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Seasonality of climatic drivers 
of flood variability in the 
conterminous United States
Jesse e. Dickinson  1*, tessa M. Harden2 & Gregory J. McCabe3

Flood variability due to changes in climate is a major economic and social concern. Climate drivers can 
affect the amount and distribution of flood-generating precipitation through seasonal shifts in storm 
tracks. An understanding of how the drivers may change in the future is critical for identifying the 
regions where the magnitude of floods may change. Here we show the regions in the conterminous U.S. 
where seasonal changes in global-scale climate oscillations have driven a large part of the variability 
of flood magnitude. The regions are cohesive across multiple watershed boundaries suggesting that 
variability in floods is driven by regional climate influences. Correlations with climate indices indicate 
that floods in the western and southern U.S. are most affected by global-scale climate. The regions 
provide a useful approach for characterizing flood variability and for attributing climatic drivers on flood 
variability and magnitude.

Flood variability in a changing climate is a major economic and social concern. To complement our under-
standing of future flooding, many studies have focused on trends, frequency, and the nonstationarity of floods1–7 
because of climate and land surface changes5,8–14. Such changes can have compounding effects on floods that vary 
regionally and through time, which makes it difficult to detect and quantify the importance of multiple drivers on 
floods15. An understanding of these drivers is critical because of possible shifts of the hydrologic cycle in a future 
climate16–19.

Here we show the regions in the conterminous U.S. where seasonal changes in global-scale climate drive part 
of the variability of flood magnitude13,20,21. Flood variability is often related to regional shifts in seasonal atmos-
pheric pathways of moisture delivery20,22. The seasonality of floods (as the mean day of flood peaks) in the U.S. 
has been found, with few exceptions, to have little signal of temporal change23, and generally happens between 
January and June over much of the conterminous U.S. (Fig. 1). In a regional sense, seasonal mean streamflow 
variability generally groups into hydroclimatic regions more so than with watersheds24. Within such regions, 
mean annual streamflow is significantly correlated with at least one well-known climate index24 (for example, 
the El Nino Southern Oscillation (ENSO)25, the Pacific Decadal Oscillation (PDO)26, the Pacific North American 
Index27 (PNA), the Atlantic Multidecadal Oscillation28 (AMO), the North Atlantic Oscillation29 (NAO), and the 
Arctic Oscillation (AO)30). For these reasons, we used a regional approach to investigate whether seasonal varia-
tions in global circulation are key factors for regional and temporal variability of floods in the conterminous U.S.

Regional Flood Variability
We used a cluster analysis of 415 streamflow gauge records in the U.S. Geological Survey Hydro-Climatic Data Network 
2009 network31 (HCDN-2009) (which represents minimally altered watersheds) to identify regional patterns in the 
magnitude of annual and seasonal flood variability (see methods for more details). We examined a 50-year record 
(1966–2015) of annual peak (maximum instantaneous discharge during a water year between October 1 and September 
30) and seasonal maximum flows to represent floods. The seasons are defined as October through December (OND), 
January through March (JFM), April through June (AMJ), and July through September (JAS).

The gauges clustered into spatially coherent geographic regions based solely on the flow data (Fig. 2). The gauges 
are clustered into four regions based on the annual peaks, seven regions based on OND maximum flows, nine regions 
for the JFM maximum flows, and five regions each for AMJ and JAS maximum flows. The regions are arbitrarily num-
bered from the northwestern to northeastern U.S. The size of the circles in each cluster in Fig. 2 indicate the level of 
correlation between the peak and the seasonal-maximum flow at the gauge and cluster-mean flow (mean of peak and 
seasonal-maximum flow at all gauges in the cluster). That is, larger circles represent gauges with flow variability that 
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strongly resembles the variability at other gauges in the cluster, whereas gauges with smaller circles have less similarity 
of flow variability to other gauges within its cluster. Table 1 provides statistical summaries for the clusters and the p 
value for the Mann-Kendall non-parametric trend test for a monotonic trend in the cluster-mean flow for each cluster.

Figure 1 . Mean season of the annual peak flow from 1966-2015 at 415 streamflow gauges in the USGS HCDN-
2009 network. The seasons are defined as October-December (OND), January-March (JFM), April-June (AMJ), 
and July-September (JAS).

