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firing activities of a fractional-order 
fitzHugh-Rinzel bursting neuron 
model and its coupled dynamics
Argha Mondal1, Sanjeev Kumar Sharma2, Ranjit Kumar Upadhyay2* & Arnab Mondal2

fractional-order dynamics of excitable systems can be physically described as a memory dependent 
phenomenon. it can produce diverse and fascinating oscillatory patterns for certain types of neuron 
models. to address these characteristics, we consider a nonlinear fast-slow fitzHugh-Rinzel (fH-R) 
model that exhibits elliptic bursting at a fixed set of parameters with a constant input current. The 
generalization of this classical order model provides a wide range of neuronal responses (regular 
spiking, fast-spiking, bursting, mixed-mode oscillations, etc.) in understanding the single neuron 
dynamics. So far, it is not completely understood to what extent the fractional-order dynamics may 
redesign the firing properties of excitable systems. We investigate how the classical order system 
changes its complex dynamics and how the bursting changes to different oscillations with stability and 
bifurcation analysis depending on the fractional exponent (0 < α ≤ 1). This occurs due to the memory 
trace of the fractional-order dynamics. The firing frequency of the fractional-order FH-R model is less 
than the classical order model, although the first spike latency exists there. Further, we investigate the 
responses of coupled FH-R neurons with small coupling strengths that synchronize at specific fractional-
orders. the interesting dynamical characteristics suggest various neurocomputational features that can 
be induced in this fractional-order system which enriches the functional neuronal mechanisms.

Collective oscillatory dynamics and synchronous activity are the fundamental phenomena in dynamical sys-
tems1,2. It has both theoretical importance and biophysical significance in computational neuroscience. 
Mathematical biophysical models3–6 are the primary tools to characterize the nervous system. The foremost excit-
ing step in neural dynamics is to understand the system architecture of individual neurons in terms of mathemat-
ical models of membrane potential. Various types of spiking and bursting are the dynamical responses of excitable 
cells7,8. Such type of research analyzes the chaotic behavior of excitable systems. When mathematical models are 
described as a single neuron or network, then the nonlinear dynamical techniques are applied to study the emerg-
ing oscillatory patterns and the synchronization phenomena. The classical order dynamical models depend on 
the immediate previous response, however the fractional-order derivative depends on all the previous responses, 
so it has a memory effect9–11. It can produce a different kinds of multiple time scale neuronal dynamics12.  
It13–16 provides a wide range in understanding the rich dynamical and neuronal responses. Fractional-order cal-
culus originated from a letter written to Leibnitz by L’Hospital13–15. Now, it has become a promising and reliable 
mathematical tool that includes hereditary properties or memory dependence phenomena13–17. The discussion of 
multiple time scale dynamics has been studied in some previous articles18,19 which have the potential importance 
in signal processing. It has been studied that the firing rate of neocortical pyramidal neurons with the injected 
applied sinusoidal current can be well approximated with fractional-order derivative20.

Many researchers have worked on the fractional-order dynamical systems21,22. Results show that it follows 
power-law dynamics23–25. In human memory, the power-law dynamics was investigated earlier26,27, the accuracy 
of memory dependence decays at a rate nearly equal to t−α where α< <0 1. The power-law adaptation helps in 
describing some dynamical behavior of biological systems12,28. In recent years, fractional-order derivative has 
become very useful in modeling biological phenomena13–16,29, viscoelastic properties of tissue30, tissue electrode 
interface31, the kinetic property of drug delivery32,33, diffusion process34–36, biophysical neuron models and neural 
networks37–42. It has been found that cognitive behaviour can be modelled using fractional dynamics43. It was 
observed that fractional-order dynamics is used in vestibular oculomotor system44 and fly motion of sensitive 
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neurons H128. It can include the mechanism of synapses28 and the geometrical properties of excitable cells44,45. 
Single neuron models are analyzed by using fractional-order dynamics such as Hodgkin-Huxley (H-H), 
Morris-Lecar (M-L), FitzHugh-Nagumo (FHN), Hindmarsh-Rose (H-R) models, etc10,39,46–49. In this study, it has 
been demonstrated that the fractional-order dynamics of a solitary nerve membrane can be analyzed by using a 
suitable biophysical model that exhibits elliptic bursting. It reflects the rate of change of information through 
membrane voltage that leads to previous history-dependent activities. Different parameter regimes correspond-
ing to qualitatively different dynamical properties are analyzed. This article investigates the FH-R neuron50–52 in a 
fractional-order domain to get a general idea about the spike patterns and spike frequency with stability and 
bifurcation scenarios. The relation between spiking and bursting is a significant question as well as a fascinating 
phenomenon in mathematical neuroscience, especially in neural coding. Bursting presents a recurrent transition 
between repetitive spiking and quiescent state. The switching phases depend on the strength of the slowly chang-
ing current stimulus to the dendrite. An exciting feature of the elliptic bursting is that the frequency of emerging 
spiking activity and ceasing the spiking is nonzero; at that time, the amplitude of the oscillations may be small53. 
It was experimentally studied that this type of bursting can be found in trifacial nerves controlling the jaw move-
ment of rodents54.

