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Time and rate dependent synaptic 
learning in neuro-mimicking 
resistive memories
Taimur Ahmed   1,*, Sumeet Walia   1, Edwin L. H. Mayes   2, Rajesh Ramanathan3, 
Vipul Bansal   3, Madhu Bhaskaran1, Sharath Sriram1* & Omid Kavehei1,4*

Memristors have demonstrated immense potential as building blocks in future adaptive neuromorphic 
architectures. Recently, there has been focus on emulating specific synaptic functions of the 
mammalian nervous system by either tailoring the functional oxides or engineering the external 
programming hardware. However, high device-to-device variability in memristors induced by the 
electroforming process and complicated programming hardware are among the key challenges that 
hinder achieving biomimetic neuromorphic networks. Here, a simple hybrid complementary metal 
oxide semiconductor (CMOS)-memristor approach is reported to implement different synaptic learning 
rules by utilizing a CMOS-compatible memristor based on oxygen-deficient SrTiO3-x (STOx). The 
potential of such hybrid CMOS-memristor approach is demonstrated by successfully imitating time-
dependent (pair and triplet spike-time-dependent-plasticity) and rate-dependent (Bienenstosk-Cooper-
Munro) synaptic learning rules. Experimental results are benchmarked against in-vitro measurements 
from hippocampal and visual cortices with good agreement. The scalability of synaptic devices and their 
programming through a CMOS drive circuitry elaborates the potential of such an approach in realizing 
adaptive neuromorphic computation and networks.

The functionality of a brain is attributed to the activity-dependent synaptic weight change, enabling principal 
cognitive functions1. Although the underlying precise biological mechanism of the synaptic functionality is 
still under debate2, it is well established that in vivo neurons follow the anti-Hebbian synaptic learning through 
spike-time-dependent-plasticity (STDP)3–7. In order to mimic the biological synaptic learning, conventional 
CMOS circuits have been employed8,9, but their limited scalability poses challenge to achieve the efficiency10 and 
density (~1011 neurons and ~1015 synapses compact in volume of ~1130-1260 cm3)11 of the human brain.

Nanoscale memristors have attracted attention as potential artificial synapses due to their similar 
activity-dependent nonlinear conductance modulation12–15. However, memristors require integration with the 
driving CMOS subsystems to successfully execute the memory/computation operations and emulate synaptic 
functions. To date, several hybrid CMOS-memristor architectures have been reported to achieve high density 
memory systems and neuromorphic computing paradigm16–18. But CMOS circuitry specifically designed for a 
particular memristor type, inexorable electroforming process causing a high device-to-device variability and 
associated stochastic nature of resistive switching are hampering the realization of efficient neuromorphic net-
works15,16,19. A hybrid architecture implementing a simple dynamic CMOS circuitry to comply with any type 
of memristors and an electroforming-free memristor would enable the imitation of versatile neuromorphic 
functions.

In this study, we exploit characteristics of STOx memristors20–23 and flexible design of a CMOS drive cir-
cuit to imitate different time and rate dependent synaptic functions. Over the recent few years, a variety of 
synaptic functions including short- and long-term memory, paired-pulse facilitation and pair-based STDP 
(p-STDP) have been implemented on different types of memories11,24–28. However, experimental demonstrations 
of higher order time-dependent plasticity such as triple-STDP (t-STDP) and quadruplet-STDP (q-STDP), and 
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Bienenstock-Cooper-Munro (BCM) synaptic modifications (well known to exist in biological synapses)29–31 are 
not extensively explored in artificial synaptic devices. Though the classical p-STDP models helped to establish 
a fundamental understanding of the Hebbian synaptic plasticity in several neural systems but it is not sufficient 
to accurately model all biological experimental results produced by multiple (triplet and quadruplet) spikes29,32. 
This can be associated with deficiencies in the classical p-STDP model, such as excluding non-linear integration 
of spike pairs and their repetition frequency to quantify the synaptic modification30,32. This infers that the clas-
sical p-STDP model cannot elicit the BCM synaptic learning rule, which is regarded as a possible explanation of 
experience-dependent synaptic plasticity30. On the other hand, the t-STDP model is believed to be comprehensive 
enough to explain the experimental results produced by multiple spikes in biological neural systems. As such, 
the implementation of the t-STDP rule on STOx synaptic devices can highlight the capability of these artificial 
synapses to mimic the biological synaptic functionalities. We acknowledge that a few memristive models and 
circuits have recently been proposed to reproduce these synaptic learning rules33–35. However, an experimental 
emulation of these essential biological learning rules will signify the potential of memristors for future neuro-
morphic computation.

Furthermore, the available literature reports either extensive peripheral circuitry to generate suitable pre- and 
post-synaptic spike shapes (similar to the biological action potentials) or special circuits designed for a specific 
type of memristive system16,36. Additionally, the direct interfacing between CMOS drive circuitry and memris-
tive devices/array can expose them to CMOS circuit non-ideality37. Herein, we utilize a well-established CMOS 
circuit, called forward body biasing38–41, in combination with a time-to-digital converter to implement not only 
time-dependent synaptic rules but also demonstrate the potential of implementing a wide variety of synaptic 
learning rules.

