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estimation of material parameters 
based on precipitate shape: 
efficient identification of low-
error region with Gaussian process 
modeling
Yuhki Tsukada1,2*, Shion Takeno3, Masayuki Karasuyama  2,3,4, Hitoshi Fukuoka1, 
Motoki Shiga  2,5,6 & Toshiyuki Koyama1

In this study, an efficient method for estimating material parameters based on the experimental data of 
precipitate shape is proposed. First, a computational model that predicts the energetically favorable 
shape of precipitate when a d-dimensional material parameter (x) is given is developed. Second, the 
discrepancy (y) between the precipitate shape obtained through the experiment and that predicted 
using the computational model is calculated. Third, the Gaussian process (GP) is used to model the 
relation between x and y. Finally, for identifying the “low-error region (LER)” in the material parameter 
space where y is less than a threshold, we introduce an adaptive sampling strategy, wherein the 
estimated GP model suggests the subsequent candidate x to be sampled/calculated. To evaluate the 
effectiveness of the proposed method, we apply it to the estimation of interface energy and lattice 
mismatch between MgZn2 ( ′β1) and α-Mg phases in an Mg-based alloy. The result shows that the number 
of computational calculations of the precipitate shape required for the LER estimation is significantly 
decreased by using the proposed method.

Precipitate shape in materials intrinsically contains some information on material parameters. The interaction 
between the interface and strain energies determines the equilibrium shape of a coherent precipitate1–6. For exam-
ple, the aspect ratio of a plate- or rod-shaped coherent precipitate, often observed in Mg-based alloys7–27, varies 
depending on the precipitate size, interface energy, and crystal lattice mismatch between the precipitate and 
matrix phases. In materials science, material parameters have often been estimated by using experimental data. 
For example, the interface energy can be estimated by fitting the Ostwald ripening model28 (theoretical formula) 
to time-series experimental measurement of precipitate radius. Most recently, there are some efforts to estimate 
material parameters by comparing data of microstructure evolution obtained by experiment and simulation29–32. 
However, the material parameter estimation by directly using experimental data of precipitate shape has not been 
reported yet. This is due to the fact that although there are some computational models to predict precipitate 
shape6,33–35, their computational cost is high and hence it is time-consuming to estimate material parameters by 
fitting the models to experimental data.

A precipitate prefers an energetically favorable shape that minimizes the total energy derived from the precip-
itation. When a spheroidal precipitate is assumed, the total energy (sum of the interface and strain energies) can 
be calculated as a function of the aspect ratio of the spheroid (precipitate shape) for the given values of material 
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parameters and precipitate volume6. Hence, the material parameters involved in the total energy calculation can 
be estimated if the experimental data of the precipitate shape are obtained. However, considering that the com-
putational cost of the total energy calculation is high and the number of candidate parameter conditions is large, 
an efficient method for material parameter estimation is necessary. Given that experimental data of precipitate 
shape are naturally uncertain, estimating the “low-error region (LER)” in the material parameter space seems to be 
crucial, where the discrepancy between the precipitate shape obtained through the experiment and that predicted 
using a computational model becomes small.

In this study, we propose an efficient method for estimating material parameters based on the experimental 
data of precipitate shape. First, a computational model that predicts the energetically favorable shape of the pre-
cipitate under a given material parameter condition is developed. When the d-dimensional material parameter 
( ∈ x d) is given, we can calculate the discrepancy (y) between the precipitate shape obtained through the exper-
iment and that predicted using the computational model. Then, we use the Gaussian process (GP) to model the x 
and y relation. GP has been widely used for a variety of problems in materials science such as materials discov-
ery36, potential approximation37, and structure optimization38,39. Unlike classical deterministic regression models, 
GP represents an unknown target function value as a random variable of a Gaussian distribution, which enables 
us to simply quantify uncertainty of the current prediction. We utilized this uncertainty evaluation to define 
probabilistic estimation of LER for each uncalculated candidate x. Finally, we introduce an adaptive sampling 
strategy wherein the estimated GP model suggests the subsequent candidate x to be sampled/calculated so that 
the uncertainty of the LER estimation is efficiently reduced. Since our interest is only in LER, exhaustive sampling 
in the parameter space should be inefficient. Our strategy intensively selects samples which are effective for iden-
tifying LER efficiently, instead of trying to approximate the entire discrepancy surface precisely. The result showed 
that the proposed method can provide an efficient estimation of material parameters.