Figure 2. Maps showing time series clusters of (a) annual peak flows and maximum daily flow for the four 
seasons: (b) October through December (OND), (c) January through March (JFM), (d) April through June 
(AMJ), and (e) July through September (JAS) from 1966 to 2015.
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We found that the spatial patterns of the clusters correspond more to hydroclimatic regions related to atmos-
pheric moisture delivery rather than regional drainage-basin boundaries, which is similar to previous findings for 
mean annual streamflow24,32. A distinct pattern in the northwestern U.S. (cluster 1) for annual peaks and all sea-
sonal maximum streamflow corresponds to a relatively consistent pathway of moisture delivery from the North 
Pacific Ocean33–35. That is, variations in moisture delivery may drive part of the variability of floods in this region. 
Cluster patterns for the central eastern coast of the U.S. and Appalachian Mountain regions are consistent with 
findings that this region receives moisture mainly from the Atlantic Ocean and Gulf region33.

The spatial patterns and number of clusters for both annual and seasonal maximum streamflow vary for the 
southwest, southeast, and central U.S., which suggests that seasonal shifts in atmospheric moisture delivery35 are 
important for peaks and seasonal maximum flows in those regions than other regions indicated by the clusters. 
The seasonal variability of cluster patterns in the central U.S. are likely related to seasonal shifts in the pathways of 
flood-generating moisture from the Pacific and Atlantic Oceans and Gulf of Mexico20. For JFM a distinct cluster 
includes much of the southeastern U.S. and may be related to the variability of moisture from the Gulf of Mexico 
and Atlantic Ocean that is limited to the Gulf Coast region in winter. For AMJ the distinct southeast cluster found 
for the JFM data shifts to the southwest, and the AMJ maximum flows resemble the annual peak flows across the 
U.S. For JAS, the spatial pattern of clusters shifts toward large regions for the central and southeast U.S. that may 
be related to the variability of widespread moisture from the Gulf of Mexico and Atlantic Ocean that intrudes 
into the southern U.S.20. The spatial patterns of clusters in the southwestern U.S. likely vary because of seasonal 
differences in moisture delivery (frontal systems, monsoon-driven, and tropical storms) from the Pacific. The 
seasonal differences in the spatial patterns of the clusters demonstrate that seasonal variability of moisture sources 
produces different regions of peak flow variability

Flood Variability through Time
We found that the magnitude of peaks and seasonal maximum flows were highly variable year-to-year from 1966 
to 2015 (Fig. 3) but the variability had some temporal persistence. The annual time series of the cluster-mean 
flows appear nearly random, so we used a three-year moving average to retain interannual oscillations. For the 
annual peaks, the smoothed time series indicate periods of lower-than-average peaks (yellow and red) in almost 
all clusters before 1970, in the mid-to-late 1980’s, and generally between 2000 to 2015, especially during several 
years around 2000. Periods of higher annual peaks (blue shades) occurred nationwide during the early to mid-
1970’s, early to mid-1980’s and the mid-to-late 1990’s.

