
1Scientific RepoRtS |         (2019) 9:15974  | https://doi.org/10.1038/s41598-019-52095-8

www.nature.com/scientificreports

correlated impurity complex in the 
asymmetric tunneling contact: an 
ideal system to observe negative 
tunneling conductivity
n. S. Maslova1,4, P. I. Arseyev2,4 & V. n. Mantsevich3,4*

We studied theoretically electron transport through the impurity complex localized between the 
tunneling contact leads by means of the generalized Keldysh diagram technique. the formation of 
multiple well pronounced regions with negative tunneling conductivity in the i-V characteristics was 
revealed. the appearance of negative tunneling conductivity is caused by the presence of both strong 
Coulomb correlations and the asymmetry of tunneling rates, which lead to the blockade of the electron 
transport through the system for a certain values of applied bias. the developed theory and obtained 
results may be useful for the application of impurity (dopant) atoms as a basic elements in modern 
nanoelectronic circuits.

Nowadays electron transport through impurity complexes attracts strong attention. It occurs because impu-
rity (dopant) atoms are considered to be both promising candidates for the implementation in semiconductor 
nanoelectronic devices1–4 and model systems for quantum transport phenomena investigation5–8. Application 
of individual atoms as building blocks of nanoelectronic devices is very perspective, as they have a stable well 
defined electronic structure. Individual atoms embedded in the semiconductor medium allow to fabricate unique 
single-atom single-electron tunneling devices as prototypes of quantum logic gates9, quantum bits10–12, charge 
pumps and turnstiles13–16, etc.

One of the most vital properties for electronic components functioning is the presence of negative tunneling 
conductivity17, which was observed for the first time in a highly doped tunneling diods18. Later negative tunne-
ling conductivity has been revealed in a quite few low temperature experiments of electron transport through 
molecules1,2,19–23, dopant atoms24 and quantum dots25. For molecular systems the presence of negative tunneling 
conductivity was demonstrated both at low and room temperatures1,2,19,21. Usually, negative tunneling conduc-
tivity occurs at the back of sharp current peaks and is explained by the charge transfer between two energy levels 
which are in resonance at a certain value of applied bias and are out of resonance for other values of applied bias.

One of the first theoretical explanations of negative tunneling conductivity was proposed by Likharev with 
co-authors8. They attributed formation of negative tunneling conductivity with the enhancement of one of the 
two tunneling barriers of the transistor by the source-drain electric field. This mechanism made it possible to 
explain experimental results obtained in molecular systems19,20. Another possible mechanism for the appear-
ance of negative tunneling conductivity in molecular electronic devices was proposed in22 and originated from 
local orbital symmetry matching between an electrode and a molecule in a single molecular electronic device. 
However, mechanisms considered in8,22 could not explain formation of negative tunneling conductivity in a small 
size strongly correlated systems25, where the presence of strong Coulomb interaction plays an important role 
and should be taken into account. Later it was demonstrated that in a low dimensional strongly correlated struc-
tures negative tunneling conductivity arises due to the presence of non-equilibrium Coulomb interaction26–28. 
Inter-particle correlations should be carefully taken into account as they could drastically affect the local charge 
distribution in the vicinity of impurity complexes in nanometer-size tunneling junctions. Moreover, interacting 
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impurities is one of the most promising systems for the analysis of Coulomb correlations influence on the prop-
erties of the electron transport28–34.

Electronic circuits based on the individual impurities are recently under active investigation, therefore under-
standing the role of strong inter-particle correlations in such systems and analysis of their influence on the elec-
tron transport properties would be an important milestone on the way of single atom nanoelectronic devices 
creation. Here we theoretically analyze electron transport through the impurity cluster with strong Coulomb 
correlations between localized electrons by means of the generalized Keldysh diagram technique. We reveal that 
the presence of strong Coulomb correlations in the asymmetric tunneling contact (coupling strength between 
the impurity complex and metallic contacts strongly differ) leads to the formation of multiple well pronounced 
regions with negative tunneling conductivity in the I-V curves. This finding is very promising in the sense of 
dopant atoms application as basic elements in modern nanoelectronic circuits.

