no effect of Stimulus, in the Effort, Post-Effort, and Reward 
period, all Fs(1, 30) < 0.8, all ps > 0.38. An example of an Effort Selective NCL cell in the Sample period is shown 
in Fig. 5a. In CDL, only three cells were Effort Selective and so given the small number, no further analysis was 
conducted.

Effort selective cells in the Pre-Effort period. NCL cells. The activity of the 34 Effort Selective cells in 
the Pre-Effort period, after adjusting to control for peck related activity, irrespective of whether they fired more 
during HE or LE trials, is displayed in Fig. 6a. Twenty-seven of the 34 Effort Selective NCL cells fired more during 

Trial Period

NCL NCL CDL CDL

Period Selective Effort Selective Period selective Effort Selective

Stimulus 67 (28%) 31 (13%) 16 (29%) 3 (6%)

Pre-Effort
(peck adjusted) 100 (42%) 34 (14%) 23 (42%) 8 (140.5%)

Effort 135 (59%) 23 (10%) 52 (95%) 2 (4%)

Post-Effort 185 (77%) 26 (11%) 47 (86%) 8 (15%)

Reward 174 (72%) 25 (10%) 40 (73%) 10 (18%)

Table 1. Period Selective and Effort Selective cells in each trial period.

Figure 4. Population plot: Effort Selective NCL cells in the Sample period. Normalised firing rate for Effort 
Selective cells during the Sample period. The ITI represents the last 4500 ms of the 5000 ms intertrial interval. 
The Sample period (S) represents the 300 ms period prior to the first peck to the stimulus. The Pre-Effort period 
(PRE-EFF) represents the 1500 ms before the effort stimuli appear, and the Effort period (EFF) represents the 
300 ms prior to the first effort peck. The Post-Effort period (POST-EFF) is the 1500 ms prior to reward delivery, 
and Reward represents the 2000 ms reward delivery period. ITI: intertrial interval; S: Stimulus period; PRE-
EFF: Pre-Effort period; EFF: Effort period; POST-EFF: Post-Effort period.
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LE trials, while seven fired more during HE trials. A Chi-squared test revealed that there were more cells that 
fired to LE than would be expected by chance, X2 (1, n = 34) = 11.77, p < 0.001. An example of an Effort Selective 
NCL cell in the Pre period is shown in Fig. 5b. The data in the Sample, Pre-Effort, Effort, Post-Effort, and Reward 
period was subject to a repeated-measures two-way ANOVA, with Stimulus (2: HE or LE) and Bin (all bins 50 ms 
6: bins 1–6 for the Sample and Effort periods; 30: bins 1–30 for Pre-Effort and Post-Effort periods; 40: bins 1–40 
for the Reward period) as factors, with repeated measures over bins (Greenhouse-Geisser corrected). There was 
a significant effect of Stimulus in the Sample period, F(1,33) = 4.80, p < 0.05, and the Pre-Effort period, F(1, 
33) = 16.71, p < 0.001, with cells firing significantly more during LE trials than HE trials, and therefore the Effort 
Selective cells, as a population, showed a LE Value Preference. In the Effort period, there was a slight difference 
between firing in HE and LE trials, with more firing during LE trials, however the difference fell short of signif-
icance, F(1, 33) = 3.71, p = 0.06. There was no significant difference firing between HE and LE trials during the 
Post-Effort, and Reward periods, all Fs(1, 33) < 2.16, all ps > 0.15.

CDL cells. The population plot of the eight Effort Selective CDL cells, after controlling for the possible effect 
of pecks, is shown in Fig. 6b. Of the eight cells, five fired more during HE trials, while the remaining three fired 
more during LE trials. A Chi-squared comparison revealed that no more cells fired to LE compared to HE than 
would be expected by chance, X2 (1, n = 8) = 0.5, p = 0.48. The data in the Sample, Pre-Effort, Effort, Post-Effort, 
and Reward period was subject to a two-way ANOVA, with Stimulus (2: HE or LE) and Bin (all bins 50 ms 6: 
bins 1–6 for the Sample and Effort periods; 30: bins 1–30 for Pre-Effort and Post-Effort periods; 40: bins 1–40 for 
the Reward period) as factors, with repeated-measures over Bins (Greenhouse-Geisser corrected). There was no 
significant effect of Stimulus in any period, all Fs(1, 6) < 2.33, all ps > 0.17.