cluster

statistic 1 2 3 4 5 6 7 8 9

peaks

mean r 0.46 0.51 0.36 0.44 — — — — —

max r 0.86 0.87 0.75 0.82 — — — — —

min r 0.09 0.09 0.05 0.16 — — — — —

count 73 99 125 114 — — — — —

MK p 0.78 0.39 0.12 0.81 — — — — —

OND

mean r 0.74 0.70 0.53 0.50 0.51 0.64 0.70

max r 0.90 0.93 0.83 0.82 0.82 0.87 0.86 — —

min r 0.57 0.31 0.21 0.15 0.14 0.34 0.15 — —

count 40 44 52 65 94 84 36 — —

MK p 0.20 0.50 0.03 0.11 0.19 1.00 0.10 — —

JFM

mean r 0.66 0.69 0.64 0.66 0.67 0.61 0.56 0.62 0.63

max r 0.88 0.92 0.91 0.90 0.91 0.85 0.81 0.88 0.89

min r 0.29 0.30 0.22 0.32 0.35 0.01 0.19 0.19 0.11

count 72 41 43 28 26 40 47 78 40

MK p 0.55 0.42 0.17 0.79 0.89 0.87 0.53 0.49 0.96

AMJ

mean r 0.50 0.52 0.46 0.49 0.61 — — — —

max r 0.80 0.89 0.86 0.81 0.88 — — — —

min r 0.03 0.15 0.11 0.02 0.24 — — — —

count 72 121 89 88 45 — — — —

MK p 0.78 0.87 0.03 0.59 1.00 — — — —

JAS

mean r 0.51 0.63 0.41 0.51 0.54 — — — —

max r 0.91 0.92 0.85 0.87 0.88 — — — —

min r 0.11 0.05 0.04 0.07 0.09 — — — —

count 67 94 85 108 56 — — — —

MK p 0.01 0.08 0.84 0.69 0.02 — — — —

Table 1. The mean, maximum (max), minimum (min) correlation coefficient r between the mean time series 
for the peaks and seasonal-maximum flow clusters and the same flows at gauges within the clusters, the count of 
gauges in each cluster, and the p value for the Mann-Kendall non-parametric trend test for a monotonic trend in 
the mean-cluster time series (p < 0.05 in bold). The ‘—’ indicates no correlation test.
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Many of the temporal patterns in the seasonal maximum flow metrics resemble the variations in annual peak 
flows. With few exceptions, below-average maximum flows prior to 1970 (1966–1969) occurred nationwide 
in OND and JFM—in AMJ and JAS below-average flows were only in clusters 4 and 5 (southeast and eastern 
U.S.). Above-average maximum flows were highest during OND and AMJ in the early-to-mid 1980’s. Other 
above-average maximum flows occurred in JAS during that same period in clusters 1 and 2 (western U.S.) while 
the Midwest and eastern U.S. experienced below-average maximum flows. Above-average flows in the mid-to late 
1990’s mostly occurred during OND and JFM. Since 2000, the tendency of below-average maximum flows is more 
prevalent during AMJ and JAS until about 2012 when OND and especially JFM also experienced below-average 
maximum flows. The below-average flows in the early 2000s generally occurred in all seasons.

We used trend tests and frequency analyses to examine temporal persistence in the cluster-mean flows 
(Table 1). A Mann-Kendall36 trend test on the unsmoothed cluster-means found significant trends at p < 0.05 only 
for region 3 (southwestern U.S.) in the OND and AMJ seasons, and in region 1 for the JAS season (northwestern 
U.S.). A lack of significant trends in large flows is consistent with previous findings1,7,37–39. To identify periodic 
variability, we used a Discrete Fourier Transform (DFT) with Hann windowing40 and Morlet wavelet analysis41 
of the cluster-mean flows (Supplementary Figs 2–6) and their respective 3-year moving averages (Supplementary 
Figs 7–11). Using the DFT, none of the raw (unsmoothed) cluster-mean flows had periodicities (p < 0.1 against a 
red noise null hypothesis). The 3-year moving averages showed several significant periodicities using DFT (not 
shown in Figures): 6–7 years (p < 0.05) in cluster 4 (eastern U.S.) annual peak flows; 9–10 years (p < 0.1) and 6 
years (p < 0.05) in clusters 2 (west coast) and 3 (southwestern U.S) OND maximum flows; 6–7 years (p < 0.05) in 
clusters 4 (northern plains) and 8 (eastern U.S.) JFM maximum flows; 5 years (p < 0.1) in cluster 3 (southern U.S.) 
AMJ maximum flows; and 7–8 years (p < 0.1) in cluster 1 (northwestern U.S.) JAS maximum flows. The wavelet 
analysis of the annual data indicated little signal of periodicity (Supplementary Figs 2–6). In the 3-year moving 
averages (Supplementary Figs 7–11) we identified some signals of variability of around 4–7 years and a decadal 
band of 10–16 years. The higher frequency (4–7 years) variations were mostly intermittent in explanatory power 
between successive years from 1967–2014 for all clusters and generally matches ENSO variability42,43. The decadal 
band (10–15 years) was more common in clusters in the western U.S. This band resembles variations in western 
U.S. streamflow that were coherent with ENSO variability44.