Model System and theoretical Approach
Model system. Further we will consider a model two-level impurity system localized between metallic tun-
neling contact leads. Two-level system is usually applied for the analysis of electron transport through the corre-
lated impurities. Single electron energy levels εi could be associated with two different impurities or they could 
both correspond to the single impurity. We would like to mention that energy spectrum of correlated impurity 
complex could be rather complicated depending on the strength of coupling between the impurities and the 
substrate, the value of inter-particle interaction, type of the substrate, etc. However, the situation when only two 
levels of the impurity complex contribute significantly to the electron transport could be realized by means of the 
applied bias and gate voltage tuning. Two-level system is relevant, when only two energy levels from the whole 
impurity complex spectrum are localized in the energy gap EF < εi < EF−eV. Inequality means that only these two 
levels contribute to the tunneling current. The Hamiltonian of the two-level system could be written as

= + + .ˆ ˆ ˆ ˆH H H H (1)imp lead tun

Hamiltonian Ĥimp describes impurity complex and includes on-site and inter-site Coulomb interaction in the 
Hubbard form:
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Further =σ σ σ
+ˆ ˆ ˆn c ci i i  is localized electron occupation numbers operator and operator σĉi  destroys electron with 

spin σ at the energy level εi. σσ′Uij  is the Coulomb repulsion between localized electrons. Further we assume that 
on-site Coulomb repulsion σσ′Uii  exceeds inter-site Coulomb repulsion σσ′Uij . Such an assumption corresponds to 
the situation, when impurity state localization radius is smaller than the distance between the impurities. Part 
Ĥlead describes continuous spectrum states in the metallic tunneling contact leads
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where indices k and p label continuous spectrum states in the different leads of the tunneling junction. 
Operators +ˆ ˆc c/k p k p( ) ( ) correspond to the creation/annihilation of the electrons in the continuous spectrum states 
k(p) and eV is the applied bias voltage. Tunneling part Ĥtun is responsible for coupling between the imputrity 
complex and the leads
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Tunneling transfer amplitudes tk(p)i between continuous spectrum states in the leads and the two-level system 
are considered to be independent on momentum and spin. Further we will analyze only elastic tunneling pro-
cesses. As it was shown in35 inelastic contribution to the tunneling current in the frame of adiabatic scheme at low 
temperature is much smaller, than the elastic one. Thus, it is sufficient to consider only elastic tunneling and take 
into account Coulomb correlations to obtain negative tunneling conductivity in asymmetric tunneling contact for 
impurity atoms with deep levels. It was demonstrated that inelastic processes lead to the additional peculiarities in 
the I-V characteristics, tunneling conductivity and current noise spectrum but it is not the scope of this paper36. 
In this work we analyze the effect of the two-level system intrinsic properties on the electron transport, while 
effects caused by the leads, such as the band width effect or the image charge effect, are not discussed.

We would like to mention, that among the most promising systems for the appearance of negative tunneling 
conductivity are impurity complexes or QDs embedded in a semiconductor matrix. The peculiarities of electron 
transport through such systems could be analyzed by means of the tunneling measurements. The most evident 
technique is the scanning tunneling microscopy/spectroscopy (STM/STS)37,38 (see Fig. 1b for the scheme of the 
measurements geometry). The ability to image individual dopant atoms combined with scanning tunneling spec-
troscopy allows to directly study the transport mechanisms through the impurities. It is important, that impu-
rity atoms could be localized directly on the semiconductor surface or several nanometers below the surface. In 
STM measurements semiconductor substrate and a tip of the scanning tunneling microscope form leads of the 
tunneling contact. In modern tunneling experiments typical current values can be of the order of 10 pA–10 nA. 
Tunneling rates could vary from 10 μeV to 100 meV depending both on the dopant atoms position and on the 
distance between the STM tip and the semiconductor surface. Another promising possibility to study properties 
of the electron transport through the impurity complexes deals with tunneling through a nanobridge where the 
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effective island is formed by the dopant cluster4,39 – single electron transistor (see Fig. 1a for the scheme of the 
measurements geometry). The device is typically a gated silicon nanobridge with a thickness and width of 20 nm. 
Fabrication of such structures makes it possible to control the number of impurities and their spatial positions 
during the sample preparation procedure. For the single electron transistor tunneling current is typically about 
0.1–10 nA and tunneling rates could be varied in a wide range by means of the gate voltage tuning. Among the 
most interesting materials applicable for realization of controllable single electron transport is graphene. Electron 
transport peculiarities in graphene could be connected not only with the presence of localized states but also with 
particular energy spectrum and non-trivial density of states40. In comparison with conventional tunneling devices 
the tunneling carriers in graphene cross only a few atomic layers, offering the prospect of ultra-fast transit times 
and small size of the device.