It has been previously found that the slow variable in the 2D FHN model creates mathematical complex-
ity that allows various dynamics for the membrane voltage of the neuron model including chaos. Therefore, 
fractional-order FH-R single neuron model has an excellent qualitative feature that exhibits many diverse oscilla-
tions of action potentials. Necessary and sufficient conditions are investigated for asymptotic stability analysis of 
the fractional-order commensurate FH-R model. Bifurcation shows the qualitative changes between the quiescent 
state and the oscillatory state5,6. The fractional-order FH-R model is investigated with a certain fixed-parameter 
sets, and extreme numerical computations are derived for examining the dynamical characteristics with analytical 
analysis using the fractional exponent as a predominant parameter. As a consequence, this generalization of the 
classical order model can produce biophysical variability. We present the effect of the fractional-order dynamics 
on the synchronization criterion in different ensembles for coupled oscillators. We observed different dynamical 
behavior with various fractional-orders that were not present in the classical order model.

fractional-order fH-R Model
FitzHugh and Rinzel introduced FH-R model (1976, in an unpublished article)50,52,53,55, which is the modification 
of the classical FHN neuron model. The 2D FHN model3,4 illustrates a geometrical explanation of interesting 
biophysical phenomena that are relevant to neuronal excitabilities and spike generation. It exhibits continuous 
spiking with a specific external stimulus. However, it is not capable of generating various fascinating firing pat-
terns produced in cortical neurons. FH-R neuron model which is the improved version of the FHN model, can 
produce abundant firing activities for some parameters when it is varied in a specific fixed range. The fast-slow 
subsystems describe the model; the fast subsystem consists of classical FHN equation3. The slow subsystem is one 
dimensional. It is biologically plausible and computationally efficient single neuron model. The commensurate 
fractional-order FH-R model is described as
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where v, w and y represent the membrane voltage, recovery variable and slow modulation of the current respec-
tively. I measures the constant magnitude of external stimulus current, and α is the fractional exponent which 
ranges in the interval α< ≤(0 1). a, b, c, d, δ and μ are the system parameters. The system reduces to the original 
classical order system when α = 1. μ indicates a small parameter that determines the pace of the slow system 
variable, y. The fast subsystem (v-w) presents a relaxation oscillator in the phase plane where δ is a small parame-
ter. v is expressed in mV (millivolt) scale. Time t is in ms (millisecond) scale4,6,11. It exhibits tonic spiking or qui-
escent state depending on the parameter sets for a fixed value of I. The parameter a in the 2D FHN model 
corresponds to the parameter c of the FH-R neuron model53,55. If we decrease the value of a, it causes longer inter-
vals between two burstings, however there exists a relatively fixed time of bursting duration. With the increasing 
of a, the interburst intervals become shorter and periodic bursting changes to tonic spiking.