Figure 5. Examples of NCL single-unit activity. Panel (a,b) show two different cells, each from different birds. 
Each panel displays the raster (top) and histogram (bottom) activity of the cell over a 64 trial session. (a) An 
NCL cell that displays a noticeable increase in firing to the presentation of the LE stimulus compared to the 
HE stimulus. The cell also fires in an inhibitory manner during the Pre-Effort period of HE trials. (b) An NCL 
cell that displays an increased firing rate during the Pre-Effort period of LE trials, but not during HE trials. ITI: 
intertrial interval; Stim: Stimulus period; Pre: Pre-Effort period; Eff: Effort period; Post: Post-Effort period.
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Effort selective cells in the Effort period. NCL cells. The population response of the 23 Effort Selective 
NCL cells, irrespective of whether firing was higher during LE and HE trials, is shown in Fig. 7. Ten cells fired 
more during LE trials, while the remaining 13 fired more in HE trials. A Chi-squared test revealed that there were 
no more cells firing more to HE to LE than would be expected by chance, X2 (1, n = 23) = 0.39, p = 0.53. The data 
in the Sample, Pre-Effort, Effort, Post-Effort, and Reward period was subject to a repeated-measures two-way 
ANOVA, with Stimulus (2: HE or LE) and Bin (all bins 50 ms 6: bins 1–6 for the Sample and Effort periods; 30: 
bins 1–30 for Pre-Effort and Post-Effort periods; 40: bins 1–40 for the Reward period) as factors, with repeated 
measures over Bins (Greenhouse-Geisser corrected). In the Sample, Pre-Effort, Effort, Post-Effort, and Reward 
periods, there was no effect of Stimulus, all Fs(1, 22) < 3.53, all ps > 0.07. In CDL, only two cells were Effort 
Selective and so given the small number, no further analysis was conducted.

Figure 6. Population plot: Effort Selective Cells in the Pre-Effort period. (a) Normalised firing rate for Effort 
Selective NCL cells during the Pre-Effort period, correcting for peck related activity. (b) Normalised firing rate 
for the Effort Selective CDL cells during the Pre-Effort period, correcting for peck related activity. For details on 
the timing of the periods, see Fig. 4. ITI: intertrial interval; S: Stimulus period; PRE-EFF: Pre-Effort period; EFF: 
Effort period; POST-EFF: Post-Effort period.

Figure 7. Population plot: Effort Selective NCL Cells in the Effort period. Normalised firing rate for Effort 
Selective NCL cells during the Effort period. For details on the timing of the periods, see Fig. 4. ITI: intertrial 
interval; S: Stimulus period; PRE-EFF: Pre-Effort period; EFF: Effort period; POST-EFF: Post-Effort period.
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Effort selective cells in the Post-Effort period. NCL cells. The population response of all 26 Effort 
Selective NCL cells, regardless of whether they fired more during LE or HE trials is shown in Fig. 8a. Twelve fired 
more during LE trials, while the remaining 14 fired more in HE trials. A Chi-squared test revealed that there were 
no more cells firing more to HE compared to LE than would be expected by chance, X2 (1, n = 26) = 0.15, p = 0.70. 
The data in the Sample, Pre-Effort, Effort, Post-Effort, and Reward period was subject to a repeated-measures 
two-way ANOVA, with Stimulus (2: HE or LE) and Bin (all bins 50 ms 6: bins 1–6 for the Sample and Effort peri-
ods; 30: bins 1–30 for Pre-Effort and Post-Effort periods; 40: bins 1–40 for the Reward period) as factors, with 
repeated measures over Bins (Greenhouse-Geisser corrected). In the Sample, Pre-Effort, Effort, Post-Effort, and 
Reward periods, there was no effect of Stimulus, Fs(1, 25) < 1.71, all ps > 0.29.

CDL cells. The population plot of all eight Effort Selective CDL cells, irrespective of whether they fired more dur-
ing HE or LE trials is shown in Fig. 8b. Of the eight Effort Selective cells, seven fired more during the Post-Effort 
period in LE trials, while the remaining cell fired more during the Post-Effort period in HE trials. An example 
CDL cell that shows a difference in firing between HE and LE trials in the Post-Effort period is shown in Fig. 9. A 
Chi-squared comparison revealed that more cells fired at higher rates during LE trials compared to HE trials than 
would be expected by chance, X2 (1, n = 8) = 4.5, p < 0.05. The data in the Sample, Pre-Effort, Effort, Post-Effort, 
and Reward period was subject to a repeated-measures two-way ANOVA, with Stimulus (2: HE or LE) and Bin 
(all bins 50 ms 6: bins 1–6 for the Sample and Effort periods; 30: bins 1–30 for Pre-Effort and Post-Effort periods; 
40: bins 1–40 for the Reward period) as factors, with repeated measures over Bins (Greenhouse-Geisser cor-
rected). There was no significant effect of Stimulus in any period, all Fs(1, 7) < 1.67, all ps > 0.24.