Green’s functions formalism. Several theoretical approaches are usually used for analysis of the elec-
tron transport through the atomic-scale devices. Among them are approaches based on the Hubbard opera-
tors41,42, pseudo-particle approach43,44, well known non-equilibrium Keldysh diagram technique or equations of 
motion formalism. The problem of Hubbard operators approach deals with the non-trivial commutation rules 
for Hubbard operators, so it is rather difficult to consider high order correlations only by means of this approach. 
That is why in41,42 authors tried to combine non-equilibrium diagram technique with theoretical approach based 
on the Hubbard operators. Theoretical scheme based on the pseudo-particles seems to be more convenient in 
some cases as it allows to generalize Keldysh diagram technique with full account of constraint on the total 
number of pseudo-particles43,44. Here we tried to avoid all these difficulties introducing non-equilibrium Green 
functions in the operator form and performing averaging over localized electron states at the very last stage in 
the equations of motion. It allows to obtain the spectrum weight of Green functions with account of high order 
correlations, which are necessary for the proper treatment of strong Coulomb interaction. Such an approach gives 
us the possibility to analyze carefully electron transport through the two-level strongly correlated structure and to 
reveal multiple well pronounced areas with negative differential conductivity in the I-V curves.

Let us introduce operators for retarded ′μν
σ

Ĝ t t( , )
R

, advanced ′μν
σ

Ĝ t t( , )
A

 and lesser ′μν
σ<
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Figure 1. (a) Scheme for the I-V curves measurements in the nanobridge geometry. (b) Scheme for the 
I-V curves measurements in the STM/STS experiments. (c) Scheme of the two-level system energy levels 
contributing to the tunneling current for different values of applied bias (ΓL2 >> ΓL1 ≃ ΓR1 >> ΓR2). (d) Scheme 
of the two-level system energy levels contributing to the tunneling current for different values of applied bias 
(ΓL1 >> ΓL2 ≃ ΓR2 >> ΓR1).
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with indexes ν, μ = k, p, i, j. Indexes i, j describe impurity complex and indexes k, p correspond to the contin-
uous spectrum states in the leads. Equations of motion for the impurity complex retarded Green functions oper-
ators 

σ
Ĝii

R0
 and 

σ
Ĝii

R
 have the form:
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where τ = t − t′ and square brackets […] denote the commutator, δ(τ) is the Dirac delta function and 
Hamiltonian Ĥ0 is given by Eq. (1) without tunneling part. We consider the situation, when non-crossing approx-
imation occurs, so the following ratios between the system parameters are valid Δεi/Γi >> 1, (Δεi + Uij)/Γi >> 
1. Δεi is the difference between the energies of the single electron levels. In the stationary case total electron 
occupation numbers are time independent, so one can obtain the Fourier transformed retarded Green function 
operator ω

σ
Ĝ ( )

R
11  in the following form:
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Relaxation rates Γ1 = ΓL1 + ΓR1 and π νΓ = ⋅ ⋅tLi Ri k p i L R( ) ( )
2

0 ( ) describe electron transitions between the impu-
rity complex and the tunneling contact leads. ν0L(R) is the continuous spectrum density of states in the leads. 
Green function operator ω

σ
Ĝ ( )

R
22  could be obtained from Eq. (7) by the following indexes substitution 1 ↔ 2. 