climatic Drivers of Annual and Seasonal floods
The regional clusters have some correspondence with the spatial relations of precipitation with climate indices, 
particularly in the western U.S.27,45,46. So, we examined the relations between climate indices and the cluster-mean 
flows using Pearson correlation. Because the individual gauge records are averaged for each cluster, we further 
examined the relations of the seasonal means of the climate indices with annual peaks (Fig. 4) and with seasonal 
maximum streamflow (Supplementary Fig. S1) at each gauge. We also correlated the cluster-mean flows with 
mean water-year sea surface temperature (SST) (Supplementary Figs S12–S16). The climate indices were the 
MEI47, PDO26, PNA27, AMO28, NAO29, and AO30. Table 2 shows significant correlations (p < 0.05) between annual 
peaks and seasonal means of the climate indices in bold and in outlined cells and greater significance (p < 0.01) 
as bold text in outlined cells. The clusters with field significance (p < 0.05) are indicated by a percentage in bold 
(see methods for details). Figure 4 shows correlations of the seasonal climate indices and peak flows at individual 
gauges that were selected for having many significant correlations over coherent regions.

Peak flows in the northwestern U.S. (cluster 1) and southern and central U.S. (cluster 3) were significantly cor-
related with the most climate indices we examined (Table 1). This includes negative correlations of the northwest 
with the MEI during OND and JFM months, with the PDO in OND, and the PNA pattern in JFM. The southern 
and central U.S. (cluster 3) had greater significance (positive) with MEI in OND (p < 2E-5), JFM (p < 3E-6), and 

Figure 3. (A) Cluster-mean flows from 1966–2015 and (B) their three-year moving averages of annual peaks 
and seasonal-maximum flows from 1967 to 2014. The time series are grouped by peaks and season and arranged 
horizontally in each group by cluster number. The year is incremented vertically along the y axis. Years with 
larger flows are shown in blue and years of lower flows are shown in yellow and brown.
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AMJ (p < 6E-3), and with PNA in AMJ (p < 3E-3). These patterns are consistent with the dipole pattern of cor-
relations of precipitation45,48 and streamflow with ENSO49, PDO, and PNA27, in which precipitation is less than 
normal in the northwestern U.S. and greater than normal in the southwest and southern U.S. during positive 
phases of MEI, PDO, and PNA. These correlations with peaks and MEI, PDO, and PNA are stronger (more neg-
ative in the northwest, and more positive in the central and southern U.S.) than those identified for mean annual 
streamflow24. The southern and central U.S. also had greater significance (negative) with AO in AMJ (p < 1E-3), 
which may be related to the relations between the Northern Annular Mode (indicated by NAO and AO) and 
storm tracks across the western U.S. and northern central plains50. Cluster 2 (western U.S. and central plains) also 
had significant correlation (negative) with AO in AMJ for the same reasons and in OND months possibly because 
of changes in the strength of the westerlies51. The southern and central U.S. (cluster 3) had significant negative 
correlations with the AMO in OND, which may be related to negative correlations of AMO and precipitation in 
similar areas52. Somewhat surprising, cluster 4, which includes most of the northeastern U.S., was not significantly 
correlated to any of the climate indices we investigated.

Like the peak flows, the seasonal cluster-mean maximum flows in the western and southern U.S. were signifi-
cantly correlated with the most climate indices (Supplementary Table S1). Supplementary Fig. S1 shows correla-
tions between all seasonal climate indices investigated here and the seasonal maximum flows at individual gauges. 
The cluster-mean correlations using the seasonal maximum flows were sometimes greater than those for the 
peak flows, likely because the smaller sizes of the seasonal clusters could better represent local teleconnections. 
The correlations with seasonal indices may also represent teleconnections during specific seasons. Correlations 
of peaks with the seasonal mean of climate indices may not be as clear because the peaks can occur anytime in a 
water year, whereas the climate index was determined for a fixed season. Additional correlations revealed through 
the seasonal analysis (rather than with the peaks) include the eastern U.S. (cluster 6) with PNA in OND (negative, 
p < 6E-3), the south-central U.S. (cluster 5) with PNA (positive) and western U.S. (cluster 3) with NAO in JFM 
(positive). In JAS, significant correlations include the northeastern U.S. with PDO (negative), the central U.S. with 
AO (negative, p < 5E-3) and the southeastern U.S. with NAO (negative, p < 2E-3) and AO.