The relation between injected current stimulus and membrane potential to generate an action potential, i.e., 
spike10, was previously introduced. The ideal resistor-capacitor theory describes the passive cell membrane 
dynamical analysis and the non-ideal resistor-capacitor circuit diagrams can characterize the oscillatory behav-
ior10,16,39,56,57. The theory preserves the membrane voltage behavior. It plays a significant role in analyze the dielec-
tric behavior of the cell membranes16,39,57. It was observed in experimental results that fractional-order dynamics 
follow a general power-law relation10,56. In the electrical activities of neurons, it was shown that the power-law 
dynamics follows α = .0 76 and 0.86 for warm and cold frog sciatic neurons respectively39. The non-ideal capaci-
tor theory for current-voltage relation was described by a fractional-order derivative as follows, =

α

αC Id V
dt

 where 
α< <0 1. It follows a power-law dynamics and preserves the memory effects in the variations of the membrane 

voltage9–11,16,39. We consider this contrast in the fractional-order condition. The membrane voltages and specific 
membrane potential changes may instigate seizure-like activity in epilepsy55. It may cause reactions in the muscles 
for the specific strength of the stimulus. This type of bursting phenomenon can be explored in a more general way 
so that it may span in different research areas55. Let us study the fractional-order fast-slow system that contributes 
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different firing activities which appears and disappears with the change of fractional-order exponents at the vari-
ous set of predefined fixed parameters.

Method
numerical solution scheme. To examine the fractional dynamics of FH-R model, we consider the most 
familiar definition of the fractional derivative in Caputo sense13–15. Consider the fractional-order derivative of a 
variable x(t) for the fractional exponent α ∈ (0, 1) as folllows

=
α

α
d
dt

f tx (x, ), (2)

using the definition, we have
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1 . An additional advantage of Caputo order derivative 

is that the derivative of a constant is zero. It is efficient to integrate all the previous activities of the function 
weighted by a function that follows power-law dynamics. Now, applying the L1 scheme9,41,42,58 on Eq. (3), approx-
imating the fractional-order derivative as
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and combining Eqs (2) and (4), the numerical solution of Eq. (2) can be formulated as
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where, tk represents the kth time step and = ∆t k tk . The variable x is considered as ≡ v w yx ( , , ) in our numerical 
results. Approximation of the fractional-order derivative for the membrane voltage (v(t)) is given by
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Similarly, we can derive numerically the expressions for other two variables (w and y) of Eq. (1). Hence the numer-
ical solution of Eq. (2) can be summarized as the difference between the markov term weighted by the gamma function 
and the memory trace. Memory trace has the main functional role in the fractional-order system as it integrates all the 
past activities. The markov term weighted by the gamma function is given by αΓ − +α

−dt f t t( ) (2 ) (x, ) x( )N 1  and the 
memory trace is given by ∑ − − − − −α α

=
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(1 ) (1 ) . The memory trace has no 
effect for α = 1 and the fractional-order system behaves like classical order model. The nonlinearity in the memory 
trace increases as we decrease the fractional-order α from 1 and the system dynamics depends on time. The 
fractional-order FH-R system is numerically integrated by using this scheme. We have considered different sets of 
parameters as follows53,55 δ= . = . = = .a b d0 7, 0 8, 1, 0 08, = − .c 0 775 and μ = .0 0001, set I: = .I 0 3125, set 
II: = .I 0 4, set III: μ = .0 18, =I 3, set IV: = .c 1 3, μ = .0 0001 and = .I 0 3125, set V: = − .c 0 908, μ = .0 002 and 

= .I 0 3125 and remaining parameters are similar as above. We perform the analysis of FH-R model with these param-
eter sets. The system shows different firing patterns like elliptic bursting, tonic spiking/regular spiking, fast-spiking and 
high amplitude single spike with small amplitude oscillations. The different firing activities together with the mode 
transitions are investigated for different parameter regimes corresponding to qualitatively various dynamical behavior 
of a nerve cell.