Imaginary part of the retarded Green function operator given by Eq. (7) after averaging over localized electrons 
states directly determines the local density of states in one of the impurities depending on the charge and spin 
configuration of the whole system considering correlation effects. Poles of each Green function give the energy 
spectrum of the electrons localized in the vicinity of impurity. In the case of half-filling without taking into 
account second and high order correlation functions and Kondo effect all the states with the different number of 
electrons demonstrate the same spectral weight. Tunneling through the strongly correlated structure results in the 
difference between the spectral weights, as now second and high order correlation functions should be taken into 
account. For fermions the following relations take place =σ σˆ ˆn n( )i i

2  and − =σ σˆ ˆn n(1 ) 0i i , so all the terms in the 
perturbation series for the retarded Green function with the different numerators vanish in Eq. (7). Total retarded 
Green function is obtained as a sum of terms with uncorrelated denominators with the particular energies εi, 
εi + Ui, εi + Uij etc., and each term should be multiplied by a proper combination of the electron occupation num-
ber operators. Averaging of the lesser Green function operator allows to obtain the occupation numbers of the 
impurity complex energy levels. Moreover, non-equilibrium Green functions formalism makes it possible to take 
into account the non-equilibrium distribution of tunneling particles caused by the tunneling current flowing and 
the finite value of applied bias. The stationary equation of motion for the operator Ĝ ( )ii ω

<
 after decoupling local-

ized and conduction electron states and averaging over the electron states in the leads has the form:
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fL(R)(ω) is the Fermi distribution function for electrons in the lead L(R). This equation coincides with the 
Heisenberg equation of motion for occupation number operators σn̂i , which includes all order correlation func-
tions for the localized electrons. Taking into account ratios =σ σˆ ˆn n( )i i

2  and − =σ σˆ ˆn n(1 ) 0i i  one could obtain 
closed system of equations for the all orders correlation functions of localized electron occupation numbers by 
multiplying Eq. (8) on different combinations of occupation numbers.

tunneling through the impurity complex. Our goal is to calculate the tunneling current between the 
leads in the presence of intermediate impurity complex with strong Coulomb correlations. Let us further consider 

= 1  and e = 1 elsewhere. It is natural to define the current as the change in the total number of fermion particles 
in the reservoir per unit of time. Taking the k reservoir for definiteness, we have for the variation of the total par-
ticle number:

https://doi.org/10.1038/s41598-019-52095-8


5Scientific RepoRtS |         (2019) 9:15974  | https://doi.org/10.1038/s41598-019-52095-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑ ∑ ∑= = = − .
σ

σ
σ

σ
σ

σ σ σ σ
+ +ˆ ˆ ˆ ˆ ˆ ˆ ˆ

˙
I I n t c c c c( )

(10)T k
k

k
ki

ki k i i k

Tunneling current operator can be expressed through the non-equilibrium lesser Keldysh Green function 
operator45:

∫
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Considering Eq. (11) an expression for the tunneling current operator between the contact leads in the fre-
quency representation can be obtained by means of the non-equilibrium diagram technique formalism:
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During the averaging procedure over reservoir states we decouple electron operators in the leads from the 
localized electron operators. Thus all orders correlation functions for the localized electron operators in the impu-
rity complex can be taken into account. Expression (12) for the reduced tunneling current operator (averaged 
over conduction electron states) could be re-written through the advanced, retarded and lesser impurity Green 
functions operators
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Considering Eqs. (8) and (9) and using averaging procedure over localized electron states one could re-write 
Eq. (13) as
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The retarded (advanced) Green function is obtained after averaging over localized electron states 
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. Finally, averaged tunneling current through the impurity complex could be written as
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where functions NL(R)
σ(X) depend on the leads properties and have the form
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ωσf ( )L R( )  is the Fermi distribution function of electrons in the tunneling contact leads. Fermi levels in the L and R 
leads are shifted on the value of applied bias eV, so fL(ω) = fF(ω) and fR(ω) = fF(ω−eV). Expression (15) describes 
tunneling through the all electron states of the considered system (single-, two- three and four-electron states are 
available in the two-level system). Careful analysis of the tunneling processes through the multi-electron states 
beyond the mean-field approximation leads to the necessity of the second and high order correlation functions 
calculation between the electron occupation numbers. In the two-level system tunneling current depends on the 
localized electron correlation functions up to the third order. In the paramagnetic case when electron occupation 
numbers with the opposite spins have the same value ( = =σ σ−n n ni i i) localized electron correlation functions 

