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High temporal resolution of leaf 
area data improves empirical 
estimation of grain yield
françois Waldner 1*, Heidi Horan1, Yang chen2 & Zvi Hochman  1

empirical yield estimation from satellite data has long lacked suitable combinations of spatial and 
temporal resolutions. consequently, the selection of metrics, i.e., temporal descriptors that predict 
grain yield, has likely been driven by practicality and data availability rather than by systematic 
targetting of critically sensitive periods as suggested by knowledge of crop physiology. the current 
trend towards hyper-temporal data raises two questions: How does temporality affect the accuracy 
of empirical models? Which metrics achieve optimal performance? We followed an in silico approach 
based on crop modelling which can generate any observation frequency, explore a range of growing 
conditions and reduce the cost of measuring yields in situ. We simulated wheat crops across Australia 
and regressed six types of metrics derived from the resulting time series of Leaf Area index (LAi) against 
wheat yields. empirical models using advanced LAi metrics achieved national relevance and, contrary 
to simple metrics, did not benefit from the addition of weather information. This suggests that they 
already integrate most climatic effects on yield. Simple metrics remained the best choice when LAI data 
are sparse. As we progress into a data-rich era, our results support a shift towards metrics that truly 
harness the temporal dimension of LAi data.

Estimating crop production, particularly that subject to international trade, is becoming an urgent imperative for 
global food security due to the growing world population, shifts in diets, and the development of biofuels. Instead 
of quantifying production directly, it is common practice to address its constituent terms: crop area and crop 
yield. The latter can itself be thought of as the product of genetic, environment, and management (G × E × M) 
factors. Agrometeorological models have long been deployed with some success to estimate yields on a regional 
basis, either based on statistical relationships relating yield to meteorological data or based on crop growth models 
that not only relate weather parameters to yield but also explain plant growth1–3. Satellite remote sensing has grad-
ually become instrumental in assessing crop yields because several Vegetation Indices (VIs) derived from spectral 
data integrate some G × E × M effects, from meteorological factors such as precipitation and solar radiation to 
cropping practices such as fertilisation and irrigation. In fact, there is a considerable amount of within-field vari-
ance that is not explainable by meteorological data but that can be accounted for by multi-spectral satellite data4.

Numerous methods have been devised to predict crop yield based on satellite data and include for instance 
assimilation of satellite data into crop growth or light-use efficiency models5,6. Another straightforward approach 
to estimate crop yields is to establish an empirical relationship between ground-based yields and VIs or metrics 
describing VI time series. These empirical models rely on the correlation between spectral bands (and their com-
binations) and biophysical properties of the crops, such as Leaf Area Index (LAI), which are themselves related 
to final yields7. A large range of VIs has been tested, with mixed results, in different regions and for different 
crops including the well-known Normalised Difference Vegetation Index8–11. Capitalising on the ability to retrieve 
biophysical variables from satellite data12,13, some attempts have empirically correlate biophysical variables to 
yield14,15. The principle remains the same for biophysical variables as for VIs: metrics are first extracted from time 
series of biophysical data and are then related to measured yields.

The lack of sufficient field- or pixel-level yield measurements for model calibration and validation has long 
hindered attempts to deploy empirical models at scale for operational monitoring. In addition, empirical mod-
els are specific to the crop cultivars, the crop growth stages, and the geographical regions they are calibrated 
on16,17. Therefore, they do not generalise well in data-poor contexts. An elegant solution, referred to as the scalable 
satellite-based crop yield mapper or SCYM, was recently proposed to solve the lack of availability of calibration 
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data18. In essence, SCYM calibrates empirical yield models with modelled data obtained from the Agricultural 
Production System sIMulator19 (APSIM), a thoroughly-validated crop model, rather than with in situ yield meas-
urements. The role of the crop model is to generate a large number of simulations that span a realistic range of 
soil, climate, and management conditions in the region of interest so that robust statistical relationships may be 
established between yield and crop canopy descriptors. SCYM models can then be transferred and applied to 
satellite images to map yields across vast areas. It has been tested for multiple crops and countries and explained, 
for instance, half of the wheat yield variability in India20. While several avenues still exist for improving the accu-
racy of SCYM models, its strategy of using simulations from regionally-tuned and parameterised crop models to 
calibrate empirical models in lieu of costly in situ yield measurements paved the way to deploying empirical yield 
models anywhere in the world.