the characteristics of the fractional-order biophysical model. Stability analysis. The fixed points 
of the system (1) are derived as = +⁎ ⁎w v a b( )/ , = −⁎ ⁎y c v d( )/  and − =⁎ ⁎v v p q33 , where = − −( )p 1

b d
1 1  

and = − +( )q I3 a
b

c
d

3 3  respectively. Depending on the nature of the discriminant of the cubic polynomial 
= − =⁎ ⁎ ⁎F v v v p q( ) 33 , the system (1) can have maximum three equilibrium states. Throughout this study, the 

assumption (A) < +bd d b holds (based on the numerical data).
Proposition I. The cubic function F(v*) is strictly increasing and there exists only one branch of equilibrium 

state = + −⁎ ⁎ ⁎( )E q v q( ) ( ), ,v q a
b

c v q
d

( ) ( ) , with ∈q , for system (1), where = −⁎v q F q( ) ( )1 .
Proof: We have = −⁎ ⁎ ⁎F v v v p( ) 33  and ′ = −⁎ ⁎F v v p( ) 3 32 . The discriminant of F′ is given by 
′ = − −D F bd d b( ) ( )

bd
36 . Using the assumption (A), we obtain ′ <D F( ) 0 that implies ′ >⁎F v( ) 0 and the func-

tion F is strictly increasing (and invertible) on . Thus, it has only one real root = −⁎v q F q( ) ( )1 . The Jacobian of 
the system (1) at the fixed point ⁎ ⁎ ⁎E v w y( , , ) is given by
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From assumption (A) and μδ= − − − <⁎J bd b d bdvdet ( ) (( ) ) 02 , we obtain that at least one of the roots 
of the characteristic polynomial Q(λ) is negative. Considering the value of the parameter =d 1 (which is constant 
and fixed for all the parameter sets), we have μ μ δ μ− = −Q b( ) ( ). If μ δ< b  then μ− >Q( ) 0, which implies that 
at least one real root of Q(λ) lies in μ−∞ −( , ) otherwise the root lies in μ−[ , 0). We will discuss the case when 
μ δ< b  for analytical treatment and proceeding in the similar way, we can also derive the analytical results for the 
case when μ δ> b .

The system changes its stability through Hopf bifurcation and it occurs when the trace of the Jacobian matrix 
vanishes i.e., δ μ− − − =v b d1 0H

2 , which gives δ μ= − − −v b1H  (say γ1) and δ μ= − −v b1H  (say 
γ2). vH denotes the system variable where Hopf bifurcation occurs.

Proposition II. The equilibrium state E(q) of system (1) is asymptotically stable (independent of the fractional 
exponent, α) for any γ≤q F( )1  or γ≥q F( )2 .

Proof: Suppose if we take the situation where γ≤q F( )1 , then γ= = ≤ <−⁎ ⁎v v q F q( ) ( ) 01
1 . Also if 

γ≥q F( )2 , then γ= = ≥−⁎ ⁎v v q F q( ) ( )1
2. It can be obtained that in both the cases δ μ− − − <⁎Q v b(1 ) 02 . 

Thus, the negative real root (say λ1) of Q(λ) lies in δ μ μ− − − −⁎v b(1 , )2  and other two roots satisfy 
λ λ δ μ λ+ = − − − − <⁎v b1 02 3

2
1  and λ λ = >

λ
0J

2 3
det( )

1
 respectively. From the above discussion, we can 

conclude that the roots lie on the negative real axis, so the equilibrium state E(q) is asymptotically stable and 
independent of the fractional exponent.

Proposition III. If γ γ∈q F F( ( ), ( ))1 2 , then the equilibrium state E(q) of system (1) is asymptotically stable iff 
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where λ λ μ= ∈ −∞ −q( ) ( , )1 1  is the smallest root of the characteristic polynomial Q(λ).
Proof: We have already shown that the smallest root λ λ μ= ∈ −∞ −q( ) ( , )1 1  and the other two roots of Q(λ) 

satisfy λ λ δ μ λ+ = − − − −⁎v b12 3
2

1, λ λ = >
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2 3
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1
. Now, the roots λ2 and λ3 satisfy the asymptotic 

stability condition λ > απarg( )
2

 iff λ λ > 02 3  and <λ λ

λ λ
απ+ ( )2cos
2

2 3

2 3
 hold59. Substituting the values of λ λ+2 3 

and λ2λ3, we obtain the condition (7).