Results and Discussion
Switching characteristics of STOx synaptic devices.  The metal-insulator-metal (MIM) configuration 
of the synaptic devices is assessed by the cross-sectional scanning transmission electron microscope (STEM, 
Fig. 1a) and energy-dispersive X-ray spectroscopic (EDS) elemental maps (Fig. 1b–e). The stoichiometric anal-
ysis of STOx thin films shows that the sputtered films are oxygen-deficient which indicates presences of oxy-
gen vacancies in the as-grown STOx switching layer (Supplementary Information, Fig. S1). Figure 1f shows a 
clockwise bipolar switching behavior of the STOx synaptic devices. A negative quasi-static voltage sweep with 
amplitude of -1 V (as VSET) switches the MIM device from its high resistance state (HRS) to a low resistance state 
(LRS). While an opposite polarity quasi-static voltage sweep with an amplitude of + 1.3 V (as VRESET) switches the 
device to its HRS. This behavior i.e., RESET on positive bias and SET on negative bias is typical for STO-based 
memristors21–23,42. The as-fabricated MIM devices are in their high resistive state (HRS) as the measured pristine 
resistances are close to the normal variance of HRS achieved during subsequent cyclic switching (Supplementary 
Information, Fig. S2). However, the pristine state resistances are cell-area dependent. Furthermore, the statis-
tical analysis of the as-fabricated devices shows that the average SET and RESET voltages during the first I–V 
sweeps are also area dependent (Supplementary Information, Fig. S2). The top Ti layer at Ti/STOx interface plays 
an important role in defining the switching characteristics of STOx resistive memories. In as-fabricated devices 
under zero bias condition, Ti layer partially oxidizes to sub-stoichiometric oxide (such as Ti2O3)43,44 due to the 
interfacial oxygen diffusion and Ti‒O bonding between Ti and STOx oxygen ions, at the vicinity of underlying 
STOx (discussed in cross-sectional analysis below). This introduces an additional switching layer at the top inter-
face (i.e., Ti/Ti2O3/STOx) which is electrochemically different to oxygen deficient STOx and causes a change in 
mobility and formation energies of oxygen-vacancies in Ti2O3/STOx heterostructure. As such, the STOx synaptic 
devices do not require explicit electroforming and exhibit resistive switching after a low conditioning voltage 
sweep (close to the subsequent SET voltage sweeps). This can be associated with (i) the presence of as-grown 
oxygen vacancies in STOx thin films45,46 (revealed by X-ray photoelectron spectroscopy and photoluminescence 
spectra, Section S1 of Supplementary Information) and (ii) it is possible that during the first SET sweep Joule 
heating may induce additional oxygen vacancies in the MIM structure, according to oxygen exchange reaction47. 
As such, the increasing concentration of oxygen vacancies reduces their migration distance and consequently the 
electrical energy required to form a conductive filamentary path. Further evidence and cross-sectional character-
ization of the filamentary path is given in the following sections.

To evaluate the reliability of the STOx MIM devices, the resistive states are measured at elevated tempera-
tures ranging from 150 to 250 °C, as shown in the inset of Fig. 1g. The retention of HRS measured for 30 hours 
at 250 °C shows no failure, indicating high stability of HRS. However, retention characteristics of LRS are 
temperature-sensitive. This high temperature LRS retention failure can be associated with the thermally-assisted 
reduction in the concentration of oxygen vacancies in the nano-filament and eventually leading its rupture48. The 
LRS retention failure time at different temperatures (where resistance jumps higher than the HRS) is plotted in 
an Arrhenius plot, as shown in Fig. 1g, to calculate the oxygen vacancy migration activation energy and estimate 
the retention characteristics of the STOx memristors. The extrapolation of the fitting line in Fig. 1g estimates the 
retention time of ca. 7.6 years at room temperature. Even though, this retention is suitable for memory and neu-
romorphic applications, it may be further improved by preventing the re-oxidation of STOx oxide layer through 
inserting a thin film exhibiting slow oxygen diffusion coefficient, such as Al2O3

49. On the other hand, activation 
energy of ca. 0.29 eV is extracted from the linear fitting of the experimental data. Such a low LRS activation 
energy, as compared to the other oxide systems48,50,51 (e.g., 1.0–1.6 eV reported for amorphous Al2O3, amorphous 
Ta2O5, amorphous Nb2O5, and TiO2), suggests a hopping conduction mechanism in our STOx MIM devices52. 
This hopping conduction refers to the electronic transport through localized states, where these states are pro-
vided by the oxygen vacancies in the nano-filament.

To evaluate the switching repeatability of the STOx MIM devices (Fig. 1h), short pulses of 1 μs duration and 
amplitude of −1.4 V and +1.6 V are applied for SET and RESET operations, respectively. READ pulses with 
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amplitude of +0.1 V and duration of 200 ns are used to measure the SET/RESET currents. The effect of pulse 
width on the switching performance is also evaluated (Supplementary Information, Fig. S4). The endurance char-
acteristics for more than 104 switching cycles (Fig. 1h) indicate that the synaptic devices exhibit repeatable bipolar 
switching behaviour. Typically in transition metal oxides, the bipolar resistive switching behavior is attributed to 
the inhomogeneous conduction mechanisms through the localized filamentary pathways and associated redox 
processes47,53–55. As such, the resistance states (i.e., HRS and LRS) are expected to be independent of the lateral 
dimensions of the MIM devices. Figure 1i reveals no appreciable area-dependency in our STOx devices for either 
resistance state. This further supports our earlier statement regarding the formation of conductive filamentary 
pathway in the MIM devices.