Effort Selective cells in the Reward period. NCL cells. The population response of all 25 Effort 
Selective NCL cells, irrespective of whether they fired more during HE or LE trials, is shown in Fig. 10a. Fourteen 
fired more during HE trials and 11 fired more during LE trials, and a Chi-squared test revealed that this was 
no more than would be expected by chance, X2 (1, n = 25) = 0.36, p = 0.55. The data in the Sample, Pre-Effort, 
Effort, Post-Effort, and Reward period was subject to a repeated-measures two-way ANOVA, with Stimulus (2: 
HE or LE) and Bin (all bins 50 ms 6: bins 1–6 for the Sample and Effort period, 30: bins 1–30 for Pre-Effort 
and Post-Effort periods, or 40: bins 1–40 for the Reward period) as factors, with repeated measures over Bins 
(Greenhouse-Geisser corrected). There was a significant effect of Stimulus in the Pre-Effort period, with cells 
firing more during LE than HE trials, F(1, 24) = 7.69, p < 0.05. In the Sample period, there was a slight difference 
between firing in HE and LE trial, with more firing during HE stimuli, however the difference fell short of signif-
icance, F(1, 24) = 4.11, p = 0.05. There was no significant effect of Stimulus in the Effort, Post-Effort, or Reward 
periods, all Fs(1, 24) < 4.11, all ps > 0.05.

Figure 8. Population plot: Effort Selective Cells in the Post-Effort period. (a) Normalised firing rate for Effort 
Selective NCL cells during the Post-Effort period. (b) Normalised firing rate for Effort Selective CDL cells 
during the Post-Effort period. For details on the timing of the periods, see Fig. 4. ITI: intertrial interval; S: 
Stimulus period; PRE-EFF: Pre-Effort period; EFF: Effort period; POST-EFF: Post-Effort period.
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CDL cells. The population plot of all 10 Effort Selective cells, irrespective of whether they fired more during HE 
or LE trials, is shown in Fig. 10b. Of the 10 cells, eight fired more during the Reward period of HE trials, while 
the remaining two fired more during the Reward period in LE trials. A Chi-squared comparison revealed that 
the number of cells with higher firing rates during HE trials compared to LE just fell short of significance, X2 (1, 

Figure 9. Examples of CDL single-unit activity. Each panel displays the raster (top) and histogram (bottom) 
activity of the cell over a 64-trial session. The cell displays a significant increase in firing during the Post-Effort 
period of LE trials compared to HE trials. ITI: intertrial interval; Stim: Stimulus period; Pre: Pre-Effort period; 
Eff: Effort period; Post: Post-Effort period.

Figure 10. Population plot: Effort Selective Cells in the Reward period. (a) Normalised firing rate for Effort 
Selective NCL cells during the Reward period. (b) Normalised firing rate Effort Selective CDL cells during the 
Reward period. For details on the timing of the periods, see Fig. 4. ITI: intertrial interval; S: Stimulus period; 
PRE-EFF: Pre-Effort period; EFF: Effort period; POST-EFF: Post-Effort period.
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n = 10) = 3.6, p = 0.06. The data in the Sample, Pre-Effort, Effort, Post-Effort, and Reward period was subject to 
a repeated-measures two-way ANOVA, with Stimulus (2: HE or LE) and Bin (all bins 50 ms 6: bins 1–6 for the 
Sample and Effort periods; 30: bins 1–30 for Pre-Effort and Post-Effort periods; 40: bins 1–40 for the Reward 
period) as factors, with repeated measures over Bins (Greenhouse-Geisser corrected). There was no significant 
effect of Stimulus in any period, all Fs(1, 9) < 1.52, all ps > 0.25.