Numerical results. Assumption (A) holds for all the above mentioned sets of parameters, hence there exists only one 
branch of equilibrium state E(q) for the system (1). We can also find γ = − − . ∗ . − . = − .1 0 8 0 08 0 0001 0 96741 , 
γ = − . ∗ . − . = .1 0 8 0 08 0 0001 0 96742  and − . = − .F( 0 9674) 4 5331, . = .F(0 9674) 4 5331 for parameter sets 
I and II respectively. From the proposition II, E(q) is asymptotically stable for any γ≤q F( )1  or γ≥q F( )2 , or equiva-
lently, for any < .I 0 1390 or > .I 3 1610, independent of α. When ∈ . .I (0 1390, 3 1610), the equilibrium state E(q) 
becomes unstable for some values of I and α, and the stability criteria is given by the proposition III for this range. Now, 
suppose the value of applied stimulus = . ∈ . .I 0 3125 (0 1390, 3 1610), the equilibrium point is stable for all 
α < .0 80828 (set I). Similarly, if we choose = .I 0 4, the equilibrium point is stable for α < .0 6951 (set II). The condi-
tion μ δ> b  holds for the parameter set III and the stability of the equilibrium solution is given by the same condition 
(7). Thus, the equilibrium point is asymptotically stable for all α < .0 95665. The equilibrium point for the  
set IV is . . .E(0 54648, 1 5581, 0 75352) and the system (1) has the real eigen values given by λ1, λ2 and 
λ = − . . .( 0 00028055, 0 0613089, 0 576231)3  respectively. Therefore, the equilibrium point E is a saddle point. Further, 
the equilibrium point is stable for α < .0 956455 at parameter set V.

The chaotic behavior of the system (1) can be obtained for the different parameter sets using the necessary 
condition α π λ λ> | |−(2/ ) tan ( Im( ) /Re( ))1 60. We consider the parameter set I. The system has one real equilib-
rium point − . − . .E( 0 885098, 0 231373, 0 110098) and the eigenvalues at this equilibrium point is given by λ1, λ2 
and λ = − . . ± . i( 0 000196427, 0 076349 0 245811 )3 . The equilibrium point E is a saddle point with index 260,61. 
Now, using the above condition we obtain that the system (1) exhibits chaos for α > .0 80828. At the parameter 
set II, the equilibrium point and the eigenvalues are − . − . .E( 0 841243, 0 176554, 0 066243) and λ1, λ2 and 
λ = − . . ± . i( 0 000204006, 0 114207 0 219938 )3  respectively. Here, the equilibrium point E is a saddle point with 
index 2. In this case, the system exhibits chaos for α > .0 6951. Proceeding in the similar way, the system exhibits 
chaos for α > .0 95665 and α > .0 956455 for the parameter sets III and V respectively.
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Bifurcation analysis. The bifurcation analysis for the classical order FH-R model is performed using the 
MATCONT software. The applied stimulus (I) is treated as the predominant parameter and other parameters are 
fixed at their base values with μ = .0 0001. The quiescent state disappears through super-critical Hopf bifurcations 
at = .I 0 138716 (HB1) and = .I 3 161277 (HB2) respectively (see Fig. 1). The thick blue line in the figure indicates 
the stable equilibrium state while the dotted blue line indicates the unstable equilibrium state. The system has 
stable focus node for < .I 0 138716 and > .I 3 161277 respectively. The system has saddle focus for 
. < ≤ .I0 13872 0 6 and . < ≤ .I2 6 3 16128 respectively. The FH-R model shows elliptic bursting at = .I 0 3125 

(set I)53, however as we increase the value of I ( . < ≤ .I0 4 0 6), it shows co-existence of regular spiking with burst-
ing. Further, with the increase of I, the system exhibits regular spiking. The system has saddle point for 
. < ≤ .I0 6 2 6 and in this region the system first shows regular spiking and then it shows the first spike latency 

with the increase of I. For . < ≤ .I2 6 3 16128, the system first shows the regular spiking with first spike latency, 
however with the increase of I, it shows the irregular bursting with first spike latency. The thick green line indi-
cates the stable limit cycle whereas the red dotted line indicates the unstable limit cycle. In the classical order 
model, Andronov-Hopf bifurcation indicates the local birth and death of periodic solution whereas in the case of 
fractional-order model the nearby solutions of Hopf bifurcation are considered as the solution of the system. The 
stability of the fractional-order system around any equilibrium point is characterized by the sign of the variable 