Empirical yield estimation from space has also been constrained by the trade-off between the spatial and 
temporal resolution which restricted the use of high spatial and temporal images for agricultural applications21. 
Data availability hampered multi-temporal analyses or these were limited to time series with coarser spatial reso-
lutions, leading to pixel purity issues22, which are particularly challenging in complex landscapes23. Consequently, 
it is likely that the choice of metrics, i.e., time series descriptors used to predict grain yield, was driven by practi-
cality and data availability rather than by systematic targetting of critically sensitive periods suggested by knowl-
edge of crop physiology. Constellations of satellites, e.g., Sentinel-2 A and B24 (5-day revisit, 10-m resolution), or 
the Dove constellation from Planet25 (daily global coverage at 3 m with 175+ satellites), have opened an avenue 
for overcoming these spatiotemporal restrictions. Therefore the advent of hyper-temporal data offers an unprec-
edented opportunity to revisit empirical yield estimation and explore new alternatives to exploit finer and denser 
temporal patterns.

Our overarching goal is to advance routine yield assessment across the Australian grain zone based on satel-
lite observations and to do so by leveraging the capabilities of the most recent and upcoming imaging systems. 
Here we evaluated how the density of LAI observations affects performance and the choice of metric required to 
achieve optimal performance. We premised our work on three observations widely supported by evidence from 
the literature: (1) crop growth models can accurately simulate plant growth, yield, and leaf area. For instance, 
the wheat model within APSIM has been extensively validated across Australia and internationally in a range of 
experimental and farm conditions26–33; (2) leaf area index can be retrieved from satellite images13,34; (3) empirical 
yield models calibrated off simulated yields, i.e., a la SCYM18,20, provide reasonable spatially-explicit yield esti-
mates when applied to remotely-sensed data. The direct implication is that data generated by crop models can be 
used to evaluate in silico different forms of empirical models.

The in silico approach has the following advantages: (1) the range G × E × M conditions that can be explored 
in silico is larger than what observational data would otherwise allow, which improves generalisation; (2) in silico 
data can simulate forthcoming temporal resolutions or mimic current imaging systems lacking sufficient archive 
data, which facilitates systematic comparisons; and (3) in silico testing provides these results for a fraction of 
otherwise prohibitive costs associated with image acquisition and in situ yield data. Here, We deployed APSIM 
to simulate wheat growth during 30 consecutive seasons under 10 management scenarios at 50 locations across 
Australia. These simulations provided time series of LAI and yields which were used to calibrate and evaluate 
different types and configurations of empirical models. It should be emphasised that our objective was neither to 
predict past wheat yields nor to apply our findings to remotely-sensed data. Rather we sought to generate likely 
LAI time series and yields under a variety of growing conditions and evaluate the stregnth of their relationship 
under different scenarios represnetating present and forthcoming observation capabilities.

Our main contributions are three-fold:

•	 We provide a systematic comparison of LAI metrics and highlight that linear empirical models with advanced 
metrics (e.g., Senescence Fit, or Fourier Decomposition) capture up to 80% of the yield variability. This is 
remarkable because the generalisation of empirical models has often been criticised. Therefore, this suggests 
that models using metrics that truly harness the temporal dimension of the LAI data can achieve regional to 
national relevance;

•	 We evaluate the contribution of weather variables to the overall performance and show that they can double 
the accuracy of models calibrated with simple metrics such as peak LAI. Average and cumulative maximum 
temperatures, as well as cumulative post-anthesis rainfall, are particularly strong predictors of grain yield. 
However, with advanced metrics, there is no significant improvement when adding weather variables because 
their effects are already captured by the metrics;

•	 We quantify the loss of accuracy that occurs when the temporal resolution decreases. In particular, we show 
that simple metrics remain competitive in data-poor contexts.

These results can serve as a guideline for selecting an appropriate metric depending on the temporal availabil-
ity of earth observation data at hand.

Results
Accuracy of the prediction models without weather variables. Wheat crops were simulated under 
nine management strategies for 15 years at 50 locations representative of the Australian grain zone from which 
we obtained daily LAI, thermal time, phenological stages, and the associated yields. Six types metrics were then 
extracted from the LAI time series (Peak LAI, Early/Late Windows, Integral, Partial Integral, Senescence Fit, and 
Fourier Decomposition) for three time scales (calendar, thermal and phenological time, the last two adjusting 
the time series for growth rate). The metrics were finally regressed against grain yields. We computed the R2 
(Fig. 1A,C) and the RMSE (Fig. 1B,D) to evaluate the performance of the regression models with and without 
weather variables.
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Between 30% and 78% of the yield variability can be explained by LAI features depending on the choice of fea-
tures and time scale. Note that the Peak LAI and the Early/Late Windows approaches are by definition insensitive 
to a change in the time scale. Peak LAI consistently explained the least variance (R2 = 0.36; RMSE = 1,100 kg ha−1) 
followed closely by the two windows metrics (R2 = 0.41; RMSE = 1,032 kg ha−1). Using calendar time, the Partial 
Integral metric reached the highest coefficient of determination (R2 = 0.77; RMSE = 560 kg ha−1) followed by the 
Integral and the Fourier metrics. Interestingly, the ranking of the best performing methods changed with respect 
to the time scale. For instance, the Senescence Fit and the Fourier Decomposition metrics were both improved 
when accounting for thermal time or phenology: R2 values increased from 0.60 to 0.69 and 0.78 and from 0.72 to 
0.80, respectively. It is worth noting that these two metrics are related to a smoothing of the time series. Switching 
to phenological and thermal times can lead to worse results than calendar time in some cases, e.g., Integral and 
Partial Integral. This drop might be partly attributed to the current calculation of thermal time in APSIM, to the 
LAI features themselves, and to the abrupt transitions inherent at some phenological stages.