Results
To evaluate the effectiveness of the proposed method, we consider estimating the interface energy and lattice 
mismatch between the hexagonal MgZn2 (β′

1) precipitate and hexagonal α-Mg matrix phases based on the exper-
imental data on the shape of the β′

1 phase. The stress-free transformation strain (crystal lattice mismatch between 
the β′

1 and α phases) is expressed by
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Here, ε11
0 , ε22

0 , and ε33
0  are the lattice mismatch along α[2110] , α[0110] , and [0001]α of the α phase, respectively. 

Figure 1 shows the shape of the β′
1 phase observed in an aged Mg–Zn–Ca–Ag alloy24. The 1β′  phase has a rod shape 

along [0001]α. Hence, the values of ε11
0 and 22

0ε  are assumed to be equal6. Based on the experimental data on the 
crystallographic orientation relationship between the 1β′  and α phases8 and lattice parameters of the two 
phases18,40, the lattice mismatch along [0001]α is ε = .0 0018233

0 . Table 1 presents the change in the length and 
diameter of the rod-shaped 1β′  phase during aging at 160 °C measured via transmission electron microscopy 
(TEM)24. By using the experimental data listed in the table, we consider estimating the interface energy γ and the 
lattice mismatch ε ε=( )11

0
22
0 .

Figure 1. Shape of the 1β′  phase investigated via transmission electron microscopy in Mg–Zn–Ca–Ag alloy, 
which is aged at 160 °C for 2 h. (Reprinted from Mater. Sci. Eng. A, Vol. 575, Bhattacharjee, T., Mendis, C.L.,  
Oh-ishi, K., Ohkubo, T. & Hono, K., The effect of Ag and Ca additions on the age hardening response of Mg–Zn 
alloys, pp. 231–240, 2013, with permission from Elsevier).
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We assume that the β′
1 phase has a spheroidal shape. Then, we prepare the computational model for predicting 

the energetically favorable shape of the precipitate (aspect ratio of the spheroid) with the given values of γ and ε11
0 

(refer to “Methods” section for details). To determine the candidate parameter γ ε=x ( , )11
0 , we use 250 equally 

spaced grids in ε ∈ − . − .[ 0 250, 0 001]11
0  and 250 equally spaced grids in γ∈[0.001,0.250] (J m−2). Thus, we have 

a total of 62500 candidate parameter conditions xi(i = 1, …, 62500). In the given material parameter condition xi, 
the discrepancy in the aspect ratio between the precipitate obtained through the experiment (rexpt) and that pre-
dicted using the computational model (ri,comput) is defined as follows:

y r t r t1
2

( ( ) ( )) ,
(2)i

t
iexpt , comput

2


∑= −
∈

where t is time and   is a set of time when the shape of 1β′  is experimentally measured. We consider identifying 
the LER where the error yi is less than a given threshold h, i.e., yi ≤ h. Based on the standard deviation of rexpt listed 
in Table 1, h is assumed to have a value between 1 and 5. Figure 2 shows the heatmap of yi in the material param-
eter space, in which the LER for h = 1 and h = 5 are denoted by white and blue lines, respectively.

GP is used to model the relation between xi and yi. In this process, yi is modeled as yi = fi + e, where εe (0, )~  
is an independent noise term with variance ε. We assume that the noise is negligible because it is associated with 
the numerical error of the computational model. Thus, we set a small value of ε, as will be described in “Methods” 
section. Then, the conditional distribution for fi after observing y  (a vector defined by yi for i ∈ , where 
 ⊆ N{1, , } is a subset of indices for which yi is already calculated) is expressed as

NI μ σ| ∼y x xf ( ( ), ( )), (3)i i i
2

where μ(xi) and σ(xi) are the conditional mean and covariance functions, respectively. In the proposed method, 
the estimated GP model suggests the subsequent candidate xi that has the maximum information gain (IG) among 
the uncalculated points (refer to “Methods” section for details). The intuition behind IG is to add a sample which 
has the highest uncertainty reduction among candidates. Our sampling strategy can be summarized as follows:

 (a) fit GP to the observed y , and obtain the probabilistic estimation of LER, and
 (b) select the candidate xi which has the highest IG evaluated through the fitted GP.