α λ= −απn I I( , ) arg( ( ))i i2
, =i 1, 2, 3. The system is said to be stable or unstable around the equilibrium point 

if α <n I( , ) 0i  or α >n I( , ) 0i . The variable αn I( , )i  has similar role as the real part of the eigenvalue in the classi-
cal order system. Therefore, the condition for the occurrence of Hopf bifurcation in fractional-order system can 
be stated as62: (I) The Jacobian matrix J has two complex-conjugate eigenvalues and one real eigenvalue i.e., 

<⁎D Q I( ( )) 0, where I* is the critical value of the predominant parameter, (II) α =⁎n I( , ) 0i  and λ ≠⁎I( ) 03 , (III) 
≠∂

∂ = ⁎
0n

I I I
. The Hopf bifurcation occurs in the system (1) when the parameter ∈ . .I (0 1390, 3 1610). Figure 2(a,b) 

show the stable/unstable region in the αI( , ) - plane for equilibrium state E(q) with parameter sets I and II  
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Figure 1. The bifurcation scenario of a classical order FH-R model with respect to the parameter I and keeping 
other parameters at their base values. The thick solid and the dotted blue lines indicate the stable and unstable 
steady states of the system respectively. Green and the dotted red lines indicate the stable and unstable limit 
cycles respectively. HB1 and HB2 represent the Hopf bifurcation points.

Figure 2. The bifurcation results of the fractional-order system (1) are plotted for parameter sets I and II 
respectively.
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respectively. The blue curve in the figure refers to the Hopf bifurcation curve for the critical values α* given by the 
equation obtained from α =⁎n I( , ) 0i .  Suppose, we take = .I 0 3125, then the critical value is 
α . = .⁎(0 3125) 0 80828. The system (1) is asymptotically stable when α α< .⁎(0 3125) and unstable for 
α α> .⁎(0 3125). Hopf bifurcation exists in the sysetm (1) for α α= .⁎(0 3125). We have not considered the region 

∈ . .I [0 7, 2 6] for the numerical analysis as >D Q I( ( )) 0. The equilibrium state is asymptotically stable for most of 
the values of the fractional exponent α and unstable for very few values of α. For = .I 0 4, the critical value for the 
Hopf bifucation is α . = .⁎(0 4) 0 6951.

