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Rapid solvent-evaporation strategy 
for three-dimensional cobalt-based 
complex hierarchical architectures 
as catalysts for water oxidation
Hong Jiang1,3, Hao Zhang2,3, Qiaoling Kang2, Haifeng Ma2, Yinlin Tong1, Feng Gao  1* & 
Qingyi Lu2*

It is a challenging task to seek a highly-efficient electrocatalyst for oxygen evolution reaction (OER) of 
water splitting. Non-noble Co-based nanomaterials are considered as earth-abundant and effective 
catalysts to lower overpotential and increase polarization current density of OER. In this work, 
we reported, for the first time, a “rapid solvent-evaporation” strategy for the synthesis of three-
dimensional (3D) cobalt complex hierarchical architectures constructed by two-dimensional (2D) 
nanosheets. The 3D structured cobalt complexes have excellent performances in catalyzing OER with 
lower onset potential, overpotential, Tafel slope and better stability than commercial IrO2. Superior 
electrochemical performances would be beneficial from the unique 3D structure. This extremely simple 
method for 3D Co complex with good OER activities makes the complex be promising commercial OER 
catalyst to replace earth-rare and expensive iro2.

Hydrogen is considered as a promising energy carrier to address issues of global energy security, environmental 
emissions and sustainability1–3. Electrocatalytic water splitting is considered an efficient technology for hydroten 
production, which consists of hydrogen evolution reaction (HER) on the cathode, and oxygen evolution reaction 
(OER) on the anode4. In the process of OER, large overpotentials are required to promote the reaction, which 
increases the cost of hydrogen production. So far expensive Ru- and Ir-based compounds, such as Ru, Ir, RuO2 
and IrO2 have reported to efficiently catalyze the OER process5. However, high cost and poor durability of these 
noble catalysts restricts their large-scale application6. It is imperative to develop highly efficient and low-cost 
electrocatalysts to lower the overpotential and accelerate the OER reaction.

Co-based compounds have emerged as a kind of non-noble metal catalysts for OER since Nocera reported 
that cobalt (II)/phosphate could be an efficient oxygen-evolving catalyst in 20087. Until now, considerable efforts 
have been devoted to Co-based OER electrocatalysts, including Co oxides8,9, Co-based layered metal hydrox-
ides10–12, Co phosphides/phosphates13,14, Co sulfides/selenides15,16, Co oxyhydroxides17,18 and cobalt nitrides19–21. 
Previous reports prove that the active sites for OER catalysis are likely from amorphous overlayers compris-
ing cobaltate aggregates instead of the native oxide22,23. However, these reported catalysts usually focus on the 
inorganic cobalt compounds, rare on the cobalt complexes, though the complexes have structural topology and 
potential functions for gas adsorption, catalytic action and selective adsorption24.

Recently, multifunctional three-dimensional (3D) architectures assembled by low-dimensional blocks, such 
as 0D nanoparticles25, 1D nanorods26, and 2D nanosheets27,28, have drawn wide attention owing to the novel 
properties produced by synergistic effects of building blocks. Assembling 2D nanosheets into 3D structure not 
only maintains the intrinsic performances of the 2D nanostructures but also synergistically avoids the accu-
mulation of 2D nanosheets that would dramatically weakens the excellent properties of nanounits29. However, 
according to previous reports, the construction of 2D nanosheets-assembled 3D architectures usually depends 
on the guide of small molecules or macromolecules, and requires rigorous conditions and techniques, which 
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restrict their wide application as practical methods30,31. Therefore, it is highly necessary to develop a facile and 
efficient strategy for preparing novel 3D structures. In this work, by developing a facile and efficient method 
called “rapid solvent-evaporation” (RSE) strategy, we synthesized 3D cobalt complex hierarchical architectures 
assembled by 2D nanosheets. This facile RSE method evaporates solvent quickly during reaction process under 
high-temperature, resulting in the formation of novel 3D cobalt complex hierarchical architectures, which 
are completely different from those obtained at slow evaporation processes. More importantly, as a new type 
Co-based catalyst, the resulted 3D cobalt complexes show excellent catalyzing OER performances in water oxi-
dation compared to commercial IrO2.

experimental
Materials. All reagents were of analytical grade and used without further purification. Cobalt acetate and urea 
were obtained from Sinopharm Chemical Reagent Co. Ltd. Ethanol was purchased from Xilong Scientific Co. Ltd. 
High purity nitrogen was obtained from Nanjing Shangyuan Industrial Gas Plant. Distilled water was utilized in 
all experimental procedures.