contribution and importance of weather variables. The R2 of the linear model based only on the 
weather features reached 0.36 and the corresponding RMSE was 1,044 kg ha−1, which was slightly better than 
the accuracy reached by the peak LAI metric (R2 = 0.36; RMSE = 1,100 kg ha−1). Adding weather features was 
particularly beneficial to those models using simpler metrics but had little effect otherwise (Fig. 1C,D). They help 
reduce by half the difference in accuracy between the poorest and best models. For instance, the R2 of the peak 
LAI method reached 0.56 whereas the R2 of the Fourier approach only increased by 0.01.

We evaluated the contribution of the weather variables to the model R2 (Fig. 2). The weather variable with the 
highest contribution is the cumulative rainfall after the LAI peak. The sum and average maximum temperature 
post-peak were also important. The remaining variables only exhibited a very low contribution (<0.03) to the 
R2. The contribution of weather variables decreased as they were combined with LAI metrics derived from more 
advanced methods. Differences between the contribution of the variables computed for different temporal scales 
were small.

Robustness to reduced temporal frequencies. Reducing the temporal frequency and accounting for 
cloud contamination reduced the prediction accuracy and increased the number of predictions with missing val-
ues (Fig. 3). However, this effect was metric-specific and three groups could be defined. The first group contained 
simple metrics (Peak LAI and Early/Late windows) that displayed robustness to a reduction of the temporal 
density, with little impact on the accuracy and the proportion of missing values. The second group (Integral and 
Senescence Fit) maintained a relatively stable accuracy but this was achieved at the expense of a higher rate of 
missing values. The third group (Partial Integral and Fourier Decomposition) was sensitive to a reduction of the 
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Figure 1. Performance indicators of the empirical models without weather variables (A,B) and with weather 
variables (C,D).
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temporal frequency both in terms of accuracy and failed predictions. This underscores that some metrics, in order 
to explain yield variations, require a higher temporal density, i.e., less signal contamination can be tolerated, while 
others are more robust and can be applied on sparser time series. This also varied with respect to the time scale: 
the Partial Integral approach was effectively best for calendar time whereas phenological time was best for the 
Fourier Decomposition and Senescence Fit approaches when the observation frequency was >5 days.

Mapping optimal metrics. Finally, we mapped the optimal metrics across the Australian wheat production 
area (Fig. 4). These varied by location and by time scale which was consistent with previous results: as the tempo-
ral frequency becomes sparser, the Peak LAI and the Early/Late season approaches became increasingly the pre-
ferred choice. This underscores that, while the Partial Integral, the Senescence Fit, and the Fourier Decomposition 
metrics yield higher accuracy, their use can only be recommended when the temporal resolution is ≤5 days.

Discussion
There is a high demand for grain yield estimates for food security, logistics, or crop insurance purposes. Empirical 
models have been criticised for their lack of generalisation, i.e., their applicability has been found to be limited 
to specific crop cultivars, crop growth stages, and geographical regions17,35. The ever-increasing availability of 
satellite data is a potential boon for delivering accurate grain yield predictions across vast areas. To quantify the 
potential gains of leveraging hyper-temporal data, we developed an in silico approach which uses the crop growth 
model APSIM as data generator and calibrated empirical models with a series of LAI metrics for different time 
scales and temporal resolutions. The poor accuracy obtained with simple metrics suggests they cannot capture 
such diversity with single national-scale models and that locally-tuned models could improve their prediction 
skills8. Advanced metrics achieved high accuracies with single empirical models, which provides evidence that 
metrics harnessing the temporality of the data have national relevance.