Excitatory responses of the single fractional-order FH-R model. Now, we study the fractional-order FH-R neuron 
model to investigate various firing activities. We evaluate how the classical order dynamics changes its neuronal 
behavior and how bursting changes to different firing patterns with respect to stability and bifurcation analysis for 
different fractional exponents. We used the time step ∆ = .t 0 1 for numerical results. We considered the initial 
conditions as small random perturbations around the fixed points for all the numerical simulations. Here the 
random perturbation is taken from a uniformly distributed random number in the interval (0, 1). An interesting 
feature is that the integer-order FH-R model produces elliptic bursting at the parameter set I. It generates decay 
and growth of small amplitude oscillations during the silent phase of bursting, and it is not damped rapidly. The 
firing pattern has multiple numbers of spikes in each burst having some subthreshold oscillations between two 
bursts (see Fig. 3(a)). The active and silent phases of bursting change as we slowly decrease the fractional expo-
nent from classical/integer-order one α< ≤(0 1). At α = .0 98, it shows fast-spiking and after some time, it 
generates mixed-mode oscillations with high amplitude single spiking and low amplitude oscillations (see 
Fig. 3(b)). When it is further decreased to α = .0 95 (see Fig. 3(c)), it shows just mixed-mode oscillations. The 
fractional-order system has a Hopf bifurcation at α = .0 80828 and the system goes to quiescent state when 
α < .0 80828 i.e., it converges to the stable fixed point ( = − .⁎v 0 885098) at α = .0 79 (see Fig. 3(d)). Now, we 
consider the parameter set II. The classical order system shows tonic spiking (see Fig. 3(e)). When the fractional 
exponent is decreased to α = .0 92, it displays a transition from tonic spiking into different spiking pattern with 
high amplitude and low amplitude oscillations (see Fig. 3(f)). The system shows mixed-mode oscillations at 
α = .0 85 (see Fig. 3(g)). There is first spike latency when the system is in this transition mode, and the firing 
frequency decreases. Then, the system exhibits a Hopf bifurcation at α = .0 6951, and it goes to complete quies-
cent state for α < .0 6951 shown in Fig. 3(h) (where = − .⁎v 0 841243 and α = .0 68). Next, the classical order 
excitable model produces another spiking pattern with the parameter set III (see Fig. 3(i)). At α = .0 99, it shows 
regular low amplitude spikes relative to classical order model, and it has first spike latency (see Fig. 3(j)). Further, 
it converges to quiescent state at α = .0 95 (see Fig. 3(k)). Here, the system also converges to a stable fixed point 
( = .⁎v 0 891229). Next, we consider the parameter set IV. The classical order model shows fast-spiking (see 
Fig. 3(l)). Then, it produces first mixed-mode oscillations then regular spiking at α = .0 85 (see Fig. 3(m)). The 
system has first spike latency with the decrease of fractional-orders and firing frequency decreases. The first spike 
latency in the system increases with the decrease of fractional exponent α = .0 80 (see Fig. 3(n)). Finally, the 
parameter set V has been considered. The classical order model exhibits single high amplitude spikes with small 
amplitude oscillations not decaying to completely silent phase or oscillation death (see Fig. 3(o)). When the 
fractional-order is decreased, the spike frequency is decreased and the period of small amplitude oscillations 
increases, i.e., it is growing with larger time duration with α = .0 98 (see Fig. 3(p)). Finally, it goes to the complete 
quiescent phase at α = .0 95 i.e.; the system converges to the stable fixed point ( = − .⁎v 0 948702) (see Fig. 3(q)).

We characterize these diverse neuronal responses with stability and bifurcation analysis. The results show that 
the v-memory trace is zero at α = 1. The memory trace does not affect the dynamics of the system at α = 1 (see 
Fig. 4(a,d)). When fractional-order is decreased from classical order, new dynamical responses emerge. The volt-
age memory trace displays oscillations, i.e., it has major effects on membrane voltage dynamics and also mem-
brane voltage affects the memory trace (see Fig. 4(b,e)). The fractional-order system is in steady-state at lower 
fractional-orders, α for all the parameter sets, i.e., the memory trace becomes too small, and it cannot signifi-
cantly affect the membrane voltage dynamics to evoke a spike (see Fig. 4(c,f)). Therefore, the fractional-order 
excitable system changes to different oscillations as α increases above a threshold value for a fixed set of 
parameters.

Synchronization in coupled fractional FH-R models. To study the dynamics of the coupled FH-R neurons, we 
consider two synaptically coupled FH-R neurons in the fractional domain. Generally, synaptically coupled excit-
able cells produce in-phase or anti-phase synchronous activity depending on coupling structure and strengths. 
We show the transitions to complete synchronization37,61,63 (CS) regime of the coupled fractional-order excitable 
neurons. We use bidirectional coupling, i.e., electrical coupling between two FH-R neurons, which is biophysi-
cally efficient synaptic coupling mechanism.
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where ge is the coupling strength, =i 1, 2 and =j 2, 1. The above system is bidirectionally coupled via membrane 
voltage. The synchronization regimes and its stability are examined by similarity functions64. Complete synchro-
nization of these two coupled systems indicates the stability of zero solutions of the error system. The desired 
synchronization state is achieved by using suitable coupling strengths and appropriate fractional exponents at 
different parameter sets (see Fig. 5). Now, we introduce a statistical measure known as similarity function to esti-
mate the synchronization error between the coupled neuronal oscillators to produce CS. The function is defined 