Synthesis of the 3D Co complex architectures. Typically, 50 mg of urea was mixed with 1 mL of cobalt 
acetate aqueous solution (40 mg/mL) in a 4 mL glass bottle. Then, the uncovered bottle was transferred into a 
drying oven and maintained at 200 °C. The solvent evaporated quickly in 5 min. After the solid was further kept 
at 200 °C for 1.5 h, blue Co complex (CC-B) was collected at the bottom of the bottle. Final green 3D Co complex 
(CC-G) was obtained after CC-B was washed alternately with deionized water and ethanol and dried overnight at 
80 °C. Schematic diagram of experimental preparation process is presented in Fig. S1.

Synthesis of SE-100 and SE-150. Comparatively, the bottles with the mixing solution of urea and cobalt 
acetate were put in drying oven at 100 °C and 150 °C for 1.5 h for slow evaporation. The obtained pink products 
were washed alternately with deionized water and ethanol, dried overnight at 80 °C and designed as SE-100 and 
SE-150, respectively.

Synthesis of cc-air and cc-n2. CC-air and CC-N2 were prepared through heat annealing treatment of 3D 
CC-G at the temperature of 600 °C for 3 h in the air or N2 atmosphere with a heating rate of 2 °C/min.

characterizations. Scanning electron microscopy (SEM) was performed on Hitachi S-4800 at 10 kV. 
Transmission electron microscopy (TEM) images were obtained by using a JEOL JEM-2100 transmission electron 
microscope operating at 200 kV. Powder X-ray diffraction (XRD) patterns were collected by using a Bruker D8 
ADVANCE diffractometer with CuKα radiation (λ = 1.5418 Å). Infrared spectra were obtained on Fourier trans-
form infrared spectroscopy (FT-IR, Nicolet 6700, Thermo Company). Thermogravimetric analysis of the powders 
were preformed in air on Pyris Diamond TG/ DTA (Perkin-Elmer). The flow rate of air was set at 120 mL/min 
and the temperature was increased from 30 to 800 °C at a rate of 10 °C/min. X-Ray photoelectron spectroscopy 
(XPS) was collected on an ESCALab MKII X-ray photoelectron spectrometer, using non-monochromatized AlKα 
X-ray as excitation source. The binding energies were corrected for specimen charging by calibrating the C1s 
peak to 284.6 eV. Element analysis (EA) was characterized by element analyzer (German Heraeus Company, 
CHN-0-Rapid). The percentage composition of cobalt was analyzed by Inductively Coupled Plasma (America PE 
Company, Optima 5300 DV).

electrochemical measurements. The electrochemical measurements were performed in a conven-
tional three electrode cell using a CHI760D (Shanghai Chenhua, China) electrochemical workstation with 
catalyst-coated glassy carbon (GC) as the working electrode, a Pt wire as the counter electrode and a saturated 
Ag/AgCl electrode as the reference electrode. The catalyst ink was prepared by blending 5 mg of the catalyst with 
50 μL of Nafion solution (4 wt %) and 950 μL of water/isopropanol solution (3:1) via sonication. An amount of 
5 μL of the dispersion was transferred onto the GC electrode with a catalyst loading of about 0.18 mg/cm2. Then, 
the prepared catalyst electrode was dried at room temperature. With this electrode as the working electrode, 
electrochemical measurements were conducted in 1 M KOH solution. Polarization curves were obtained at a scan 
rate of 1 mV/s. Accelerated degradation measurement was conducted for 3000 cyclic voltammetry (CV) cycles 
at a scan rate of 50 mV/s. In all measurements, the reference electrode was calibrated with respect to reversible 
hydrogen electrode (RHE). All Polarization data were without iR-corrected.