For the material parameter xi, we use the indicator variables as follows:

=
>

≤ .
z

f h
f h

{
0, if ,
1, if (4)

i
i

i

Aging time 
(t/h) Length (nm)

Diameter 
(nm)

Average of aspect 
ratio (rexpt)

2 60.5 ± 14.0 5.9 ± 1.3 10.25 ± 0.14

8 62.6 ± 21.6 6.1 ± 1.4 10.26 ± 1.53

24 85.0 ± 28.3 7.3 ± 1.4 11.64 ± 2.02

Table 1. Shape change of the rod-shaped MgZn2 (β′
1) phase during aging at 160 °C in Mg–Zn–Ca–Ag alloy24.

Figure 2. Heatmap of yi, which is the error in the aspect ratio between the precipitate obtained through the 
experiment and that predicted using the computational model. Low-error region (LER), where yi ≤ h, is shown 
for h = 1 and h = 5 as denoted by white and blue lines, respectively.
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Figure 3 shows the sampling process of the proposed method. In the figure, the left, middle, and right columns 
are the heatmap of μ(xi), heatmap of IG, and predicted LER (blue regions are p(zi = 1) ≥ 0.5, where p represents 
the probability of zi), respectively. Note that it is known that μ(x) is equivalent to the well-known non-parametric 
regression model called kernel ridge regression (KRR)41. The non-parametric approach is suitable to our prob-
lem setting than the parametric approach such as classical linear regression. This is because, in the parametric 
approach, the discrepancy yi has to be modeled as an explicit function of material parameters, but the functional 
form of the discrepancy surface is not known beforehand. In the left columns in Fig. 3, the blue points are the 
sampled points, red point is the point to be sampled in the subsequent iteration, and black lines are the bound-
ary of the LER for h = 5. Although the error surface in iteration 10 remains highly uncertain, a part of the LER 
is already identified. In iteration 50, the entire shape of the LER is barely identified, and the sampled points are 
mostly concentrated in the LER. In iteration 100, the points around the LER boundary are sampled to identify 
the region precisely.

Figure 4 shows the performance evaluation. Our purpose is to identify LER. This problem setting can be seen 
as a variant of classification problem in which the binary label zi is needed to be predicted precisely. Thus, we eval-
uate accuracy of the LER prediction by zi by using standard evaluation measures of classification problem. We use 
three criteria, namely recall, precision, and F-score, that are extensively used in the field of information retrieval42. 
Each plot compares the performance of two GP models, that is, (1) GP with our sampling strategy and (2) GP 

Figure 3. Demonstration of the proposed sampling strategy with h = 5. The images on the left column are the 
heatmap of μ(xi). Blue points represent the calculated points, and the red point is the one to be calculated in the 
subsequent iteration. Black lines are the boundary of the LER for h = 5. The images at the middle column are 
the heatmap of IG. The images on the right column are the predicted LER. Blue regions are p(zi = 1) ≥ 0.5, and 
red regions are p(zi = 1) < 0.5. In each iteration, a candidate x which has the highest IG is sampled. Thus, the 
number of samples in each plot (a), (b), and (c) is equal to the number of iterations.
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with random sampling. For both sampling approaches, a candidate x is classified as LER if p(zi = 1) ≥ 0.5, which is 
equivalent to μ(xi) ≤ h. Since μ(xi) is equivalent to KRR, “GP + random sampling” can also be seen as a baseline 
defined by KRR with a naive sampling strategy. The left plot in Fig. 4 shows the recall, defined by

= ≥ . ≤

≤
.

i p z y h
i y h

The number of points for which ( 1) 0 5 and
The number of points for which

i i

i

Thus, the recall is the ratio of the number of LER points that GP correctly identifies over the number of points 
in true LER. This can evaluate how many LER points are correctly identified. At the beginning of the iterations, 
the recall was approximately 0.1 for both sampling strategies owing to the absence of sampled points. However, 
we observe that the proposed method rapidly increased the recall substantially faster than the random sampling. 
The middle plot in Fig. 4 shows the precision, defined by

= ≥ . ≤

= ≥ .
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i p z y h
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The number of points for which ( 1) 0 5
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The precision has the same numerator as recall, but the denominator is the number of points predicted as LER 
by GP. This can evaluate specificity of the prediction, which cannot be considered by recall. Considering that most 
of the predicted LER was actually yi ≤ h (Fig. 3), the precision values are higher than the recall from the begin-
ning of the iterations. Hence, the proposed sampling strategy is substantially better than the random sampling 
strategy. Given that recall and precision sometimes have a tradeoff relationship, their harmonic mean, referred to 
as F-score, is often used as the basis for a comprehensive evaluation. Figure 4 (right plot) shows the superior per-
formance of the proposed method in F-score. The effectiveness of the proposed method was similarly evaluated 
when we set h = 1. The proposed method identified the LER accurately after 100 iterations despite the region was 
narrower than that of h = 5 (refer to Supplementary Information).