Peak LAI consistently registered some of the worst predictions despite its widespread use in the remote-sensing 
literature. The strength of the peak LAI relationship to yield (R2 = 0.36) was weaker than what previously 
reported9,36, which could be partly explained by the larger range of G × E × M effects encountered in this study. 
Peak LAI completely disregards the critical period of grain filling37 and therefore cannot capture the impact of 
post-peak events such as terminal drought, which is often experienced in Australia38. Besides, large biomass early 
in the season does not necessarily result in large grain yield. These shortcomings are illustrated in Fig. 5, where 
three time series reach similar peak LAI values but end up with drastically different yields. Therefore, peak LAI 
is most useful to provide early estimates of grain yield. Integrating temporal profiles outperformed the peak LAI 
approach because the cumulative effect of photosynthetic apparatus efficiency during the entire growing period 
was taken into account. Conditions affecting the flag leaf and the penultimate leaf, which are the most active parts 
from a photosynthetic perspective, greatly influence final grain yield39.

An important contribution of this research is to better understand the optimum application conditions of dif-
ferent metrics depending on temporal resolution and availability of the LAI data. While advanced methods such 
as the Senescence Fit or the Fourier Decomposition outperformed simple methods when hyper-temporal data are 
at hand, the latter should be preferred with sparse time series. Not only do these simple methods perform better in 
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Figure 2. Contribution of weather variables to the R2. Rows represent the weather variables and columns 
correspond to models based on different metrics pre and post-anthesis.VPD: vapour pressure deficit; max T: 
minimum temperature; min T: minimum temperature.
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data-poor contexts but they are also less sensitive to missing values. This confirms that biweekly composites can-
not adequately characterise crop productivity if crop critical periods are smoothed by the compositing algorithm8 
and implies that the use of maximum LAI or Early/Late Windows LAI was driven by practicality and data availa-
bility rather than by systematic targetting of critically sensitive periods suggested by crop physiology. Integrating 
radar data40,41 and blending lower resolution time series42,43 are two mitigation options to increase data frequency 
in areas with persistent cloud cover. Attention should be paid to correct the spatial scaling bias when fusing LAI 
data44,45 because it does not correlate linearly with spatial resolution46,47. Given the unprecedented revisit cycle of 
current Earth Observation systems, data fusion capabilities, and the prospects of future missions, our modelling 
suggests that the time is ripe for a shift towards the use of data-intensive metrics for empirical yield estimation.

Weather variables were instrumental in doubling the R2 of the models calibrated with simple metrics but had a 
marginal effect on those using advanced metrics. This suggests that half of the accuracy of scalable satellite-based 
crop yield mappers parametrised with the Early/Late Windows metric18,48 can be attributed to weather variables 
and confirms that the explicit consideration of weather was the main factor explaining the better performance of 
the original scalable satellite-based crop yield mapper compared to a peak VI model20. The three most important 
variables were cumulative rainfall, cumulative maximum temperature and average post-peak maximum temper-
ature when the evaporative demand is higher. They all relate to water and heat/drought stresses and, by extension, 
to stored soil water which is critical for the growth of rainfed wheat in Australia. During grain filling, high tem-
perature decreases leaf chlorophyll content and accelerates senescence49, leading to a shorter grain filling duration 
with an ultimate decrease in individual grain weight and yield that cannot be compensated by the higher grain 
filling rate under high temperatures50. The appropriate combination of predictors to include in empirical yield 
models depends on the cost of obtaining and using such data compared to the benefits4. The choice of adding 
weather predictors depends on their availability and on the temporal resolution of the LAI time series. This sug-
gests that, if accurate and appropriate weather data are not readily available and if the temporal resolution allows 
advanced metrics to be robustly derived, the prediction model may be shrunk to LAI variables.

In advancing routine yield assessment, our study illustrates the importance of the temporal resolution for 
accurate yield prediction and provides some guidelines to inform on the choice metric depending on data avail-
ability. To some extent, the accuracy values reported here may represent the upper bound of what could be 
achieved when applying empirical models calibrated with crop model data to satellite imagery and, therefore, 
some considerations about the premises of this study ought to be raised. First, we assumed that yields and LAI 
could be accurately simulated by crop growth models. While their ability to predict grain yield has been thor-
oughly evaluated and confirmed, less emphasis was on modelling LAI, e.g., it has been reported that APSIM tends 
to slightly overestimate LAI33. Nonetheless, crop models provide water-limited yield potential (the yields that can 
be achieved when water and the environment are the only limiting factors) rather than actual yields (the yields 
achieved in commercial fields) so discrepancies are expected, e.g., where biotic stresses have a significant impact. 
Simulation of grain yield and particularly LAI could further be improved, and comparison against measured 
field data would be instrumental to succeed in doing so. Secondly, satellite-derived LAI products are affected by 
measurement and retrieval errors which introduce noise in the time series. Smoothing methods such as double 
logistics, splines, adaptive Savitzky-Golay filters51, or canopy structural dynamic models52 have successfully been 
applied to reconstruct temporal trajectories and improve the signal-to-noise ratio. LAI also correlates non-linearly 
with reflectance and tends to saturate over dense canopies (LAI values > 4)53,54. Error-adjustment methods have 
been proposed when ground measurements of LAI are available55. Recent empirical evidence converged inem-
phasising the importance of red-edge bands for operational estimation of biophysical parameters56–58 to bypass 
this saturation effect57 as well as to reduce some impacts of leaf angle distribution58. LAI estimates obtained from 
Sentinel-2, which carries three red-edge bands, are thus expected to improve in the near future. Finally, there 
might be a less than perfect agreement between the LAI values obtained from APSIM and those retrieved from 
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Figure 5. Illustration of the limitations related to the peak LAI approach. All time series have a similar peak 
LAI value but different shapes and timing of events, resulting in different yields.
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space, even in the absence of noise or saturation. Indeed, satellites sense green LAI because the electromagnetic 
radiation reflected from the crop canopy is contributed by all the aerial plant organs55. Adjustment techniques 
might thus be required to improve the correspondence between these two LAI quantities. Despite these short-
comings, further developing approaches that calibrate empirical models with data generated from crop growth 
models is essential to reduce the burden of in situ yield measurement and to advance yield monitoring across the 
globe.