Results and Discussion
Figures 1a and S1 briefly depict the facile synthesis process of the 3D Co complex. Figure 1b,c show SEM images 
of the product, revealing that the sample consists of plate-like 3D superstructures. The 3D plate is assembled by 
a great number of 2D nanosheets, which are curled and perpendicular to the plate surface, resulting in a lot of 
porous channels. TEM images in Fig. 1d,e also confirm the 3D porous superstructure of the product constructed 
by thin 2D nanosheets. Figure S2 shows the adsorption/desorption isothermals and the pore size distribution of 
the obtained Co-complex architecture, which clearly confirm the mesoporous structure with the pore sizes in 
the range of 3~12 nm. Since the solvent evaporation process is very quick and there is no enough time for slow 
crystallization in solution, no obvious diffraction peaks can be detected in the XRD patterns (Fig. 2a), suggesting 
the amorphous nature of the obtained Co product. Fourier transform infrared spectra (FTIR) is employed to 
analyze the information of functional groups. Figure 2b shows the FTIR spectra of the synthesized products and 
pure urea. It is obviously observed that both CC-B and CC-G have similar curves to urea, suggesting the remain-
ing existence of urea molecules in the product, which would serve as ligands to coordinate with Co2+. Newly 
emerged peak at 2184.8 cm−1 indicates the coordination bonding between Co2+ and ligands (urea). Compared to 
that of urea, stretching vibration of C-N in the product nearly disappears, suggesting possible interaction between 
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Co2+ and amino group that weakens the vibration of C-N. The specific peak at 1746.4 cm−1 in CC-G may result 
from coordination bond of Co-O by the hydrolysis of CC-B and water. Energy dispersive spectrum (EDS) in 
Fig. 2c further proves the co-existence of multiple elements including C, O, N and Co (Si from substrate and Au 
from gold sputtering), confirming the obtained product could be a Co-based complex with the organic ligand. 
Elemental mappings (Fig. 2d~h) verify that the product is made up of C, O, N and Co in accordance with the 
EDS analysis, and these elements are uniformly dispersed in the product, suggesting that the product obtained 
through the fast solvent evaporation process is not cobalt oxides or hydroxides. It can be concluded by combining 
the XRD, IR and EDS results that the as-prepared product would be amorphous Co complex through the coordi-
nation between Co2+ and urea.

Since the OER mainly occurs on the surface of catalyst, it is necessary to study the surface properties with 
X-ray photoelectron spectroscopy (XPS). All of the binding energies in XPS were corrected for specimen charging 
by referencing to the C1s peak (set at 284.6 eV). Co, C, N and O were all detected from the overall XPS spectrum 
of the 3D Co complex in Fig. 3a. Figure 3b shows the fine-scanned C1s spectrum, in which the peaks of C1s 
locates at around 288.9 eV and 285.4 eV contributing to the carbonyl and C-N. Figure 3c shows that the sample 
has a obvious peak located at 399.9 eV, which should be attributed to the Co-N according to the NIST XPS data. 
The Co2p XPS spectrum is shown in Fig. 3d, in which the peaks of Co 2p3/2 and Co2p1/2 are at around 781.0 eV 
and 796.9 eV, respectively, with a ∆E3/2-1/2 of 15.9 eV, indicating that the state of cobalt could be Co2+. The O1s 
XPS spectrum in Fig. 3e shows three peaks locating at 532.7 eV, 531.7 eV, and 531 eV, which indicate the existence 

Figure 1. (a) The facile synthesis process of the 3D Co complex architecture; (b,c) SEM and (d,e) TEM images 
of the as-synthesized product.
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carbonyl oxygen and hydroxy oxygen. Inductively coupled plasma spectroscopy (ICP) and elemental analyzer 
(EA) are regarded as efficient means to characterize the content of elements. The ICP measurement demonstrates 
that the mass fraction of Co in Co complex is about 42.75%, and EA measurement shows the approximate atomic 
ratio of C:N:H is 1:1:3. Combining the existing urea, hydroxy, and possible carbonate according to the XPS and 
FTIR data, the structural formula of the Co-based complex can be inferred as Co2(CN2H4O)(OH)2CO3, which 
has a Co content of 43.06% in accordance with the ICP and EA results. Figure 3f presents the thermogravimetric 
analysis (TGA) and differential scanning calorimeter (DSC) curves of the Co complex under air atmosphere. 
After the decomposition and the oxidation reaction of Co2+ to Co3+, the sample has a remaining mass of 57.8% 
of initial mass, which is in accordance with the result of ICP and demonstrates the rationality of the proposed 
structural formula of the Co-based complex.