Implications for flood attribution
Here we identified regions in the conterminous U.S. where variations in flood magnitude can be largely attributed 
to seasonal global-scale climate drivers. These drivers can affect the amount and distribution of flood-generating 
precipitation through shifts in storm tracks. An understanding of how the drivers may change in a future cli-
mate53–55 may be critical for identifying the regions where the magnitude of floods may change. For example, an 
enhanced hydrologic cycle may increase the importance of moisture deliveries to North American that are related 
to ENSO56. Peak flows in clusters 1 and 3 (Fig. 2, northwest and southern U.S.) and seasonal maximum flows at 

Figure 4. Correlation of peaks at gauges with mean climate indices for months OND, JFM, AMJ. With MEI 
in (a–c), PNA in (d–f), and AO in (g–i). The color and size of the marker indicates the value of the correlation 
coefficient. Markers with dark outlines indicate significance at p < 0.05.
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many gauges in the northwest, southern, and eastern regions of the U.S. were significantly correlated with MEI. 
Intensification of moisture related to ENSO may result in changes in flood variability in those regions. It is possi-
ble that shifts in climatic variability may result in a different distribution, timing, and amount of precipitation, but 
these shifts themselves and their effects on the hydrologic cycle are uncertain53,57. Using the period of record from 
1966–2015, seasonal climate drivers (as indicated by MEI, PNA, and AO) explain much of the flood variability 
in the western and southern U.S. Changes in the peak flows and the seasons with the largest flows may be more 
important for flood studies than those seasons having a lower maximum flow (for example, lower seasonal max-
imum flows in summer in the northeastern U.S.). Here, we examined standardized flows, which do not indicate 
flood magnitudes. This analysis provides climate attributions for these regions which may help to disentangle the 
compounding effects of climate variability on flood attribution studies.

Methods
Streamflow data. Streamflow data were obtained from the U.S. Geological Survey (USGS) National Water 
Inventory System (NWIS, waterdata.usgs.gov) database for a 50-year period for water years (October through 
September) 1966 to 2015. We selected sites from the HCDN-2009, which is a subset of USGS streamflow gauges 
that have minimal anthropogenic interference (e.g. minimal effects of dams, diversions, water withdrawals etc.). 
We selected a subset of 415 gauges from the HCDN-2009 using criteria for completeness of the peak flow record 
at each stream gauge7 (Fig. 1). We also determined a maximum seasonal streamflow for the same 415 gauges for 
the months October through December (OND), January through March (JFM), April through June (AMJ), and 
July through September (JAS). For this study, the maximum seasonal streamflow is the largest daily streamflow 
during the season. The peak flow at a gauge can occur any season, and the mean season of the peak can shift 
through time23. We used circular statistics58 to identify the mean day and season of the peak. The mean season of 
the peak flow is OND in portions of the northwestern and southwestern U.S. as well as part of the Appalachian 
region, JFM in most of California and the eastern U.S., and AMJ in much of the western interior U.S. The peak 
occurs in JAS at a few of the analyzed gauges in the southern U.S., mainly parts of Florida and Texas.

climate data. Many studies have identified relations between precipitation (and streamflow) and global-scale cli-
matic drivers45,48,59,60. To evaluate relations between the peaks, seasonal maximum streamflow and climate, we obtained 
monthly sea surface temperature (SST) data, monthly atmospheric pressure data for the 500 hecto-Pascal pressure 
surface, and climate indices for the water years 1966 to 2015. We computed the mean of the climate indices to represent 
seasonal values for the periods of NDJF (November through February) and for OND, JFM, AMJ, and JAS.