Discussion
Prior to material parameter estimation, determining the material parameter range of interest is crucial. In this 
study, the parameter ranges of ε11

0  and γ were assumed to be ε ∈ − . − .[ 0 250, 0 001]11
0  and [0 001, 0 250]γ ∈ . .  (J 

m−2), respectively. When the 1β′  phase grows during aging heat treatment, the interface between 1β′  and α phases 
would shift from coherent to semi-coherent/incoherent. As TEM micrographs24 show, the α/ 1β′  interface in the 
Mg–Zn–Ca–Ag alloy remains coherent during aging at 160 °C for 2–24 h because any dislocations do not occur 
at the interface. The coherent interface energy is generally less than 0.25 J m−2 (ref.5). Hence, the parameter range 
of [0 001, 0 250]γ ∈ . .  (J m−2) is reasonable. Furthermore, the absolute value of 11

0ε  larger than 0.25 was omitted 
from the parameter range of interest because this value was much larger than the reported values of the lattice 
mismatch between precipitate and matrix phases in several Mg-based alloys33–35.

The lattice mismatch between precipitate and matrix phases is often estimated from the lattice parameter 
information of the two phases and crystallographic lattice correspondence between the two phases4,33–35. 
However, regarding the nanometer-size precipitate, experimentally determining the lattice correspondence using 
TEM is challenging, specifically when the aspect ratio of the precipitate is high/low. Moreover, the aspect ratio of 
the nanometer-size 1β′  phase is higher than 10 (Table 1). Hence, the lattice correspondence between β′

1 and α 
phases along the crystallographic directions perpendicular to [0001]α is difficult to determine experimentally. In 
contrast, our method is based on the computational model for predicting the energetically favorable shape of 
precipitate with the given material parameters. The method can perform simultaneous estimation of the lattice 
mismatch and interface energy based on the experimental data of precipitate shape. Furthermore, it only requires 
at most 100 computational calculations of the precipitate shape to estimate the LER. Thus, we assume that the 
proposed method can be used for the effective utilization of the experimental data of precipitate shape for esti-
mating material parameters.

The computational model used in predicting the energetically favorable shape of precipitate can be replaced 
by another computational model or simulation if necessary. The limitation of the computational model used in 

Figure 4. Performance evaluation with h = 5. The image on the left is the ratio of points i for which 
p(zi = 1) ≥ 0.5 among the points in LER (recall). The image at the middle is the ratio of points i for which yi ≤ h 
among the points in the predicted LER p(zi = 1) ≥ 0.5 (precision). The image on the right is the harmonic mean 
of recall and precision (F-score).
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this study is that the precipitate shape is assumed to be spheroid and the interface energy anisotropy is ignored 
(refer to “Methods” section for details). In several Mg-based alloys43–46, the precipitate mostly has faced or len-
ticular shape, on which the anisotropy of the interface energy has significant effects34. Furthermore, although 
we assume that the precipitate takes on an energetically favorable shape, there would be some cases where the 
precipitate shape cannot be fully accommodated during aging. In the above-mentioned cases, the computational 
model used in this study should be replaced by a phase-field model33–35, which can simulate the microstructure 
evolution that takes place so as to reduce the total free energy of the microstructure47,48. The computational cost 
of the phase-field simulation in predicting precipitate shape change would be much higher than the computa-
tional model employed in this study. However, it is presumed that combining the phase-field and GP models with 
our sampling strategy would also provide an efficient estimation of material parameters based on the precipitate 
shape. Note that the material parameter estimation primarily from the precipitate shape is challenging in the 
case where the precipitate volume fraction is high and long-range interaction between the precipitates is strong 
because the precipitate shape is determined by not only the material parameters but also the precipitate spatial 
arrangement.