= 〈 〉 =σ σ σ σ− −K n n Kii i j ii, = 〈 〉 =σσ σ σ′ ′K n n Kij i j ij and = 〈 〉 =σ σσ σ σ σ− ′ − ′K n n n Kiij i i j iij do not depend on the spin of 
the electrons and could be found from the closed system of linear equations:

https://doi.org/10.1038/s41598-019-52095-8


6Scientific RepoRtS |         (2019) 9:15974  | https://doi.org/10.1038/s41598-019-52095-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

×













=













A

n
n
K
K
K
K
K

N

N
0
0
0
0
0

,

(17)

T

T

1

2

11

12

22

112

221

1

2

where matrix A depends on the functions Nσ
i(εi), Nσ

i(εi + Uij), Nσ
i(εi + Ui + Uij), Nσ

i(εi + 2Uij) and 
Nσ

i(εi + Ui + 2Uij). The explicit form of the correlation functions is given in the Appendix section. Expression 
(15) has a simple form for tunneling through the single electron level
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Expression (19) directly demonstrates that tunneling current flowing causes non-equilibrium distribution of 
the carriers in the intermediate structure. The first term in Eq. (18) describes tunneling through the single-electron 
states, while the second one corresponds to the tunneling current flowing through the two-electron states. For the 
applied bias being ε1 < e V< ε1 + U occupation numbers NTσ(ε1 + U) and ε +σN U( )L R( ) 1  are close to zero, so tun-
neling current is given only by the first term of Eq. (18). With the increasing of applied bias (ε1 + U < eV) tunne-
ling current is given by the electron transport through both single- and two-electron states. Considering the 
situation when impurity complex energy levels are well defined (the distance between energy levels strongly 
exceeds their widths >>εΔ

Γ
1i

L R i( )
) one could get an expression for the current through the single -electron and two 

-electron states taking into account Coulomb correlations of localized electrons in all the orders26–28. When 
applied bias is smaller, than multi-electron energy levels eV < min(εi + Uij; εi + Ui) only single electron states are 
available for tunneling. Tunneling current through the single electron states reads:

ε ε ε

ε ε ε ε

ε ε ε

ε ε ε ε

=
× − ⋅ −

+ ⋅ + − ⋅

+
× − ⋅ −

+ ⋅ + − ⋅
.

σ
σ σ σ

σ σ σ σ

σ σ σ

σ σ σ σ

Γ Γ
Γ + Γ

Γ Γ
Γ + Γ

I
N N N

N N N N

N N N

N N N N

[ ( ) ( )] [1 ( )]

[1 ( )] [1 ( )] 4 ( ) ( )

[ ( ) ( )] [1 ( )]

[1 ( )] [1 ( )] 4 ( ) ( ) (20)

I
L R

T

T T T T

L R
T

T T T T

4
1 1 2 2

1 1 2 2 1 1 2 2
4

2 2 1 1

1 1 2 2 1 1 2 2

L R

L R

L R

L R

1 1

1 1

2 2

2 2

Expression for the tunneling current through the two-electron states (ε1 + U12 < eV < min(εi + 2Uij)) can be 
written as:

ε ε ε ε ε

ε ε ε ε ε

Γ Γ
Γ + Γ

× + − + ⋅ − − +

+ + − + ⋅ − − + + ↔ .