cluster

climate index 1 2 3 4

OND

MEI −0.37 29% −0.11 13% 0.57 34% −0.07 1%

PDO −0.34 22% −0.14 6% 0.23 6% 0.15 3%

PNA −0.23 8% −0.23 7% −0.20 6% −0.13 6%

AMO 0.21 14% 0.03 4% −0.32 10% −0.02 12%

NAO −0.13 4% −0.34 19% 0.17 8% −0.18 10%

AO 0.14 4% −0.28 10% 0.12 2% −0.17 8%

JFM

MEI −0.31 25% −0.11 11% 0.61 36% 0.00 3%

PDO −0.24 14% 0.00 5% 0.17 4% 0.09 4%

PNA −0.29 21% −0.14 10% 0.13 3% −0.06 3%

AMO 0.02 5% 0.09 8% −0.12 6% −0.09 10%

NAO 0.25 12% −0.10 4% −0.10 6% −0.12 4%

AO 0.27 11% −0.11 3% −0.12 6% −0.11 4%

AMJ

MEI −0.17 15% −0.11 9% 0.39 21% −0.01 3%

PDO −0.10 3% 0.08 5% 0.24 5% 0.11 4%

PNA −0.18 5% 0.11 4% 0.42 26% −0.11 5%

AMO −0.19 15% 0.01 7% 0.00 5% −0.12 4%

NAO −0.05 5% −0.19 9% −0.20 4% 0.00 4%

AO −0.02 0% −0.28 17% −0.44 24% −0.10 4%

JAS

MEI 0.12 3% −0.01 3% 0.02 4% −0.01 0%

PDO 0.12 4% 0.03 0% 0.27 12% −0.04 5%

PNA 0.09 1% −0.01 0% 0.15 4% −0.08 3%

AMO −0.13 12% −0.09 2% −0.12 4% −0.08 4%

NAO 0.14 4% 0.13 1% 0.12 2% 0.16 7%

AO −0.14 1% 0.00 3% −0.01 5% −0.08 2%

Table 2. Correlations between the cluster-mean time series for peaks and seasonal-mean climate indices, and 
the percentage of gauges in each cluster with significant correlation with the indices (percentage is bold if passed 
the field significance test). Correlations of the mean time series that are significant at the 95% confidence level 
are in bold and outlined cells. Correlations that are significant at the 99% confidence level are shown in bold 
outlined cells.
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We obtained time series for the Multivariate El Nino Southern Oscillation (ENSO) Index47 (MEI), the 
Pacific Decadal Oscillation26 (PDO) index, the Pacific North American (PNA) Index, the Atlantic Multidecadal 
Oscillation (AMO), the North Atlantic Oscillation (NAO), and the Arctic Oscillation (AO). The MEI index 
was obtained from the National Oceanic and Atmospheric Administration (NOAA) Earth Systems Research 
Laboratory (ESRL) Physical Science Division (PSD) (https://www.esrl.noaa.gov/psd/, accessed April 19, 2017). 
The MEI is measure of the intensity of coupled ocean and atmosphere ENSO processes over the tropical Pacific47. 
The PDO was downloaded from the University of Washington Joint Institute for the Study of the Atmosphere and 
Ocean (http://research.jisao.washington.edu/pdo, accessed 4-28-2017). The PDO is a multi-decadal ENSO-like 
pattern of SST variability in the North Pacific defined as the first principal component of monthly SST anomalies 
over the North Pacific Ocean43. The PNA index was downloaded from the NOAA Climate Prediction Center 
(CPC) (http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml, accessed 9-20-2018). The PNA27 is a 
measure of atmospheric pressure anomalies over the Pacific Ocean and North America which affect the move-
ment and strength of the East Asian jet stream and is strongly influenced by ENSO oscillations. The AMO was 
obtained from the NOAA ESRL PSD (https://www.esrl.noaa.gov/psd/data/timeseries/AMO/, accessed 4-19-
2017). The AMO28 is a measure of SST variability in the North Atlantic Ocean and is related to air temperature 
and precipitation anomalies in North America. The station-based NAO index was downloaded from the National 
Center for Atmospheric Research Climate Analysis Section (https://climatedataguide.ucar.edu/climate-data/
hurrell-north-atlantic-oscillation-nao-index-station-based, accessed December 11, 2017). The NAO29 is a meas-
ure of the differences of sea-level pressure between the Subtropical (Azores) High and the Subpolar Low29. The 
AO index30 was downloaded from the NOAA CPC (https://www.cpc.ncep.noaa.gov/products/precip/CWlink/
daily_ao_index/ao.shtml, accessed 11-9-18). The AO is an index of the variation in the strength of the polar vor-
tex that is casually related to weather patterns in North America.