conclusions
The lack of suitable combinations of spatial and temporal resolutions of satellite image time series has long con-
strained large-area empirical yield estimation from space. Here, we sought to systematically evaluate how tem-
poral resolution affects empirical relationships between wheat yields and descriptors of crop canopy dynamics 
as observed in leaf area time series and, in turn, to define their optimal conditions of use. Using the crop growth 
model APSIM as a data generator, we developed an in silico approach which allowed us to explore a wider range 
of G × E × M combinations than what observational data currently permit as well as to simulate the temporal 
resolutions of current and forthcoming satellites or satellite constellations.

We simulated wheat crops across Australia and regressed six types of metrics derived from the resulting time 
series of Leaf Area Index (LAI) against wheat yields. Empirical models solely based on LAI metrics captured 
between 30 to 80% of the wheat yield variability, the highest accuracy being achieved with advanced metrics 
(R2 > 75; Senescence fit and Fourier decomposition). This provides evidence that empirical metrics that truly 
harness the temporal dimension of LAI data and exhibit national relevance. Adding weather variables doubled the 
R2 values of models based on simple metrics (R2 > 0.55; Peak LAI and Early/Late windows) but had no significant 
improvement for those based on advanced metrics. This indicates that metrics intensively exploiting the temporal 
dimension already reflect most of the influence of weather on crop yield. Finally, simple metrics emerged as the 
best choice when dealing with sparse time series, e.g., 16 days, but were gradually outperformed by advanced 
metrics as the temporal resolution increased.

As we progress in a data-rich era, our findings support a general shift in the use of large-area empirical yield 
mapping towards the inclusion of metrics that truly harness the temporal dimension of leaf area data.

Methods
Wheat modelling across Australia. Australia is one of the top five wheat exporting countries in the world 
and accounts for 11% of global wheat trade during 201559. It is estimated that 55% of Australian cropland is occu-
pied by the current wheat area of ca. 14 Mha. Wheat yields in Australia have experienced substantial increase but 
evidence suggests that they have stalled at an average of 1.7 t ha−1 since 199060. Wheat is sown around mid-May 
and is harvested from November to January61. The average field size exceeds 100 ha and irrigation is marginal.

We deployed the APSIM-Wheat model Version 7.819 to grow continuous wheat from 1981 to 2015 at 50 
high-quality weather stations representative of the Australian grain zone (Fig. 6). APSIM is a process-based 
model that simulates crop growth and development at a daily time-step in response to weather, soil water, soil 
nitrogen, and management practices. It calculates daily biomass accumulation using light interception and radi-
ation use efficiency which is penalised under water and nitrogen stresses. Growth of leaf area is modelled daily 
using initial leaf area, leaf appearance rate and the relationship between plant leaf area and their processes are 
sensitive to daily temperatures. Grain yield is a function of grain number and grain weight. Grain number is 
determined pre-anthesis by stem weight and subject to reduction due to water stress during anthesis. Final weight 
per grain is determined by carbohydrate remobilisation, photosynthesis during grain filling, and the grain filling 
period which is accelerated by temperature and water stresses.