σ σ σ σ σ σ

σ σ σ σ σ



(21)

I N U N U N N N U

N U N U N N N U

4
{[ ( ) ( )] ( )[1 ( )][1 ( )]

[ ( ) ( )] ( )[1 ( )][1 ( )]} (1 2)

II
L R

L R
L R

T T T

L R
T T T

1 1

1 1
1 12 1 12 2 2 1 1 2 2 2

1 1 1 1 1 1 2 2 2 2 12

Results and Discussion
We will further analyze electron transport in the asymmetric tunneling contact. The energy spectrum of the 
two-level system including electron states contributing to the tunneling current depending on the ratio between 
the tunneling rates is shown in Fig. 1c,d. Further to avoid difficulties with the results presentation we will demon-
strate only energy levels, which fall into the range EF < ε < EF + eV and, consequently, contribute to the tunne-
ling current. We would like to stress, that Figs. 2 and 3 represent an increase in the voltage applied between the 
electrodes, not moving of the impurity complex energy spectrum. Let us start from the situation, when the single 
electron energy level ε2 is asymmetrically coupled to the leads. In this case the following relation between the 
tunneling rates is realized:

Γ >> Γ Γ >> Γ . (22)L L R R2 1 1 2

For the small values of applied bias 0 < eV < εi (see Fig. 2a) occupation numbers εN ( )i
T

i  are close to zero, con-
sequently, following Eq. (20) tunneling current is negligibly small (IT → 0). With the increasing of applied bias the 
single -electron impurity level with the smallest energy starts to be localized between EF and EF + eV (see Fig. 2b). 
So, for the applied bias ε1 < eV < ε2 occupation numbers εN ( )T

1 1  and εN ( )T
2 2  are close to 1/2 and 0 correspondingly 

and tunneling current through the single-electron states reads:

= ⋅
Γ Γ

Γ + Γ
⋅ Γ . ~I I 8

3
4
3 (23)T

L R

L R
L1

1 1

1 1
1
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Expression (23) reflects the growth of the tunneling current flowing through the impurity complex (see Fig. 4). 
Further increasing of applied bias (ε2 < eV < ε1 + U12) makes the second single -electron energy level available for 
tunneling (see Fig. 2c). Considering Eq. (20) and relations between the tunneling rates (22) one could find that 
occupation numbers are ε N ( ) 1/2T

1 1 , ε N ( ) 1T
2 2 . So, the tunneling current through the single-electron states 

now reads:

= ⋅
Γ Γ

Γ + Γ
⋅ Γ << . ~I I I2 2

(24)T
L R

L R
R2

2 2

2 2
2 1

Analyzing expression (24), the formation of negative conductivity could be revealed, as the growth of applied 
bias corresponds to the decrease of the tunneling current (see Fig. 4). It happens due to the influence of both 
Coulomb correlations and the asymmetry between the tunneling rates. Ratio (22) means that single-electron 
state ε2 fills much faster than the state ε1 and blocks tunneling through the energy level ε1 due to the Coulomb 
repulsion. Consequently, tunneling current value decreases.

For the higher values of applied bias (ε1 + U12 < eV < ε2 + U2) tunneling through the two-electron states 
becomes possible (see Fig. 2d). Now tunneling current is determined by the sum of Eqs. (20) and (21). Occupation 
numbers aspire to the values ε N ( ) 1/2T

1 1 , ε N ( ) 1T
2 2 , ε + N U( ) 1/2T

1 1 12  and ε + N U( ) 0T
2 2 2  and expres-

sion for the tunneling current through both single- and two-electron states (for our system parameters the lowest 
two-electron state has the energy ε1 + U12) takes the form (see Fig. 4):

Figure 2. Scheme of the tunneling processes through the two -level system in the asymmetric contact with the 
following relation between the tunneling rates ΓL2 >> ΓL1 ≃ ΓR1 >> ΓR2. The value of applied bias eVi increases 
from panel (b) to panel (f). Only energy levels contributing to the tunneling current are depicted for each value 
of applied bias. Full scheme of the two-level system energy levels contributing to the tunneling current for the  
different values of applied bias is shown in Fig. 1c.
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Figure 3. Scheme of the tunneling processes through the two -level system in the asymmetric contact with the 
following relation between the tunneling rates ΓL1 >> ΓL2 ≃ ΓR2 >> ΓR1. The value of applied bias eVi increases 
from panel (b) to panel (f). Only energy levels contributing to the tunneling current are depicted for each value 
of applied bias. Full scheme of the two-level system energy levels contributing to the tunneling current for 
the different values of applied bias is shown in Fig. 1d.