Visualising filamentary switching in resistive states.  The physical structure of the STOx synaptic 
devices and their compositional analysis is characterized by cross-sectional transmission electron microscopy 
(TEM). Electron energy loss spectroscopy (EELS) is used to assess the distribution of oxygen content in the MIM 
devices. The cross-sectional micrograph and corresponding EELS spectra of a pristine MIM device reveal an 

Figure 1.  The STOx synaptic devices. (a) The cross-sectional scanning transmission electron microscope 
micrograph of a pristine STOx synaptic device. Scale bar 50 nm. (b) The energy-dispersive X-ray spectroscopic 
elemental maps of (b) Pt, (c) Ti, (d) Sr and (e) O. (f) The I–V characteristic sweep of a 10 × 10 µm2 STOx MIM 
device. (g) The retention time vs. 1/kT plot to evaluate the state stability of the STOx devices. The inset shows 
retention of LRS and HRS at different elevated temperatures ranging from 150 to 250 °C. (h) Endurance of the 
devices, where VRESET of −1.6 V, VSET of +1.4 V and VREAD of +0.1 V are applied as a train of short pulses. (i) The 
dependence of HRS and LRS on the active cell area.
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amorphous microstructure of the STOx layer and a partial oxidation of the top Ti layer at the Ti/STOx interface 
(Supplementary Information, Fig. S5). The amorphous and oxygen-deficient structure of STOx layer is attributed 
to the room temperature sputtering in a pure argon environment. Also, the partial oxidation of the top Ti layer to 
sub-oxide at Ti/STOx interface can be associated with the interfacial oxygen diffusion and Ti‒O bonding between 
Ti and STOx oxygen ions44,56,57. Fig. 2a,b shows scanning TEM (STEM) images of the switching STOx memristive 
devices in their LRS and HRS, respectively. High contrast regions are observed in the STOx layers and along the 
top Ti/STOx interfaces which indicate the applied electric field induced compositional changes in the STOx layers. 
To analyse the state-dependent composition of the STOx layers, region of interests (ROIs) are selected across the 
lamellae, highlighted in Fig. 2a,b. The EELS O–K edge area maps (Fig. 2c,d) show the relative distribution of oxy-
gen content in ROIs where the area maps are generated by taking the O–K edge intensities of the collected spectra 
(at each pixel) after pre-edge background subtraction. The O–K edge area map of the device in LRS (Fig. 2c) 
reveals the presence of an extending oxygen-deficient region between top and bottom Pt electrodes. This indi-
cates a localized accumulation of oxygen vacancies and formation of conductive filamentary path across the MIM 
structure42. On the other hand, the O–K edge area map of the device in HRS (Fig. 2d) shows higher concentration 
of oxygen vacancies at the vicinity of bottom Pt electrode which indicates a ruptured filamentary path.

The formation of each oxygen vacancy in STO introduces two electrons into the Ti 3d orbital, and the resulting 
change in the Ti valence can be observed in the EELS Ti–L2,3 edge profile58,59. Figure 2e,f show the background 
corrected Ti–L2,3 spectra acquired along the EELS cross-sectional line scans passing over the ROIs indicated in 
Fig. 2a,b, respectively. The Ti–L2,3 fine structures gradually evolve in their intensity and position (from top Pt/
Ti interface to the bottom Pt electrode) as clearly observed in both LRS and HRS. Due to resolution limitation, 
we evaluate the Ti–L2,3 edge profiles to qualitatively analyse the electronic structure of the ROIs. The broad and 
relatively low intensity peaks at top Pt/Ti interface indicate the presence of mixed Ti2+ and Ti3+ oxidation states 
which further highlights the oxidation of Ti layer44,56,58,60. At Ti/STOx interfacial region and in the STOx layer, the 
crystal-field splitting of Ti–L3 and Ti–L2 peaks (into t2g and eg peaks) and their shift can be attributed to the pres-
ence of Ti3+ and Ti4+ oxidation states61–63. It is well known that in transition metal oxide based resistive memories 
the resistive switching is attributed to the redox reactions and associated valence change in the transition metal 
cations, such as Ti in STO47,64. As such, the cross-sectional TEM analysis shows that the bipolar resistive switching 
in our STOx MIM devices is of filamentary nature where formation and rupture of extended oxygen-deficient 
regions and associated change in Ti valance result in LRS and HRS, respectively.

Implementation of synaptic functions.  A typical biological synapse consists of a pre-synaptic neu-
ron and a post-synaptic neuron connected through a synaptic cleft, as schematically illustrated in Fig. 3a. In a 
memristor-based artificial synapse, the bottom and top electrodes work as neurons and the switching layer acts as 
a synaptic connection. The electrical conductivity of the device interprets the synaptic weight, while its increase or 
decrease translates to potentiation or depression, respectively, in response to the applied voltage spikes. Figure 3b 

Figure 2.  Microstructural and compositional analyses of the STOx synaptic devices. (a) STEM cross-section 
of a switching device in its LRS. Scale bar 20 nm. (b) STEM cross-section of a switching device in its HRS. Scale 
bar 20 nm. (c) The EELS O–K edge area map of the enclosed region of interest in (a). The colour bar shows the 
relative oxygen content. (d) The EELS O–K edge area map of the enclosed region of interest in (b). The colour 
bar shows the relative oxygen content. (e) The EELS Ti–L2,3 edge profiles along a line scan across the ROI in (a). 
(f) The EELS Ti–L2,3 edge profiles along a line scan across the ROI in (b).
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shows an experimental implementation of simplified t-STDP learning rules using our STOx memristive devices 
(cross-point and 7 × 7 array of devices). The protocols to implement these learning rules are adopted from ref. 
29,30. Synaptic weight changes reported here (denoted by Δw in Fig. 3b) are extracted by applying voltage pulses 
of different amplitude but fixed pulse width (100 µs). A proposed programming time-to-digital-to-voltage cir-
cuitry (discussed in Section 2.4 below) is simulated to generate the amplitude of voltage pulses corresponding 
to different spike-timing information (Δt1 and Δt2). The capability of this scheme to implement a wide range of 
learning rules, including p-STDP and t-STDP, is verified by applying a series of 100 pulses for each voltage ampli-
tude that is chosen by the programming circuitry. The amplitude of applied voltage pulses for the corresponding 
spike-timing is listed in Table S1 (see Supplementary Information). These experiments demonstrate a simple 
analog time-multiplexing implementation of the artificial memristive synapses with shared peripheral circuitry.