Discussion
Summary of findings. In the present study, we explored how NCL and CDL cells encode the value of a 
reward when it is discounted by effort costs. We recorded from 245 cells in NCL and 57 in CDL during a task 
where birds were required to peck a stimulus predicting a subsequent high effort task (peck a total of eight times 
across four spatially-distributed positions on the screen) or a subsequent low effort task (make four pecks to a sin-
gle central location on the screen). The latency-to-peck data strongly supports the fact that the birds preferred the 
low effort trials over the high effort trials. We examined whether NCL and CDL cells exhibited Effort Selectivity, 
and, if so, whether or not they were Value Selective (fired preferentially to the Low Effort trials) in the period that 
the birds were presented with each stimulus that would predict the upcoming effort condition, the periods before 
and after exerting the effort, and the reward period.

Mirroring the behavioural preferences of the birds for the stimuli that predicted the LE trials, cells in NCL that 
were Effort Selective in both the Stimulus and the Pre-Effort periods fired significantly more during LE trials than 
HE trials, even when controlling for pecking. The stimuli indicating the trial types were balanced across birds, 
and we saw higher firing rates to the LE stimulus across all birds, therefore it is unlikely that the difference in fir-
ing rates was simply due to stimulus selectivity. In contrast to the Sample and Pre-Effort periods, Effort Selective 
cells showed no neural preference for LE trials over HE trials during the Effort, Post-Effort, or Reward periods. In 
contrast to NCL, while a number of CDL cells were Effort Selective, the population of Effort Selective CDL cells 
showed no increase in firing towards LE trials compared to HE trials during any period of the task, indicating no 
LE Value Preference in CDL cells.

Implications for NCL function. Given that for both HE and LE trials the reward amount was the same but 
the physical effort different, the pattern of firing we saw in NCL is consistent with the notion that NCL is impor-
tant for representing the effort-discounted value of a stimulus. Naturally, the LE and HE trials differ along a few 
other dimensions in addition to effort, and it is important to consider whether these factors could also be driving 
the observed neural differences. Given that NCL activity is modulated by the animals’ pecking20, a main factor to 
consider is whether higher peck rates to the LE stimulus that continued into the Pre-Effort period could account 
for the higher neural activity during the Sample and Pre-Effort periods. However, we do not believe this is likely 
for two reasons. First, in the Pre-Effort period, we statistically controlled for any peck-related neural activity, and 
even when doing so significant differences in neural activity emerged during the LE and HE trials. Second, the 
differences in neural activity were also present during the Sample period where, because the period of analysis 
was from −400 ms to −100 ms prior to the first peck, pecks had no bearing. Thus, the observed differences in 
NCL activity between HE and LE trials was likely driven by effort discounting of reward value and not an artefact 
of peck frequency.

The HE and LE trials also differ in terms of the spatial arrangements of the stimuli in that following the LE 
stimulus, the animal needs only to peck to one spatial position in the Effort period, whereas following the HE 
stimulus the animal needs to peck at four different spatial positions in the Effort period. Thus either the spatial 
positions themselves, or the movement differences that the two different spatial arrays would engender, might 
also account for the observed neural differences. Again, the same logic that we applied to our peck data would 
apply to an explanation based on differences in spatial arrays or movement. Although both differences in spatial 
arrays or movements could account for the differences in neural activity between LE and HE trials during the 
Pre-Effort period, neither could account for the differences in neural activity during the Sample period where 
the stimuli that predicted the LE and HE trials were presented in the same central position. Overall, we believe it 
was the impending difference in effort requirements that was driving the neural differences observed during the 
Sample and Pre-Effort periods.

A final point to consider is whether the longer latency to peck the HE stimulus compared to the LE stimulus 
could explain the difference in firing during the Sample period. The longer latency to peck the HE stimulus is 
a useful indicator of preference, or lack thereof, and our method of analysing the time period from −400 ms to 
−100 ms prior to the first peck is important because it is the only time we know the bird is looking at the stimulus. 
One possibility is that the longer latency to peck the HE stimulus could have resulted in neural habituation of the 
response to that stimulus. However, although neural habituation might explain the difference observed between 
LE and HE during the Sample period, it does not explain why we still see the difference during the Pre-Effort 
period. We are therefore confident that the nerual differences are meaningful and driven by the effort differences 
associated with the stimuli.