Figure 3. Different neuronal responses of membrane voltage (v) for the fractional-order FH-R model (1) at 
various fractional exponents, α. First panel: (a–d) α = . .1, 0 98, 0 95 and 0.79 respectively (set I). Second panel: 
(e–h) α = . .1, 0 92, 0 85 and 0.68, respectively (set II). Third panel: (i–k) α = .1, 0 99 and 0.95 respectively (set 
III). Fourth panel: (l–n) α = .1, 0 85 and 0.80 respectively (set IV). Fifth panel: (o–q) α = .1, 0 98 and 0.95 
respectively (set V).
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as γ γ= 〈 − − 〉 〈 〉〈 〉S v t v t v t v t( ) ( ( ) ( )) /( ( ) ( ) )2
1 2

2
1
2

2
2 1/2 and S(γ) measures the phase lag between the coupled excit-

able systems. The smaller value of S(0) shows a high correlation between driver and response oscillators. The 
functional value S(0) confirms CS (see Fig. 6) regime as it converges to zero with different initial conditions. This 
verified the coupling scheme and effectiveness of the method for synchronization.

Discussion
Fractional-order dynamics has more advantages to real-world applications. It may produce complex dynamics, 
such as switching to different stabilities, periodic nature, and chaotic behavior. Our nonlinear fractional-order 
biophysical model shows such types of complex dynamics. The theoretical analysis and numerical results reveal 
some interesting neuronal responses that can be useful for further investigation of the fractional-order excitable 

Figure 4. The dynamics of the voltage memory traces at fractional exponents (a–c) α = . .1, 0 98, 0 79 and (d–f) 
α = . .1, 0 90, 0 69 for parameter sets I and II respectively. For α = 1, the v-memory trace has no effect on the 
fractional dynamics. The nonlinearity in the system increases as we decrease the fractional-order (α) and the 
system shows no oscillation at lower values of α.

Figure 5. The membrane potentials of the excitatory coupled fractional-order FH-R model (at α = .0 99) for 
sets I and III with electrical coupling strengths (a) = .g 0 55e  and (b) = .g 0 3e  respectively. (c,d) v1 vs. v2 for the 
same fractional-order (α) and electrical coupling strength (ge). The membrane voltage variables v1 and v2 
indicate strong correlation between them and exhibit CS.
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systems. The characteristics of a fast-slow FH-R model has been introduced in this article by using a commensu-
rate fractional-order derivative. It has been examined that how fractional exponents influence the dynamics of 
the system and make it different from classical-order FH-R model that exhibits elliptic bursting. It shows different 
types of oscillations; spike frequencies based on different sets of parameters. The fractional exponent plays a sig-
nificant role in generating and destroying bursting. It changes the nature of the system dynamics. It also makes 
us to understand the information processing in coupled systems11,20,37,39. Synchronization of fractional-order 
excitable systems, especially chaotic systems has potential applications to control secure communication63. We 
observed that spikes also produce for small fractional-orders in the fast-slow neuron model. The transition states 
for various firing modes, including the quiescent states are discussed for different fractional-orders with various 
sets of parameters. The significance of our work is that we consider biologically relevant electrical coupling, i.e., 
bidirectional coupling for two neurons showing different types of oscillations and establish the CS criterion in 
fractional-order coupled systems. It can be extended to a network of neurons with such type of fractional-order 
neurons for a bidirectional or gap junction coupling scheme11,42. It has become a challenging task to select suitable 
neuron model with appropriate parameter sets that exhibits different dynamical behavior when we introduce the 
fractional-order component in the system. This type of study of excitable biophysical systems is limited as differ-
ent complex mathematical solutions arise; however, some techniques have already been developed to investigate 
the fractional-order dynamics. It may play a significant role in understanding the signal processing dynamics, 
noise-induced electrical activity, the synaptic mechanism in neuronal populations, different neurocomputational 
features, properties of different types of neural networks for complex brain functioning in healthy and diseased 
state conditions such as neurological disorders. Further study with fractional-order dynamics is needed to inves-
tigate the excitable single neuron model with its coupled nature and the dynamics of the different structured 
excitatory-inhibitory neuronal population.
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