A simplified t-STDP learning rule can be presented as30
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where Δt1(=tpost - tpre) and Δt1(=tpost1 - tpost2) are time differences. A1
− and A2

+ are constant amplitudes of each 
exponential term in potentiation (Δw+) and depression (Δw−) equations. The values of these amplitudes 
extracted from curve fitting (in Fig. 3b) are = − .−A 0 701  and = .+A 0 602 . Also, τ+ and τ− are time constants of 
Δw+ and Δw−, respectively, and obtained from the fitting parameters as τ+ = 8.2 ms and τ− = 2.5ms. While the 
time constant τy indicates the exponential correlation between Δw+ and Δt2, and extracted as τy = 80ms. To 
reproduce the t-STDP window, the values of Δt2 are fixed at 10, 80 and 160 ms during the experiments (as shown 
in Fig. 3b).

The simplified t-STDP learning rule29,30, suggests that synaptic depression is produced by spiking pair with 
time interval of Δt1 (as in classical p-STDP rule), while synaptic potentiation takes a triplet of spikes into account. 
It is worth mentioning that ref.27 utilizes two sets of spikes. First set of spikes consists of two presynaptic spikes 

Figure 3.  Triplet-based STDP implemented on STOx synaptic devices. (a) An illustration of two biological 
neurons connecting via synapses. (b) Artificial implementation of STDP learning rules using STOx synaptic 
devices. Each data point and its deviation from mean (represented by bars) are collected by applying 100 cycles 
of identical pulses, where each cycle contains a RESET (for potentiation experiments) or SET (for depression 
experiments) pulse.
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and one postsynaptic spike with Δt1 and Δt2 representing the time differences between the postsynaptic spike 
and the first and second presynaptic spikes, respectively. Second set of spikes includes two postsynaptic spikes and 
one presynaptic spike. On the other hand, in ref.28 the synaptic depression is response to a pre- and postsynaptic 
pair, while synaptic potentiation is induced with a set of triple spikes which consists of two postsynaptic spikes 
and one presynaptic spike. In our case, we consider ‘post–pre–post’ configuration of the triplet spikes for syn-
aptic potentiation, all details can be similarly applied for a ‘pre–post–pre’ configuration. Also, a pair of pre- and 
post-synaptic spikes for synaptic depression.

In order to demonstrate that our STOx synaptic devices are capable of imitating biological synaptic plas-
ticity, we implement the t-STDP model (Eq. 1) by following the experimental protocols reported by Pfister 
and Gerstner29. We compare the results with the electrophysiological experiments performed in hippocampal 
culture65 and visual cortex31 (Fig. 4). Two different triplet spiking patterns, namely ‘post–pre–post’ (i.e., 1-pre–
2-post) and ‘pre–post–pre’ (i.e., 2-pre–1-post), are used in hippocampal culture experiments65. Each spiking pat-
tern consists of 60 triplet of spikes and are repeated at a rate of 1 Hz. The weight change as a function of timing 
difference between pre- and post-synaptic spikes in both triplet patterns is graphically presented in Fig. 4a,b. The 
best fit is calculated by a normalized mean-square error function (E) represented as29,
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mem and σi are the number of data points in a dataset, mean weight change (in electrophys-
iological and a-STOx memristor experiments) and the standard error mean (SEM) of ΔWi

exp for a given data 
point i, respectively. In the hippocampal culture, 13 data points are used, which includes 2 pairing and 3 quadru-
plet data points. To compare our experimental results with hippocampal culture, we use only 8 triplet data points, 
4 for 2-pre–1-post and 4 for 1-pre–2-post triplet spiking patterns. Also, we minimize the function E (given in 
Eq. 2) which represents the error between our memristor experimental results and hippocampal culture 
(Fig. 4a,b). Conventionally, parameters of the CMOS drive circuit are tuned to achieve the best match between the 
mathematical t-STDP and hippocampal culture data33,34. However, we minimize the error via one-to-one map-
ping of the weight changes (Δw) to the appropriate voltage levels applied to the artificial synapses (STOx memris-
tors). Furthermore, this mapping is carried out by extracting timing information using a time-to-digital and then 
digital-to-voltage conversion in the CMOS drive circuitry (discussed in Section 2.4 below and Section S5 in 
Supplementary Information). As such, the error is minimized by creating and changing a digital look-up table 
that maps incoming spike-timing information to a 6-bit digital code. The weight change corresponding to the 
both triplet pairing configurations is listed in Table S2 (see Supplementary Information). There is <10% error 
between our memristor data and hippocampal culture data which is comparatively smaller than previously 
achieved (35%) by mathematical t-STDP models33,34.

Figure 4c shows the implementation of BCM learning rule where the synaptic weight changes as a function of 
the given frequency, ρ. The comparison of our experimental results with the visual cortex data set (Fig. 4c) shows 
that STOx memristors closely follow the BCM behavior for ρ ≤ 30 Hz, while for high frequencies our experimen-
tal results are within the variation limits of visual cortex data set. As observed in the I–V characteristics of the 
STOx memristors, SET process exhibits a digital-like behavior while RESET is an analog-like switching behav-
ior offering comparatively more intermediate stable-states. As such, achieving a high dynamic range of weight 
change for Δw+ is more challenging than Δw−, also observed in Fig. 3b,c. The values of synaptic weight change 
corresponding to different frequencies are listed in Table S3 (see Supplementary Information). This indicates that 
similar to time-dependent learning rules (i.e., p-STDP and t-STDP); rate dependent learning rules such as BCM 
rule can also be implemented by our STOx synaptic devices.