1 2+U22

1+U12

1+2U12

1+ +2U U12 11

Figure 4. I-V characteristics for ΓL2 >> ΓL1 ≃ ΓR1 >> ΓR2. Calculation parameters are depicted by the red 
color.
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α ⋅ + .I I I (25)T 1 2

Parameter α = ≥ε
ε

Γ +
Γ

1U( )
( )

L

L

1 1 12

1 1
 considers tunneling barrier transparency changing for the energy level ε1 + U12 

as it is localized higher than the single-electron states. Further growth of applied bias (ε2 + U2 < eV < ε1 + 2U12) 
opens the possibility for the electrons with opposite spins to tunnel simultaneously through the two-electron state 
(see Fig. 2e). The tunneling rates asymmetry and the presence of Coulomb correlations cause blockade of the 
electrons, which tunnel through the single-electron state ε1. Occupation numbers aspire to the values 

ε N ( ) 1/2T
1 1 , ε N ( ) 1T

2 2 , ε + N U( ) 1/2T
1 1 12  and ε + N U( ) 1T

2 2 2  and tunneling current decreases. It is now 
determined only by the electrons tunneling through the two-electron state with the energy ε2 + U22:

⋅ << + .I I I I2 (26)T 2 1 2

Expression (26) corresponds to the formation of the second area with the negative conductivity, when the 
growth of applied bias results in the decrease of the tunneling current. The second minimum appears in the I-V 
curve (see Fig. 4). Further increasing of the applied bias (ε1 + 2U12 < eV < ε1 + U1 + 2U12) opens the possibility for 
electrons to tunnel through the three-electron states (see Fig. 2f). Occupation numbers ε +N U( 2 )T

1 1 12  turn to 1/2, 
and expression for the current flowing through the system reads:

α⋅ + ′I I I2 , (27)T 2 1

where parameter α′ = ≥ε
ε

Γ +
Γ

1U( 2
( )

L

L

1 1 12

1 1
 takes into account tunneling barrier transparency changing for the 

three-electron states in comparison with the two-electron states. Further growth of applied bias leads to the for-
mation of an additional step in the current voltage characteristic for eV > ε1 + U1 + 2U12, when tunneling through 
the four- electron states becomes possible (see Fig. 4).

We now consider the situation when strong asymmetry between the tunneling rates of the single electron 
energy level ε1 takes place:

Γ >> Γ Γ >> Γ . (28)L L R R1 2 2 1

The behavior of I-V characteristics is quite similar to the previously discussed situation. The difference exists 
in the tunneling current values and the ranges of applied bias where negative conductivity appears.

For the small values of applied bias 0 < eV < εi (see Fig. 3a) tunneling current is negligibly small IT → 0. The 
first maximum in the I-V characteristic (see Fig. 5) corresponds to the applied bias range ε1 < eV < ε2. The tunne-
ling current amplitude is determined by the expression

= ⋅
Γ Γ

Γ + Γ
⋅ Γ .�� ~I I 4

2
2

(29)T
L R

L R
R1

1 1

1 1
1

In this range of applied bias tunneling through the single-electron state with the lowest energy ε1 occurs (see 
Fig. 3b). The increasing of applied bias (ε2 < eV < ε1 + U12) opens the possibility for electrons to tunnel through 
both single-electron levels (see Fig. 3c). Consequently, current through the single-electron states reads:

⋅ .� �I I1
2 (30)T 1

Expression (30) reveals the formation of negative tunneling conductivity (see Fig. 5). It happens due to the 
presence of both Coulomb correlations and the asymmetry between the tunneling rates. As a results, the block-
ade of electron transport through the single-electron level ε2 takes place. For the higher values of applied bias 
(ε2 + U12 < eV < ε1 + U1) tunneling through the two-electron states becomes possible (see Fig. 3d). Tunneling 