We used a state-of-the-art parameterisation of APSIM for the dominant soil types and nine management rules 
(see Hochman and Horan62 for more details). Similar model parameterisation at these locations explained ≥65% 
of the national and sub-national wheat yield variability60,63. Therefore, the simulation outputs were assumed to 
be reliable and no further validation was undertaken. The nine management scenarios were variants of standard 
simulation rules and covered a range of cropping practices (Tables 1 and 2). These included changes in the rate 
of nitrogen fertilisation (N-fertilisation), plant density (50, 75, 100, and 125 plants ha−1), sowing rule (Sow-1, -2, 
and -3), and fallow management. All sites in Queensland and northern New South Wales above latitude −32.24° 
were classed as northern sites and used the northern sowing rule, all other sites used the southern sowing rule. 
If the sowing criteria were not met during the sowing window, a crop was automatically sown on the 15th of July. 
We considered five wheat cultivars spanning the range of Australian maturity types, namely: Bolac, Endure, 
Wyalkatchem, Derimut, and Correll. The parameterisation of these varieties was kept to their default values. 
Daily weather records of rainfall, maximum and minimum temperature (max and min T), and vapour pressure 
deficit (VPD) were sourced for the period of interest from the Australian Bureau of Meteorology64. Model runs 
from 1981 to 1999 were used to reach a credible soil water content and were thus discarded in further analysis. 
Simulations with a maximum LAI value < 1 were also discarded because they were likely associated with sim-
ulations of failed crops. The final data set had 7,712 entries that consisted of daily values of LAI, thermal time, 
phenological stage, and end-of-season yield.

We summarised the main characteristics of the simulation outputs in Fig. 7. Emergence started as early as April 
4th (Sow-3) and finished as late as August 18th (Sow-2). Flowering ranged from July 22nd (Sow-3) to November 
17th (Sow-2), which covered reported flowering periods37,65–67. Maturity occurred from September 9th (Sow-3) 
to December 19th (Sow-1), with strong differences across treatments. Under the Sow-1 strategy, wheat was sown 
before the cutoff date of July 15th in ca. 50% of the cases. Note that Bolac was never the highest yielding variety 
so no Sow-3 simulation was available for that variety. Maximum LAI values averaged 3.93 across simulations 
with maximum values up to 8.34 (Sow-3). Simulated yields averaged 3247 kg ha−1 with a range of 105 kg ha−1 to 
5,824 kg ha−1. Harvest indices (the ratio of grain yield and biomass) averaged 0.375 across simulations, spanning 
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from 0.178 (Sow-1) to 0.518 (Plants 100). Further, yields and harvest indices were within the range of values 
reported in an exhaustive search of the literature for dryland wheat in Australia68. Therefore, we concluded that 
our simulations provided realistic scenarios of dryland wheat growth across the Australian wheat belt.

predicting grain yields with empirical models. The empirical yield prediction model followed the fol-
lowing form:

β β β= + +Y X W (1)0 1 2

where X is a vector of LAI metrics derived from simulated LAI time series, W is a vector of weather attributes 
over the season, and β0, β1, and β2 are the associated coefficients. First, we restricted the empirical model to 
LAI metrics (Y = β0 + β1X) and assessed its performance for three time scales (calendar time, thermal time, and 
phenological time). Secondly, the added-value of weather variables (W) for yield prediction was evaluated and 
the importance of weather variables was quantified by partitioning the coefficient of determintation. Thirdly, we 

Figure 6. Location of the 50 high-quality weather stations. The area in grey indicates the cropland area as 
depicted in the Unified Cropland Layer84. Light blue dots indicate Southern stations whereas dark blue dots 
correspond to Northern stations.

Parameters Rules

Sowing

   Sowing rule

Northern sites

Sow if rain ≥15 mm over 3 days and plant available water ≥30 mm from 26 April 
to 15 July

Southern sites

Sow if rain ≥15 mm over 3 days regardless of soil moisture from 26 April to 15 July

   Sowing density 150 plants m−2

   Sow spacing 250 mm

   Sowing depth 30 mm

Fertiliser

   At sowing Add 100 kgN ha−1 minus soil nitrate N in the top 60 cm of soil on April 25

   In-season Check top 60 cm soil daily, if NO3 <80 kg ha−1, plant available water ≥30 mm and 
Zadok’s growth stage ≥10 and ≤49 then add 70 kgN ha−1 (maximum 1 application)

Soil

   Initial soil water 10% of plant available water capacity

   Initial soil NO3 25 kg ha−1 for each metre depth of soil

   Initial soil NH4 5 kg ha−1 for each metre depth of soil

   Surface organic matter 100 kg ha−1 with a Carbon:Nitrogen ratio of 80

Table 1. Management practices and the initial soil conditions of the standard simulation.
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investigated the loss in accuracy due to reduced observation frequencies. Finally, we mapped optimal metrics for 
three temporal revisit frequencies (5, 10 and 16 days) across the Australian wheat area.

Yield prediction with LAI metrics. To quantify the yield variability explained by LAI metrics, we extracted six 
groups of metrics from the simulated LAI time series provided by APSIM (Table 3).