CMOS drive circuitry.  Generally, to implement STDP with memristors an approach where pre- and 
post-spikes are superposed to induce synaptic weight change in memristors is adopted. In such approaches 
input voltage signals (spikes) are directly applied to the devices which can expose them to CMOS circuit 
non-idealities35,66. Since the memristive devices response to shape and frequency of an incoming spikes, 
time-modulated amplitude of superposed spikes or similar techniques are also adopted66,67. However, in this work 
the relative weight change is achieved by a fully digital spike processing unit (time-to-digital-to-voltage circuit, 
discussed below) which offers a higher level of multiplexing and lower complexity of the overall drive circuitry. 
Furthermore, through a fully digital spike processing module (time-to-digital-to-voltage) we distinguish from the 
conventional approaches of placing memristors in the pathway of signals.

Figure 5a shows a schematic of the proposed CMOS drive circuit which is a modification of the body-bias 
generator39,40, and converts differences in input spike-timing to voltage amplitudes. The time-to-digital (T2D) 
module is responsible for the pre- and post-synaptic event digitization and includes a timing control unit and a 
decoder (see Section S5 in Supplementary Information). The timing control unit is a fully digital unit that receives 
pre- and post-spikes and generates a binary code according to the timing intervals and works based on a number 
of counters that are triggered and stopped with spikes. It can be configured to implement multiple protocols and 
Δt detections38.

As depicted in Fig. 5a, a finely tuned voltage (Vw) is generated to modify the weight of a memristor and is 
connected to a memristor array via a voltage follower (VF) and an array of transmission gates (TGs) that are con-
nected to the top-electrodes (TEs) and bottom-electrodes (BEs) of the memristor array. It is worth mentioning 
that we focus on the design of peripheral circuitry for memristive artificial synapses, while modifications in the 
neuron designs may also be necessary to consider for online-learning aspects of the synaptic rules. Each device in 
the array is individually accessible via an addressable top-electrode (TE) and bottom-electrode (BE) connections. 
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Selections are mandated externally and partially include some internal data. These selection signals are repre-
sented with two digital vectors for rows (R) and columns (C), i.e., SelR and SelC respectively, in Fig. 5a. Note that 
Iref is a constant reference current that is supplied through a digital to analog converter (DAC), while VDDA and 
VSSA represent analog voltage supply and ground of the drive circuit, respectively. The proposed drive circuitry 
disconnects timing scales from the voltage level generation. Also, the T2D module is fully programmable and can 
map any spike-timing to any binary code which can be translated to the corresponding voltage amplitude, via 
the DAC. It is worth mentioning that addressing an individual device within an array requires additional devices 

Figure 4.  Reproduction analyses of the time- and rate-dependent learning rules. The reproduction of weight 
change induced by (a) pre-post-pre and (b) post-pre-post triplet spike patterns. (c) The synaptic weight change 
as a function of spike rate.
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(such as selectors) to protect each device from random programming through parasitic current paths. Also, we 
are using STOx memristors as a multi-state memory device, as reported in our previous work22. Therefore, unless 
an initialization is required, there is no one hard switching to HRS or LRS. However, considering the initial status 
of the memory array, initial weight pattern could be random.

Near exponential relationship exists between the programming voltage amplitude (Vw) and synaptic weight 
change (Δw), also revealed in Fig. 3b. This implies that a small variation in Vw can cause a significant deviation 
in Δw. Therefore, it is essential to estimate the programming efficiency of the proposed CMOS drive circuit. 
Figure 5b shows the Cadence simulation of the DAC circuitry using 90 nm CMOS technology. A 15.6 mV reso-
lution of the VDAC for a total 1 V supply is achieved. Figure 5b and Table S1 (Supplementary Information) show 
overall mapping of spike-timing to DAC code and then to an equivalent voltage (Vw in this case). It has been 
reported that variation in Vw is less than 5 mV39,40. Although a 15.6 mV increase in applied voltage magnitudes 
even higher than the VREAD (i.e., 0.5 V) may not necessarily switch the device, but it is observed that such an 
increase causes a significant statistical change in Δw.

Conclusion
In summary, we have presented a CMOS-compatible memristor based on STOx exhibiting bipolar resistive 
switching behavior. First, through electrical and cross-sectional characterizations we have shown that reliable 
resistive switching in the STOx based memristors is attributed to the redox reactions and electronic transport 
through the localized conductive nano-filamentary pathway. In addition to the exonerated electroforming 
characteristics, the STOx memristors have also shown their scalability potential for future high-density mem-
ory applications. Secondly, we have demonstrated a hybrid CMOS-memristor approach to successfully mimic 
time-dependent, such as p- and t-STDP, and rate-dependent such as BCM synaptic learning rules. As such, this 
study is a step towards the realization of an adaptive neuromorphic network by utilizing high order (triplet and 
quadruplet) learning rules.

Methods
Device fabrication.  The STOx synaptic devices are fabricated as cross-point devices and array in metal-insu-
lator-metal (MIM) configuration with the stack of Pt/Ti/STOx/Pt/Ti/SiO2/Si. Several devices with active areas of 
2×2 µm2, 4×4 µm2, 10×10 µm2, 20×20 µm2, 40×40 µm2, 80×80 µm2 and 100×100 µm2 are patterned by follow-
ing standard photolithography and thin film deposition processes. The bottom Pt (15 nm)/Ti (7 nm) electrodes 
are patterned onto a SiO2 (300 nm)/Si substrate by electron beam (e-beam) evaporation. As a switching layer, 
25 nm thin film of oxygen-deficient STO is deposited by using radio frequency sputtering (with 100 W power) 
from a commercial ceramic STO target in a pure argon environment under a pressure of 0.46 Pa and at room 
temperature. In order to complete the MIM structure, top Pt (30 nm)/Ti (5 nm) electrodes are evaporated by the 
e-beam evaporation at a base pressure of <6×10−5 Pa.