The formation of 3D Co2(CN2H4O)(OH)2CO3 architecture goes through the following two steps: Firstly, the 
free Co ions react with urea and CO3

2− produced by the decomposition of urea to form blue bulk Co complex 
with constant evaporation of solvent at 200 °C under open system, and secondly, the blue bulk Co complex can be 
transferred to green 3D Co complex architecture assembled by nanosheets through hydrolysis process by washing 

Figure 2. (a) XRD patterns; (b) IR spectra; (c) EDS pattern and (d~h) elemental mappings of the as-synthesized 
product.

Figure 3. (a) Survey XPS spectrum; (b~e) High resolution XPS spectra of (b) C1s, (c) N1s, (d) Co2p, (e) O1s 
and (f) TG-DTA and DSC curves of the as-synthesized product.
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the blue Co complex with deionized water. The first step is the key for the formation of the 3D Co2(CN2H4O)
(OH)2CO3 structure. The rapid solvent evaporation under high temperature prevents the total decomposition of 
the used urea. The remained urea can serve as ligand to coordinate with Co2+ in the following procedures. At the 
same time, the decomposition of part of urea results in the formation of CO3

2− to balance the positive charges. 
The Co complex tends to form dense bulk in the concentrated system, then the 2D nanosheets produced by 
hydrolysis directly grow on the blue bulk for final 2D nanosheets-assembled 3D architecture. So, it is highly nec-
essary to set high temperature condition for the rapid evaporation of solvent for the formation of 3D architecture. 
Conversely, relatively slow solvent-evaporation experiments at 100 °C and 150 °C were also conducted. Figure S3 
shows the SEM images of the obtained products at 100 °C (SE-100) and 150 °C (SE-150), which both present dis-
ordered distribution of bulk nanoplates. XRD patterns (Fig. S4a) confirm that they are also amorphous in nature 
and the corresponding XPS spectra (Fig. S4b) demonstrate that the state of cobalt are also Co2+. However, the 
most of urea, which serve as ligand to form complex in RSE system, gradually decomposes into NH3 and CO2 
in the relatively long time under low temperatures. Therefore, the 2D nanosheets-assembled 3D Co2(CN2H4O)
(OH)2CO3 complex cann't be realized under low temperatures because of the absence of ligands.

The OER electrocatalytic activity were investigated in 1 M KOH aqueous solution using a standard 
three-electrode system. As shown in Fig. 4a, initial linear sweep voltammetry (LSV) curves recorded with the Co 
complex (CC) reveals a relatively lower overpotential of 360 mV at a current density of 10 mA/cm2 than that of 
commercial IrO2 (400 mV) under the same conditions. Meanwhile, to highlight the superior OER performance, 
Co3O4 (CC-air) and Co3Cx (CC-N2) nanostructures were also synthesized by calcining the 3D Co complex under 
air or N2 atmosphere. XRD patterns, IR, XPS spectra and SEM images shown in Figs S5 and S6 clearly demon-
strate the complete transformation from Co complex to Co3O4 and Co3Cx. The polarization curves of Co3O4 
(CC-air) and Co3Cx (CC-N2) nanostructures are also displayed in Fig. 4a, whose onset potentials and overpoten-
tials are higher than those of Co complex or IrO2. The Tafel slope derived from polarization (Fig. 4b) was used to 
evaluate OER kinetics. Co complex has an approximately equivalent Tafel slope to commercial IrO2, indicating 
the excellent OER activity at low overpotential. It is worth mentioning that the obtained Co3O4 has a lowest Tafel 
slope, contributing to an even higher enhancement in OER activity at high potential. Worse OER performance of 
magnetic CoCx may be caused by the deletion of oxygen-containing functional groups under high temperature 
condition, which benefits the absorption of H2O molecules on the catalyst. LSV curves after 100 CV cyclings at 
a scan rate of 0.1 V·s−1 were utilized to compare the stability of 3D Co complex and IrO2. Figure 4c shows the 
almost completely coincident LSV curves, indicating the excellent stability for Co complex. The corresponding 
SEM images, XRD pattern and IR spectrum of the catalyst after 100 OER cycles shown in Fig. S8 demonstrate 
that the microstructure and composition of Co complex are highly stable. In contrast, the LSV of IrO2 after 100 