The first approach (Peak LAI) identifies the maximum LAI value from the time series as it corresponds to 
the onset of the reproductive stage which is a critical period for the determination of wheat yield69. Empirical 
evidence has also shown that the best single-date correlation between wheat yield and LAI occurs at the time of 
highest LAI which concurs with the transition from the vegetative stage to grain filling9,36.

In the second method (Early/Late Windows), maximum LAI values observed during two windows, one early 
(day of year 203–day of year 253) and the other late in the season (day of year 274–day of year 314) were derived18.

Integration of seasonal LAI profiles was also examined a third and fourth method for feature extraction. The 
integration of satellite observations over time was shown to represent the intensity and the duration of the pho-
tosynthetic activity of the crop throughout the growing cycle well and, as a result, it was highly correlated with 
the actual yield8,70,71. The definition of the integration interval is critical and previous work recommended to start 
from the beginning of nutrient substance accumulation in storage organs39, which corresponds to flowering in 
wheat, rather than from the beginning of the crop cycle. We compared these two integration approaches and com-
puted the area under the curve for the entire LAI profile (Integral) and from peak LAI to harvest (Partial Integral).

The fifth approach (Logistic Fit) estimated wheat yield from three parameters describing the crop senes-
cence72,73. These were obtained by fitting a modified logistic model to the LAI time series74:

=
+ − −

t m
k t p

LAI ( )
1 exp( [ ]) (2)

all

where mall refers to the maximum value of LAI, p is the position of the inflection point in the decreasing part of 
the LAI curve, k is the relative senescence rate, and t is input time.

Finally, we used Fourier Decompositions which is an approach known to capture the temporal dynamics 
while reducing the dimension and the noise75. Fourier Decomposition transforms an input signal from the time 
domain into the frequency domain. In a closed interval [0; N], this approach assumes that the signal f(t) can be 
decomposed into a series of sine-waves with increasing frequencies76:

Treatment Code Rules

N-fertilisation

Apply different rates of N depending on whether Yw is low, medium or high:

If Yw ≤3.2 t ha−1, apply 22.5 kgN ha−1 at sowing only.

If Yw >3.2 t ha−1 and Yw ≤4.4 t ha−1, apply 45 kgN ha−1 at sowing only.

If Yw >4.4 t ha−1, apply 67.5 kg N ha−1 at sowing only.

Soil N and surface organic matter are not reset

Initial soil N 124 kgN ha−1 distributed through layers of the profile

Plants 50 Sowing density changed to 50 plants m−2

Plants 75 Sowing density changed to 75 plants m−2

Plants 100 Sowing density changed to 100 plants m−2

Plants 125 Sowing density changed to 125 plants m−2

Sow-1

Northern sites

Sow if rain ≥25 mm over 3 days and PAW ≥30 mm from 26 April- to 15 July.

Southern sites

Sow if rain ≥25 mm over 3 days regardless of soil moisture from 26 April to 
15 July.

Sow-2

Northern sites

Sow 2 weeks after rain ≥15 mm over 3 days and PAW ≥30 mm from 26 April 
to 15 July.

Southern sites

Sow 2 weeks after rain ≥15 mm over 3 days regardless of soil moisture from 26 
April to 15 July.

If sowing criterion is not met by 15 July, sow 2 weeks after 15 July.

Sow-3 Sow using highest yielding sowing date from analysis of crops sown every 7 
days from 5 April to 21 June using highest yielding cultivar.

Fallow
To simulate the effect of weeds during the fallow, plant available water was 
reduced by up to 30 mm on 25 April by removing 70% of the plant available 
water from each layer starting from the top layer

Table 2. Changes made to the standard simulation for the nine treatments. Yw: water-limited yield potential; 
PAW: plant available water.
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The result of a discrete Fourier transform is a complex number with a real (a) and an imaginary (b) part that 
can be converted to polar form. Then, each harmonic wave i can be defined by a phase and an amplitude77:

= +a a b (4)i i i
2 2

φ =
b
a

arctan
(5)i

i

i

Together with the additive term (a0), the harmonic components can together reconstruct the initial signal. By 
discarding higher order harmonics, it is possible to retrieve lower noise signal. In this study, we kept the additive 
term and the first two harmonics as predictors of yield.

Figure 7. Output of the crop growth simulations: (A) cumulative occurrence of phenological stages per 
treatment and variety, distributions of (B) Maximum leaf area indices, (C) yields, and (D) harvest indices per 
treatment.
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Three time scales. Measuring time in calendar days has been the dominant approach in remote sensing because 
it matches the acquisition dates of the satellite images. However, this approach might be limited when dealing 
with large G × E × M variations, e.g., for estimating yield at a national scale. There is a considerable advantage 
in describing crop development based on thermal time units as the duration in thermal time required to reach 
a certain ontogenetic phase is relatively constant, while that in calendar days may considerably vary78. Relying 
on phenological stages is a further refinement that accounts for vernalisation and/or photoperiod requirements 
which affect the rate of crop development.