Electrical characterization.  The electrical characterization of the STOx synaptic devices is performed 
under ambient conditions by using a Keysight 2912 A source measure unit and Keithley 4200SCS equipped with 

Figure 5.  The CMOS drive circuitry. (a) A schematic of the proposed CMOS drive circuit which converts 
difference in input spike-timing into voltage amplitudes to modify the synaptic weight of a target memristor in 
the array. (b) Simulated resolution of the DAC circuitry to generate the weight changing voltage, i.e., Vw.
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remote preamplifiers and 4225 pulse modulation units connected to a micro-probe station. For the resistive 
switching of STOx synaptic devices, bias is applied on the bottom Pt electrodes while keeping the top Pt elec-
trodes grounded. High temperature electrical measurements are performed by using an environmentally isolated 
Linkum chamber connected with Agilent 2912 A source meter.

X-ray photoelectron spectroscopy.  X-ray photoelectron spectroscopy (XPS) analysis is conducted by 
using a Thermo Scientific K-Alpha instrument utilizing an aluminum Kα radiation source (1486.6 eV). The XPS 
spectra are collected from bare STO oxide thin films, sputtered on SiO2/Si substrates. Also, a stoichiometric 
crystalline STO substrate is used as reference. All spectra are resolved by using the standard Gaussian-Lorentzian 
function followed by the Shirley background correction.

Photoluminescence spectroscopy.  The photoluminescence (PL) emission spectra are obtained using 
a Horiba Scientific FluoroMax-4 spectrofluorometer. All spectra are collected at room temperature from 
as-deposited bare STOx thin films sputtered on SiO2/Si substrates. A laser source with 325 nm of wavelength is 
used to excite the sputtered thin films.

Transmission electron spectroscopy.  The transmission electron microscopy (TEM), energy-dispersive 
X-ray spectroscopy (EDS) and electron energy loss spectroscopic (EELS) analyses are performed on pristine and 
switching STOx MIM devices (at least for 50 cycles and subjected to constant bias stresses) using a JEOL 2100 F 
scanning transmission electron microscope (STEM) with attached Tridium Gatan image filter with an aperture 
of 5 mm. The TEM samples are prepared by focused ion beam cuts through the MIM structure by using a FEI 
Scios DualBeamTM system. Cross-sectional STEM micrographs and EELS spectra are collected using a <1.5 nm 
beam spot. EELS spectra are collected with a dispersion of 0.3 eV per pixel which allowed simultaneous record-
ing of the titanium L2,3 (Ti–L2,3) edge and oxygen K (O–K) edge in the regions of interest and across the MIM 
cross-sections. A power law fit is adopted for the pre-edge background correction while the influence of nearby 
peaks and plural scattering are reduced by narrow signal windows.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or Supplementary Materials. 
Additional data related to this paper may be requested from the authors.

Received: 10 January 2019; Accepted: 1 October 2019;
Published: xx xx xxxx

References
	 1.	 Royer, S. & Pare, D. Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature 422, 

518–522 (2003).
	 2.	 Kavalali, E. T. The mechanisms and functions of spontaneous neurotransmitter release. Nat. Rev. Neurosci. 16, 5–16 (2015).
	 3.	 Feldman, D. E. The spike timing dependence of plasticity. Neuron 75, 556–571 (2012).
	 4.	 Sen, S., Miller, K. D. & Abbott, L. F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. 

Neurosci. 3, 919–926 (2000).
	 5.	 Caporale, N. & Dan, Y. Spike timing–dependent plasticity: A Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008).
	 6.	 van Rossum, M. C. W., Bi, G. Q. & Turrigiano, G. G. Stable hebbian learning from spike timing-dependent plasticity. J. Neurosci. 20, 

8812–8821 (2000).
	 7.	 Abbott, L. F. & Nelson, S. B. Synaptic plasticity: Taming the beast. Nat. Neurosci. 3, 1178–1183 (2000).
	 8.	 Türel, Ö., Lee, J. H., Ma, X. & Likharev, K. K. Neuromorphic architectures for nanoelectronic circuits. Int. J. Circ. Theor. App. 32, 

277–302 (2004).
	 9.	 Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73, https://doi.org/10.3389/fnins.2011.00073 (2011).
	10.	 Hutchby, J. A., Bourianoff, G. I., Zhirnov, V. V. & Brewer, J. E. Extending the road beyond CMOS. IEEE Circuits Devices Mag. 18, 

28–41 (2002).
	11.	 Wang, Z. et al. Nanoionics-enabled memristive devices: Strategies and materials for neuromorphic applications. Adv. Electron. 

Mater. 1600510 (2017).
	12.	 Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano. Lett. 10, 1297–1301 (2010).
	13.	 Zamarreno-Ramos, C. et al. On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. 

Front. Neurosci. 5, 26 (2011).
	14.	 Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G. & Linares-Barranco, B. STDP and STDP variations with 

memristors for spiking neuromorphic learning systems. Front. Neurosci. 7, 1–15 (2013).
	15.	 Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).
	16.	 Chakrabarti, B. et al. A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit. Sci. Rep. 