Figure 4. (a) Polarization curves of different Co-based products and commercial IrO2 in 0.1 M KOH aqueous 
solution; (b) The corresponding Tafel plots derived from polarization curves; (c) Polarization curves of the 3D 
Co complex architecture and commercial IrO2 before and after cyclic voltammogram test for 100 cycles in 0.1 M 
KOH solution; (d) AC impedance spectra of the 3D Co complex architecture and commercial IrO2.
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CV cyclings has a big deviation. Figure S9a shows the LSV curves of 3D Co complex, IrO2 and amorphous SE-100 
after 1000 CV cyclings, which indicates the 3D Co complex has a remarkably superior performance for OER 
than IrO2 or SE-100 in the long-term cycle testing, though it has a fine deviation compared to initial cycle that 
might result from possible fall off of catalyst on the surface of electrode. AC impedance spectra for Co complex 
and IrO2 displayed in Fig. 4d indicate the low electron transfer impedance (Rct) for Co complex. Impedance data 
demonstrate that charge transfer and ions diffusion are not advantages versus that of IrO2. It is well accepted 
that the electrochemically active surface area (ECSA) of the catalysts can be estimated from measurements of 
the electrochemical double-layer capacitance (Cdl)12,14. The double layer capacitance (Cdl), which can calculated 
by using cyclic voltammetric method, is proportional to ECSA. The bigger the effective electrochemical surface 
area, the more of the active sites. Figure 5a shows the CVs of the CC products, which reveals that the sample has 
an obvious increase in current density according to different scan rates. The calculated EDLC of CC is 12.25 mF/
cm2 (Fig. 5b), superior to the reported OER electrocatalysts12,14. The result indicates that the number of electro-
chemically active sites for water oxidation significantly increases due to the special structure. Compared with the 
control samples, CC has a highest specific surface area of 142.9 m2/g (Table S1). It is believed that the initial OER 
process in alkaline conditions involves adsorbed OH and O species on the active sites of catalysts based on the 
following scheme32.

+ ∗ → +− ∗ −OH OH e (1)

+ → + +∗ − ∗ −OH OH O H O e (2)2

O OH OOH e (3)+ → +∗ − ∗ −

+ → + +∗ − −OOH OH O H O e (4)2 2

→ + +− −Summary: 4OH O 2H O 4e2 2

Step (1) and (2) play an important role to determine the overall OER rate, while reactions (3), (4) for O2 pro-
duction are inversible and fast33. Therefore, the adsorption energy of OH− greatly affects the OER process. 2D 
nanosheets arrays with abundant hydrophilic functional groups have high specific surface area for the contact of 
catalyst and OH− or H2O. Meanwhile, amorphous structure supplied abundant defect sites for OER34–36. More 
importantly, the self-assembly of 2D nanosheets for stable 3D architecture that avoids the undesirable re-stack 
and condense of 2D nanosheets can remarkably improve the duration performance of catalyst for OER.

conclusions
In summary, we firstly proposed an extremely facile route called “rapid solvent-evaporation strategy” to pre-
pare 3D Co complex architectures constructed by 2D nanosheet blocks as highly efficient catalyst of OER. The 
new-type Co-based catalyst exhibited excellent electrocatalytic activity of OER with a low onset potential and 
a lower overpotential of 360 mV at a current density of 10 mA·cm−2 than that of commercial IrO2. Abundant 
active sites and hydrophilic group of 2D nanosheets, amorphous and stable 3D structure, cooperatively achieved 
the superior catalyzing OER performance. It is expected that the 3D Co complex prepared by simple, green 
and low-cost method would be as promising OER catalyst for large-scale application to replace expensive and 
earth-rare IrO2. Meanwhile, it is believed that through the simple “rapid solvent-evaporation” strategy other novel 
3D structures with great application potential could be obtained in the future.

Figure 5. (a) CVs of CC in 1 M KOH at different scan rates from 10 to 50 mV/s; (b) Charging current density 
differences (Δj = ja − jc) at 1.20 V vs. RHE plotted against the scan rate. The linear slope (equivalent to twice of 
the Cdl) was used to represent the ECSA.
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