All LAI metrics were derived for these three time scales: calendar time, thermal time, and phenological stages. 
Thermal time was computed following Zheng et al.79 and the phenological stages were described using Zadok’s 
decimal scale80 as simulated by APSIM. The Zadok’s growth scale is based on ten principal cereal growth stages 
from germination to ripening, each of these is divided into ten secondary stages, extending the scale from 00 to 99.

Model evaluation. Empirical models were calibrated using 50% of the data set (n = 3,845) and validated with the 
remaining 50% (n = 3,867). Note that, to avoid any bias, the split between the calibration and validation sets was 
done to guarantee that all simulations relative to a station-year would either belong to the calibration or validation 
set. The performance of the models was quantified using the Root Mean Square Error (RMSE) and the coefficient 
of determination (R2). The RMSE gives the weighted variations in error (residual) between the predicted and 
observed yields while the R2 expresses the percentage of variance explained by the model.

Contribution of weather metrics. First, the accuracy of a yield model only based on weather features 
(Y = β0 + β2W) was quantified. To that aim, we extracted 14 weather variables by averaging daily observations 
(VPD, min and max T) and summing daily observations (P, VPD, min and max T) before and after the peak of 
LAI. We then evaluated the merit of adding meteorological features to the empirical model in order to boost the 
prediction accuracy. All models were recalibrated to consider the weather variables, and the net effect on the R2 
and the RMSE was measured. To identify the most relevant variables, relative importance metrics for linear mod-
els were computed by partitioning the coefficient of determination81,82.

Robustness to reduced temporal frequencies. So far, all models were calibrated on LAI metrics 
derived from gap-less daily time series. As these are gap-less daily time series, they set the upper limit in terms of 
attainable accuracy, their performances might significantly change with sparser time series resulting from coarser 
temporal resolutions or missing values due to cloud/cloud shadow contamination. To provide insights on their 
generalisation potential, we applied the previously calibrated models to LAI metrics extracted from time series 
with lower temporal resolution, accounting for cloud conditions.

Daily, 5-day, 10-day, and 16-day LAI time series were created to simulate the revisit cycles of the Dove con-
stellation, the Sentinel-2A or/and -2B, and Landsat-8. The remaining LAI values were further removed according 
to their corresponding daily cloud probability. Monthly mean cloud frequencies were sourced from Wilson and 
Jetz83. This data set integrates 15 years of twice-daily remotely sensed cloud observations at 1-km resolution. We 
applied a linear interpolation to generate daily cloud probability assuming the monthly average was representative 
of the 15th of each month. To avoid artifacts, values for December and January were duplicated at the end and the 
start of the time series, respectively. Therefore, daily cloud probabilities were interpolated based on an input time 
series of 14 values and the first 16 (December 15th–December 31st) and last 15 values (January 1st–January 15th) 
were discarded. Missing values in the LAI time series were then linearly interpolated prior to yield estimation. 
A Monte Carlo approach was used and this process was repeated ten times. The impact on the prediction was 
measured using the average RMSE across the ten realisations. As an additional evaluation criterion, the number 
of times the metrics computation failed due to a lack of input data was computed.

Finally, the optimal metrics were identified for each temporal resolution. These were then interpolated to the 
Australian wheat production area at a 1-km2 resolution based on a nearest-neighbour search. In other words, 

Method Predictors Description Selected references

1. Peak LAI mall Maximum LAI value 9

2. Early/Late Windows
mpre

Maximum LAI value in a pre-anthesis time 
window

18

mpost
Maximum LAI value in a post-anthesis 
time window

3. Integral Iall Area under the seasonal LAI curve 8

4. Partial Integral Ipost
Area under the decreasing part of the LAI 
curve

39

5. Senescence Fit

mall Maximum LAI value

85k Senescence rate

p Position of the inflection point in the 
decreasing part of the curve

6. Fourier Decomposition

a0 Mean value of the function over one period

This studya1–2 Amplitude of the two first harmonics

φ1–2 Phase of the two first harmonics

Table 3. Description of the LAI metrics derived by the six methods.
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pixels were attributed to the best-performing metrics of the station they were the most similar to in terms of cloud 
frequency. Similarity between cloud patterns was measured with the Euclidean distance.

Data availability
Thee datasets generated and/or analysed during the current study are available from the corresponding author 
on reasonable request.
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