In summary, if a computational model for predicting the energetically favorable shape of precipitate with 
the given material parameters is available, it is possible to estimate material parameters based on the precipi-
tate shape. The GP model combined with our sampling strategy can significantly reduce the computational cost 
required for the LER estimation and would be useful to accelerate the extraction of material parameters from 
experimental data of precipitate shape obtained at various temperatures in different alloys.

Methods
prediction of the precipitate aspect ratio. When a spheroidal precipitate is assumed (x2/a2 + y2/b2 + z2/c2 = 1, 
a = b, r = c/a), the total energy (sum of the interface and strain energies) of the precipitate is formulated as a function of 
the aspect ratio of the spheroid r (ref.6).

( )
E r E r E r

V C S r A r

( ) ( ) ( )

2
( ) ( ) ,

(5)ijkl kl ij ijmn mn

total strain interface

0 0 0 0ε ε ε γ

≡ +

= − +

where V0 is precipitate volume, Cijkl is elastic modulus tensor, ij
0ε  is crystal lattice mismatch between the precipitate 

and matrix phases, Sijmn(r) is Eshelby’s tensor49, A(r) is interface area, and γ is interface energy (in J m−2). Note 
that anisotropy of the interface energy is ignored for simplicity. The computational cost for calculating Sijmn(r) is 
high because the surface integration must be numerically calculated6.

We consider predicting the aspect ratio of the β′
1 phase in the α phase with the given material parameters. ij

0ε  
is given by Eq. (1), where 11

0
22
0ε ε= . As an example, Fig. 5 shows the total energy Etotal given by Eq. (5) as a function 

of the aspect ratio of the spheroid r. The calculation uses the following variables: interface energy γ = 0.1 J m−2; 
lattice mismatch 0 0111

0
22
0ε ε= = .  and 0 00233

0ε = . ; elastic modulus C11 = C22 = 0.597, C33 = 0.617, C12 = 0.262, 
C13 = C23 = 0.217, C44 = C55 = 0.164, and C66 = (C11−C12)/2 (1011 Pa)40; and β′

1 phase volume V0 = 5.2 × 105 nm3. 
The rotation axis of the spheroid is parallel to [0001]α and Etotal is normalized using Etotal of the spherical precipi-
tate (r = 1) with the same volume of β′

1 phase. As shown in the figure, the total energy is minimized when 
1/r = 0.67, indicating that with given material parameters, we can compute the aspect ratio of the precipitate 
(rcomput).

GP model using selective sampling procedure. Suppose that ∈xi
d is a d-dimensional parameter of 

the computational model and ∈yi  is the discrepancy between the precipitate aspect ratio obtained through the 
experiment (rexpt) and that predicted using the computational model (ri,comput) (Eq. (2)). Considering that the 
aspect ratio of the precipitates in the TEM micrograph fluctuates (Fig. 1), the average of the aspect ratio is used to 
calculate yi. To incorporate this intrinsic uncertainty in the experimental measurement, we consider identifying 
the LER, where yi ≤ h. Compared with naturally searching a single optimal material parameter set, the LER pro-
vides the information as follows:

•	 the region of possible good material parameter sets that can be estimated from the experimental data, and
•	 the accuracy in identifying the material parameter sets from the current experimental measurement (large 

LER indicates that the error level h is substantially high for accurately identifying material parameter sets).

Considering that the computational cost of yi (or ri,comput) is high, we estimate the LER according to the limited 
number of calculations of yi based on a probabilistic model.

The relation between xi and yi is modeled by GP. For N different parameter sets xi(i = 1, …, N), the set of error 
values yi(i = 1, …, N) is approximated using the following multi-dimensional Gaussian distribution.