Monthly sea surface temperature (SST) data were obtained from the Kaplan Extended SST V2 dataset, which 
contains SSTs gridded at 5° resolution from 87.5°S to 87.5°N and from 2.5°E to 357.5°E (Kaplan et al., 1998, www.
esrl.noaa.gov/psd/data/gridded/data.kaplan_sst.html, accessed March 17, 2018). Monthly geopotential height 
(GPH) data at 500 hector-Pascals (h500) gridded at 2.5° resolution from 90°S to 90°N and from 0° to 357.5°E were 
downloaded from the NOAA ESRL PDS NCEP/NCAR Reanalysis (https://www.esrl.noaa.gov/psd/data/gridded/
data.ncep.reanalysis.derived.html, accessed November 9, 2018). We computed water-year averages (October to 
September) of SST and GPH from 1966 to 2015 at each grid location in the datasets.

Standardization. The streamflow data were standardized prior to analysis by the procedure for the Standardized 
Precipitation Index61,62. SPI was developed as a means for identifying periods of dryness or wetness in precipitation as a 
standard normal variable and has become a common approach for quantifying the intensity of drought63. SPI is useful 
for precipitation because it accounts for time series that follow a skewed distribution, and for different amounts of skew 
between regions with different climates. These properties make SPI a useful approach for quantifying periods of high 
and low streamflow because annual and seasonal peak flow records are often skewed (usually positively with the tail 
toward larger flows) and are generated by diverse processes. The SPI procedure provides a means to make comparisons 
of flood variability across different regions and climates. Standardized streamflows computed using the SPI procedure 
have a mean of 0 and a variance of 1, which are the same properties obtained from a z-score transformation.

Regionalizing streamflow. Clustering based on a correlation approach24 was used to group the gauges into 
regions with common temporal variability. The clusters were created using a hierarchical cluster analysis of the 
time series of annual peak and seasonal maximum streamflow for water years 1966 through 2015. The clustering 
procedure involved a correlation-based approach to identify groups of sites with similar temporal variability of 
annual peak and seasonal maximum flows (thus five separate clustering procedures were performed: annual 
peak flows, OND maximum flows, JFM maximum flows, AMJ maximum flows, and JAS maximum flows). The 
correlation-based clustering process involved the following steps. First, the standardized time series of flows for 
each site were correlated (using Pearson correlation) with time series of standardized flows for all other sites. The 
site that was correlated with the most other sites above an arbitrary specified threshold (r > 0.5) was removed 
from the original set of sites along with all the sites that are correlated with the selected site above the specified 
threshold; these sites initiated the first cluster. To find the second cluster, using the remaining sites, the site that 
was correlated with the most other sites above the same threshold (r > 0.5) was removed along with all the sites 
that were correlated with the selected sites above the threshold. The process is repeated for the remaining sites to 
obtain the third and subsequent clusters until there are no remaining sites that have correlations of standardized 
flows with the other sites above the specified threshold. Sites that were not correlated with another site above the 
threshold were not assigned to a cluster. A second screening was done to ensure that all sites were assigned to the 
most representative cluster. The time series of standardized flows for each site in each cluster were averaged to 
produce a cluster average of standardized flows. Subsequently, the time series of standardized flows for each site 
then were correlated with each cluster average time series and each site was ultimately assigned to the cluster with 
which it had the highest correlation. We obtained a representative time series for each cluster by computing the 
mean of flows at gauges in each cluster for each year. This “cluster-mean flow” represents the dominant temporal 
patterns and cycles of peak and seasonal maximum flow variability within each region.