7, 42429 (2017).
	17.	 Kim, K. H. et al. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano 

Lett. 12, 389–395 (2012).
	18.	 Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 

61–64, https://doi.org/10.1038/nature14441 (2015).
	19.	 Yang, Y. & Lu, W. Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale 5, 10076–10092 (2013).
	20.	 Rahman, M. A., Ahmed, T., Walia, S., Sriram, S. & Bhaskaran, M. Oxygen-deficient strontium titanate based stretchable resistive 

memories. Appl. Mater. Today 13, 126–134 (2018).
	21.	 Ahmed, T. et al. Transparent amorphous strontium titanate resistive memories with transient photo-response. Nanoscale 9, 

14690–14702 (2017).
	22.	 Nili, H. et al. Donor-induced performance tuning of amorphous SrTiO3 memristive nanodevices: Multistate resistive switching and 

mechanical tunability. Adv. Func. Mater. 25, 3172–3182 (2015).
	23.	 Nili, H. et al. Nanoscale resistive switching in amorphous perovskite oxide (a-SrTiO3) memristors. Adv. Func. Mater. 24, 6741–6750 

(2014).
	24.	 Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 

(2017).

https://doi.org/10.1038/s41598-019-51700-0
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1038/nature14441


1 0Scientific Reports |         (2019) 9:15404  | https://doi.org/10.1038/s41598-019-51700-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

	25.	 Yan, X. et al. Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater. 28, 
1705320 (2018).

	26.	 Zhu, X. & Lu, W. D. Optogenetics-inspired tunable synaptic functions in memristors. ACS Nano 12, 1242–1249, https://doi.
org/10.1021/acsnano.7b07317 (2018).

	27.	 Ahmed, T. et al. Optically stimulated artificial synapse based on layered black phosphorus. Small 15, 1900966 (2019).
	28.	 Ahmed, T. et al. Multifunctional optoelectronics via harnessing defects in layered black phosphorus. Adv. Func. Mater. 1901991 

(2019).
	29.	 Pfister, J. P. & Gerstner, W. Triplets of spikes in a model of spike timing-dependent plasticity. J. Neurosci. 26, 9673–9682 (2006).
	30.	 Gjorgjieva, J., Clopath, C., Audet, J. & Pfister, J. P. A triplet spike-timing-dependent plasticity model generalizes the Bienenstock-

Cooper-Munro rule to higher-order spatiotemporal correlations. Proc. Natl. Acad. Sci. USA 108, 19383–19388 (2011).
	31.	 Sjöström, P. J., Turrigiano, G. G. & Nelson, S. B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 

32, 1149–1164 (2001).
	32.	 Bi, G.-Q. & Wang, H.-X. Temporal asymmetry in spike timing-dependent synaptic plasticity. Physiol. Behav. 77, 551–555 (2002).
	33.	 Azghadi, M. R., Linares-Barranco, B., Abbott, D. & Leong, P. H. W. A hybrid CMOS-memristor neuromorphic synapse. IEEE Trans. 

Biomed. Circuits Syst. 11, 434–445 (2017).
	34.	 Aghnout, S., Karimi, G. & Azghadi, M. R. Modeling triplet spike-timing-dependent plasticity using memristive devices. J. Comput. 

Electron. 16, 401–410 (2017).
	35.	 Cai, W., Ellinger, F. & Tetzlaff, R. Neuronal synapse as a memristor: Modeling pair- and triplet-based STDP rule. IEEE Trans. 

Biomed. Circuits Syst. 9, 87–95 (2015).
	36.	 Chu, M. et al. Neuromorphic hardware system for visual pattern recognition with memristor array and CMOS neuron. IEEE Trans. 

Ind. Electron. 62, 2410–2419 (2015).
	37.	 Xinyu, W., Saxena, V. & Kehan, Z. In 2015 International Joint Conference on Neural Networks (IJCNN). 1–6.
	38.	 Friedmann, S. et al. Demonstrating hybrid learning in a flexible neuromorphic hardware system. IEEE Trans. Biomed. Circuits Syst. 

11, 128–142 (2017).
	39.	 Blagojević, M. et al. In 2016 IEEE Symposium on VLSI Circuits Digest of Technical Papers. 1–2 (Widerkehr and Associates).
	40.	 Meijer, M. & Gyvez, J. P. D. Body-bias-driven design strategy for area- and performance-efficient CMOS circuits. IEEE Trans. VLSI 

Syst. 20, 42–51 (2012).
	41.	 Meijer, M. et al. In Proceedings of 2010 IEEE International Symposium on Circuits and Systems. 2482–2485.
	42.	 Nili, H. et al. Microstructure and dynamics of vacancy-induced nanofilamentary switching network in donor doped SrTiO3−x 

memristors. Nanotechnology 27, 505210 (2016).
	43.	 Ahmed, T. et al. Data related to the nanoscale structural and compositional evolution in resistance change memories. Data in Brief 

21, 18–24, https://doi.org/10.1016/j.dib.2018.09.087 (2018).
	44.	 Ahmed, T. et al. Inducing tunable switching behavior in a single memristor. Appl. Mater. Today 11, 280–290 (2018).
	45.	 Joshua Yang, J. et al. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009).
	46.	 Gao, S. et al. Forming-free and self-rectifying resistive switching of the simple Pt/TaOx/n-Si structure for access device-free high-

density memory application. Nanoscale 7, 6031–6038, https://doi.org/10.1039/c4nr06406b (2015).
	47.	 Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories – nanoionic mechanisms, prospects, and 

challenges. Adv. Mater. 21, 2632–2663 (2009).
	48.	 Choi, S., Lee, J., Kim, S. & Lu, W. D. Retention failure analysis of metal-oxide based resistive memory. Appl. Phys. Lett. 105, 113510 

(2014).
	49.	 Baeumer, C. et al. Verification of redox-processes as switching and retention failure mechanisms in Nb:SrTiO3/metal devices. 