~f K( , ), (6)μ

where = 
f f f( , , )N1  and  K( , )μ  is the Gaussian distribution with μ ∈ N  as the mean vector and 

K N N∈ ×  as the covariance matrix. The i,j element of the covariance matrix K is defined by the kernel function 
k(xi, xj) for which we use the standard Gaussian kernel as follows:
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i j

i j
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2
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where θ1 and θ2 are the tuning parameters. Herein, the tuning parameters θ1 and θ2 in GP are optimized based on 
marginal likelihood maximization41 per iteration. By using the kernel function, the proximity of xi and xj is trans-
lated into the covariance of fi and fj. Let  N{1, , } ⊆  be the subset of indices for which yi is already calculated 
and y  be the vector defined by yi for i ∈ . In this process, a calculated yi is defined as yi = fi + e, where ~e (0, ) ε  
is an independent noise term with variance ε. Herein, the variance ε is set to 10−8. The prior mean μ in Eq. (6) is 
set as the mean of observed yi for ∈i  . Then, the conditional distribution for fi after calculating y  is expressed 
in Eq. (3). | yfi  is called the predictive distribution, and μ(xi) and σ(xi) in this equation are analytically written 
as follows:

    μμ ε= + −−x K K I y( ) ( ) ( ), (8)i i , ,
1

σ ε= − + −
   x x x K K I Kk( ) ( , ) ( ) , (9)i i j i i

2
, ,

1
,

where I is identity matrix. Moreover, the vectors and matrices with subscripts represent subvectors and submatri-
ces specified by the given indices (e.g., Ki ,  indicates the i-th row and the columns defined by  ).

The indicator variable zi defined by Eq. (4) represents whether the parameter xi is expected to have lower error 
than the threshold h. Given that fi is the Gaussian random variable, the probability of zi is simply expressed as 
follows:

Figure 5. Total energy Etotal (sum of the strain and interface energies) of the spheroidal precipitate as a function 
of the aspect ratio of spheroid r.
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μ
σ

= = Φ





− 




x
x

p z h( 1) ( )
( )

,
(10)

i
i

i

= = − =p z p z( 0) 1 ( 1), (11)i i

where Φ is the cumulative distribution function of the standard normal distribution. This probability provides a 
statistical estimation on the extent that the parameter xi has lower error than h based on the present calculations. 

Figure 6. Illustrative example of the proposed method. The images on the left column are the prediction by GP. 
The predictive distribution is drawn at the point that has the maximum IG. The images at the middle are the 
IG, where the circle represents the maximum. The images on the right column are the probability of the LER: 
p(zi = 1).
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Thus, a set of parameter that provides lower errors than h (i.e., LER) can be estimated as a set of xi satisfying the 
following equation.

p z( 1) 0 5 (12)i = ≥ . .

Although GP provides the LER estimation, its reliability depends on the calculated points   (i.e., training 
data). To obtain an accurate prediction efficiently, we introduce an adaptive sampling strategy, referred to as active 
learning50, in which the estimated GP model suggests the subsequent candidate xi to be sampled/calculated to 
gain the prediction reliability. The basic idea is to select a point xi that can primarily reduce the uncertainty of zi. 
The following entropy evaluates the current uncertainty of zi.

∑= − .
∈

H z p z p z( ) ( ) log ( )
(13)

i
z

i i
{0,1}i

The uncertainty of zi after calculating yi is represented by the conditional entropy as follows:


H z y p z y p z y( ) ( ) log ( )

(14)
yi i p y

z
i i i i( )

{0,1}
i

i

 ∑| =








| |







.|

∈

Thus, by obtaining the difference between H(zi) and H(zi|yi), uncertainty reduction, referred to as IG, can be 
evaluated as follows:

H z H z yIG ( ) ( ) (15)i i i i= − | .

The expectation in the second term H(zi|yi) is approximated by sampling from yp y( )i| , defined by the 
Gaussian μ σ ε+ x x( ( ), ( ) )i i

2 . Given the sampleyi  from |yp y( )i  , fi is represented by ε y( , )i  because of our 
assumption that yi = fi + e (where ~ εe (0, ) ). Then, we can easily calculate p z y p f h y( 1 ) ( )i i i i= | = ≤ | , which 
is equal to the cumulative distribution function of f y y( , )i i i~ ε| . We iteratively select the point xi that has the 
maximum IGi among the uncalculated points.

Figure 6 presents the illustrative example of the proposed method. The three plots in each iteration are the esti-
mated GP model, IG, and p(zi = 1). Our method iteratively selects a point that maximizes the IG per iteration, by 
which p(zi = 1) gradually takes a value close to 1 or 0. Therefore, by sampling the point that reduces the prediction 
uncertainty, the GP model immediately increases its confidence on the LER identification. The proposed method 
can be generally applied to types of problem where the surface of y is smooth in x space.

Data availability
The Supplementary Information file provides the data supporting the results obtained in this study.
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