1

2+U12

1+U11

2+2U12

2+ +2U U12 22

Figure 5. I-V characteristics for ΓL1 >> ΓL2 ≃ ΓR2 >> ΓR1. Calculation parameters are depicted by the red 
color.
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current is then determined by the sum of Eqs. (20) and (21). It corresponds to the tunneling processes through 
the single-electron states and the two-electron states:

+� � �I I I , (31)T 1 2

where Γ > >

~ ~I IR2 2 1. Figure 5 demonstrates growth of the tunneling current amplitude and formation of the 
second maximum in the I-V curve. Further increasing of the applied bias (ε1 + U1 < eV < ε2 + 2U12) leads to the 
simultaneous tunneling of electrons with opposite spins through the two-electron states (see Fig. 3e). Transport 
through the single-electron states is now blocked and the second area with the negative conductivity in the I-V 
characteristic appears (see Fig. 5):

⋅ .� �I I2 (32)T 1

With the increasing of applied bias tunneling through the three- (see Fig. 3f) and four-electron states becomes 
possible and two additional steps are formed in the I-V curves.

We would like to mention, that in the absence of Coulomb interaction between localized electrons only steps 
would be seen in the I-V characteristics. The presence of strong Coulomb interaction significantly modifies 
I-V curves. In asymmetric contact areas with negative tunneling conductivity could arise (peaks are well pro-
nounced at particular values of applied bias). The width of the peaks depends on the values of the tunneling rates.  
Tunneling rates values are determined by the the barriers widths and heights which are the functions of the par-
ticular geometry of the experiment and the symmetry of the localized states electronic orbitals. Moreover, tunne-
ling barrier characteristics (width and height) are changed for the higher energy levels. As Coulomb interaction 
could be of order of several eV the barrier height for the high energy levels could be strongly changed.

Calculations demonstrated in Figs. 4 and 5 mostly correspond to the I-V curves available in the single-electron 
transistor geometry4,39. Typical current values obtained in the STM experiments are much smaller but all the fea-
tures (peaks and steps) could be well resolved in both experimental schemes.

conclusions
To summarize, we studied the electron transport through the impurity cluster (modeled by the two-level system) 
localized between the tunneling contact leads taking into account strong Coulomb correlations and the asym-
metry between the tunneling rates. By means of the generalized Keldysh diagram technique we derived general 
expressions for the tunneling current and obtained formulas, which define electron transport through the states 
with the different number of electrons. We demonstrated that the interplay between Coulomb correlations and 
the asymmetry between the tunneling rates result in the formation of multiple regions with negative tunneling 
conductivity in the I-V curves. We believe, that our results are very promising in the sense of single atoms tran-
sistors application in modern nanoelectronic circuits.

Appendix
Expression for the tunneling current (15) includes mean electron occupation numbers σni , pair and triple corre-
lation functions for the localized electrons, which have to be determined for a proper treatment of correlation 
effects. Equations for the total electron occupation numbers σn1  and σn2  can be found from the conditions:

∂
∂

= + =

∂
∂

= + =

σ
σ σ

σ
σ σ

n
t

I I

n
t

I I

0,

0,
(33)

L R

L R

1
1 1

2
2 2

where tunneling current σIL1 reads:

I n n n n N

n n n N U

n n n N U n n n

N U U

n n n N U n n n N U U
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Tunneling current σIL2 can be easily obtained from expression for the σIL1 by the following indexes changing 
1 ↔ 2 and σIRi can be found by the indexes changing L ↔ R.

Pair correlation functions can be found as:

∂

∂
=

∂
∂

⋅ +
∂

∂
⋅ =

σ σ σ
σ

σ
σ

′
′

′
n n

t
n
t

n
n
t

n 0
(35)

i j i
j

j
i

Full expressions for the pair correlation functions through the high order correlation functions have the form:
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Third order correlation functions can be found in the similar way:
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So, expressions for the third order correlation functions have the form:
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