Nanoscale 8, 13967–13975 (2016).
	50.	 Miao, F., Joshua Yang, J., Borghetti, J., Medeiros-Ribeiro, G. & Stanley Williams, R. Observation of two resistance switching modes 

in TiO2 memristive devices electroformed at low current. Nanotechnology 22, 254007 (2011).
	51.	 Nakamura, R. et al. Diffusion of oxygen in amorphous Al2O3, Ta2O5, and Nb2O5. J. Appl. Phys. 116, 033504 (2014).
	52.	 Phan, B. T., Choi, T., Romanenko, A. & Lee, J. Hopping and trap controlled conduction in Cr-doped SrTiO3 thin films. Solid State 

Electron. 75, 43–47 (2012).
	53.	 Dittmann, R. et al. Scaling potential of local redox processes in memristive SrTiO3 thin-film devices. Proc. IEEE 100, 1979–1990 

(2012).
	54.	 Lee, E., Gwon, M., Kim, D.-W. & Kim, H. Resistance state-dependent barrier inhomogeneity and transport mechanisms in resistive-

switching Pt/SrTiO3 junctions. Appl. Phys. Lett. 98, 132905 (2011).
	55.	 Kim, H., Park, C., Lee, S. & Kim, D.-W. Inhomogeneous barrier and hysteretic transport properties of Pt/SrTiO3 junctions. J. Phys. 

D: Appl. Phys. 42, 055306 (2009).
	56.	 Li, Y. et al. Nanoscale chemical and valence evolution at the metal/oxide interface: A case study of Ti/SrTiO3. Adv. Mater. Interf. 3, 

1600201 (2016).
	57.	 Hill, D. M., Meyer, H. M. & Weaver, J. H. Y, Ba, Cu, and Ti interface reactions with SrTiO3 (100) surfaces. J. Appl. Phys. 65, 4943–4950 

(1989).
	58.	 Sanchez-Santolino, G. et al. Characterization of surface metallic states in SrTiO3 by means of aberration corrected electron 

microscopy. Ultramicroscopy 127, 109–113 (2013).
	59.	 Muller, D. A., Nakagawa, N., Ohtomo, A., Grazul, J. L. & Hwang, H. Y. Atomic-scale imaging of nanoengineered oxygen vacancy 

profiles in SrTiO3. Nature 430, 657–661 (2004).
	60.	 Stoyanov, E., Langenhorst, F. & Steinle-Neumann, G. The effect of valence state and site geometry on Ti L3,2 and O K electron energy-

loss spectra of TixOy phases. Am. Mineral. 92, 577–586 (2007).
	61.	 Cooper, D. et al. Anomalous resistance hysteresis in oxide ReRAM: Oxygen evolution and reincorporation revealed by in situ TEM. 

Adv. Mater. 29, 17002121–17002128 (2017).
	62.	 Du, H. et al. Atomic structure and chemistry of dislocation cores at low-angle tilt grain boundary in SrTiO3 bicrystals. Acta Mater. 

89, 344–351 (2015).
	63.	 Rho, J. et al. Observation of room temperature photoluminescence in proton irradiated SrTiO3 single crystal. J. Lumin. 130, 

1784–1786 (2010).
	64.	 Menzel, S., Böttger, U., Wimmer, M. & Salinga, M. Physics of the switching kinetics in resistive memories. Adv. Func. Mater. 25, 

6306–6325 (2015).
	65.	 Wang, H.-X., Gerkin, R. C., Nauen, D. W. & Bi, G.-Q. Coactivation and timing-dependent integration of synaptic potentiation and 

depression. Nat. Neurosci. 8, 187–193 (2005).
	66.	 Zhao, L., Hong, Q. & Wang, X. Novel designs of spiking neuron circuit and STDP learning circuit based on memristor. 

Neurocomputing 314, 207–214 (2018).
	67.	 Xiong, J. et al. Bienenstock, Cooper, and Munro learning rules realized in second-order memristors with tunable forgetting rate. Adv. 

Func. Mater. 29, 1807316, https://doi.org/10.1002/adfm.201807316 (2019).

https://doi.org/10.1038/s41598-019-51700-0
https://doi.org/10.1021/acsnano.7b07317
https://doi.org/10.1021/acsnano.7b07317
https://doi.org/10.1016/j.dib.2018.09.087
https://doi.org/10.1039/c4nr06406b
https://doi.org/10.1002/adfm.201807316


1 1Scientific Reports |         (2019) 9:15404  | https://doi.org/10.1038/s41598-019-51700-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

Acknowledgements
The authors acknowledge support from the Australian Research Council (ARC) for personnel and project 
support via DP130100062 (S.S.), DE160100023 (M.B.), and FT140101285 (V.B.) and equipment funding through 
LE0882246, LE0989615, LE110100223, and LE150100001. The authors would like to acknowledge the technical 
assistance of the Micro Nano Research Facility (MNRF) and the RMIT Microscopy and Microanalysis Research 
Facility (RMMF).

Author contributions
T.A., S.W., M.B., S.S. and O.K. conceptualized this work. T.A. undertook device fabrication and characterization 
presented in this manuscript with O.K. contributing to data analysis. T.A., R.R., and V.B. performed XPS and PL 
characterisations. T.A. and E.L.H.M. prepared FIB-based specimen and performed TEM characterisation. T.A. 
and S.W. prepared the first version of the manuscript with all authors contributing to the final version.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-51700-0.
Correspondence and requests for materials should be addressed to T.A., S.S. or O.K.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-51700-0
https://doi.org/10.1038/s41598-019-51700-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Time and rate dependent synaptic learning in neuro-mimicking resistive memories

	Results and Discussion

	Switching characteristics of STOx synaptic devices. 
	Visualising filamentary switching in resistive states. 
	Implementation of synaptic functions. 
	CMOS drive circuitry. 

	Conclusion

	Methods

	Device fabrication. 
	Electrical characterization. 
	X-ray photoelectron spectroscopy. 
	Photoluminescence spectroscopy. 
	Transmission electron spectroscopy. 

	Acknowledgements

	Figure 1 The STOx synaptic devices.
	Figure 2 Microstructural and compositional analyses of the STOx synaptic devices.
	Figure 3 Triplet-based STDP implemented on STOx synaptic devices.
	Figure 4 Reproduction analyses of the time- and rate-dependent learning rules.
	Figure 5 The CMOS drive circuitry.