Wavelet transform of cluster-mean flows. We used the R package biwavelet41 to compute the wavelet 
transform of the cluster-mean flows of annual peak flows and seasonal maximum flows, as well as the 3-year mov-
ing average of cluster-mean flows. Plots of the spectra of wavelet transforms for the annual peaks and maximum 
seasonal flows (OND, JFM, AMJ, and JAS) are shown in Supporting Figs 2–6, respectively. The same spectra of 
the 3-year moving averages for annual peaks and maximum seasonal flows (OND, JFM, AMJ, and JAS) are shown 
in Supporting Figs 7–11, respectively.

https://doi.org/10.1038/s41598-019-51722-8
https://www.esrl.noaa.gov/psd/
http://research.jisao.washington.edu/pdo
http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
https://www.esrl.noaa.gov/psd/data/timeseries/AMO/
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
http://www.esrl.noaa.gov/psd/data/gridded/data.kaplan_sst.html
http://www.esrl.noaa.gov/psd/data/gridded/data.kaplan_sst.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.html
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climate teleconnections. To evaluate regional patterns of peak and seasonal maximum flows and 
global-scale climatic drivers, we correlated the cluster-mean flows with each climate index to identify tel-
econnections related to SST using Pearson correlation. Significance was defined at the 95% confidence 
level (p < 0.05). We correlated the maximum seasonal streamflow with the concurrent seasonal mean of the 
climate indices. The standardized annual peaks were correlated with the mean of each climate index over 
the months OND, JFM, AMJ, and JAS of the same water year. The seasonal maximum flows were correlated 
with the mean of the time series for the concurrent months. To evaluate the strength of the correlations of 
the cluster-mean flow, we also correlated the individual time series of standardized annual peak and sea-
sonal maximum streamflows at each gauge with the climate indices, and the cluster-mean flow with mean 
water-year SST.

Evaluating the relations of clusters and climate indices. To assess the relations between floods and 
climate drivers, we correlated the cluster-mean flows with climate indices. The correlation patterns of the indi-
vidual gauges (Fig. S1) with the climate indices matched the regions of the clusters for several, but not all telecon-
nections, and the percentage of the gauges with significant correlations in a cluster varies (Tables 1 and S1). For 
example, the correlation coefficient between the JFM cluster 2 mean and MEI is 0.50 (p = 2E-4, Table S1) and 76% 
of the gauges have significant correlation, whereas the correlation between cluster 3 for annual peaks mean and 
JFM MEI is 0.61 (p = 3E-6, Table 2) and fewer gauges (36%) in the cluster have significant correlations. Thus, the 
question remains about how well the clusters represent the patterns of teleconnections.

To evaluate the clusters in terms of how well they represent a climatic influence over a region, we used field sig-
nificance64 to assess the collective significance of the spatial pattern of correlations at gauges within each cluster. 
That is, we assessed whether the number of significant correlations within a cluster is significant, which provides 
some measure of whether the correlation pattern as a cohesive group is significant and not substantially affected 
by serial correlation. To estimate the field significance of the relations between each cluster and climate index, 
we calculated a large set of correlations between the streamflow time series, reordered through time using per-
mutation, with the climate indices (not reordered). Then we calculated the percentage of gauges with significant 
correlation (p < 0.05). We reordered the time series 10,000 times to obtain a null distribution of the percentage 
of gauges that passed the significance test. Field significance for each cluster and climate relation was satisfied if 
the actual percentage of significant gauges in the data was matched in less than 5% of the randomized tests. The 
clusters that passed the field significance test are indicated in Tables 1 and S1 by the percentage of significant 
gauges in bold text. Field significance was generally satisfied for cases of significant correlation between the clus-
ter means and climate indices, meaning the clusters are robust for representing the patterns of teleconnections. In 
cases where the correlation of the cluster-mean time series and time series was significant, but field significance 
was not achieved (for example, peaks cluster 2 and AO), the cluster-mean time series was likely dominated by a 
few gauges of higher correlation with the climate index. The opposite case of field significance but no significant 
correlation by the cluster mean suggests that the cluster is robust in that it represents a region with a weak climate 
teleconnection.

Data availability
Peak flow data for the gauges in this study are available for download from the U.S. Geological Survey National 
Water Information System (NWIS) at waterdata.usgs.gov and in U.S. Geological Survey data releases65,66.
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