The apparent coding of value in NCL as a function of effort cost is similar to that seen in the ACC of mammals. 
In effort studies with rats, ACC cells fire to the “best” outcome when effort based options are manipulated8,10,29. 
While our task did not require dynamic changes in value appraisal, the current design allows us to see the encod-
ing of a stimulus that, through conditioning, has been associated as the ‘better value’ option. Indeed, our findings 
in NCL are similar to Porter et al.10 who showed rodent ACC neural populations respond to behaviours with the 
highest value, even in effort tasks where no decision between behaviours needs to be made.

The literature supporting NCL as the functional analogue of the mammalian PFC is small, but growing. In 
respect to value coding, studies have found NCL to modulate firing in the same manner as the mammalian PFC 
in the anticipation of reward and reward delivery, as well as in response to the value of temporally discounted 
rewards19,21,25. To date, no one has explored whether value as a function of effort discounting is also encoded 
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in NCL. The present study adds to the current knowledge in that it shows that NCL has properties similar to 
the mammalian ACC with respect to encoding the more valuable of two options when differing effort costs are 
required. Our findings are somewhat in contrast to where these functions are located in the mammalian frontal 
regions; unlike in the mammalian PFC, the same area of the avian NCL that encodes effort discounting, also 
encodes delay discounting25. In the mammalian brain, delay discounting and effort discounting are thought to be 
coded in separate areas, with delay discounting being attributed to the orbitofrontal cortex, and effort discounting 
to the ACC8,10,29–31. One possibility is that the smaller avian brain has evolved to carry out more generalised value 
computations in a single region, NCL. Another possibility is that we have yet to fully explore the possibility that 
NCL consists of sub-regions each serving the different aspects of processing reward-based information.

Implications for CDL function. A handful of CDL cells were Effort Selective in that they fired during 
either LE or HE trials. However, unlike in NCL, as a population, cells in CDL showed no modulation in firing 
that reflected a preference for the LE or HE trials. Of course, we exercise some caution in this conclusion as we 
recorded from a smaller number of CDL cells than NCL cells. Although overall CDL cells seemed to exhibit no 
neural activity indicative of a preference for either the LE or HE trials, an interesting observation was noted in 
the number of inhibitory and excitatory cells in each period of the task. For example, 95% of CDL cells fired in an 
inhibitory manner during the 300 ms prior to the first effort peck, and 60% fired in an inhibitory manner during 
the Reward period. In contrast, during the Post-Effort period, 86% of cells fired in an excitatory manner. So while 
not firing differentially between HE and LE trials, a large proportion of CDL cells appeared to be inhibited during 
the Effort period, and then seem to ‘rebound’, firing in an excitatory manner during the Post-Effort period, before 
being again inhibited during the Reward period. Although neurons in CDL may not play a role in value coding, 
CDL cells could be involved in response-outcome coding, playing an important role in associating the effortful 
action of pecking to the beneficial reward outcome. If this is the case, CDL could still play an important role in 
learning and associating actions with outcomes.

It is interesting that despite the fact that CDL has some connectivity patterns similar to the ACC23, cells in 
CDL do not appear to directly modulate their firing rate in response to effort discounting in the same way that 
ACC does8,9,29. The current literature on the function of CDL is limited, and to our knowledge no other study has 
conducted electrophysiology recordings from CDL. CDL is part of the limbic/olfactory sub-module that makes 
up the cortico-hippocampal network of the avian brain32. The majority of studies that make mention of CDL are 
lesion studies, where CDL is used as a control area, and in most of these cases the lesion is imprecise and affects 
surrounding areas. As such, it is difficult to draw on any previous literature to speculate on why CDL exhibits the 
pattern of inhibitory and excitatory changes observed in the current study. We found that CDL does not seem 
to directly code value, but does seem to fire in a pattern that may be useful in associating action and reward. 
We therefore posit that CDL may be involved more in the updating of the mental model of an action-outcome 
sequence33 rather than representing the value of each outcome in the way that NCL does.

Conclusions. We found the cells in the pigeon NCL encode value as a function of effort discounting. Our 
findings are consistent with a growing body of literature suggesting the NCL is an important area of the pigeon 
brain for encoding value19–21,25. Unlike the mammalian brain, the avian brain does not seem to process delay 
discounted value and effort discounted value in separate areas, but rather NCL acts as one more generalized value 
coding region. Despite some analogies between ACC and CDL in terms of connections patterns, while a handful 
of CDL cells were Effort Selective, we found no evidence that CDL cells encoded value. Nevertheless, it is still 
possible that CDL plays a role in associating responses and outcomes.

Data availability
Data will be made available upon request.
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