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integrin α11 cytoplasmic tail is 
required for FAK activation to 
initiate 3D cell invasion and ERK-
mediated cell proliferation
Pugazendhi Erusappan1,2, Jahedul Alam1, Ning Lu1, Cédric Zeltz1,3 & Donald Gullberg1*

integrin α11β1 is a collagen-binding integrin, which is receiving increasing attention in the context 
of wound healing and fibrosis. Although α11β1 integrin displays similar collagen specificity to α2β1 
integrin, both integrins have distinct in vivo functions. In this context, the contribution of α11 subunit 
cytoplasmic tail interactions to diverse molecular signals and biological functions is largely unknown. 
In the current study, we have deleted the α11 cytoplasmic tail and studied the effect of this deletion 
on α11 integrin function. Compared to wild-type cells, C2C12 cells expressing tail-less α11 attached 
normally to collagen I, but formed fewer focal contacts. α11-tail-less cells furthermore displayed a 
reduced capacity to invade and reorganize a 3D collagen matrix and to proliferate. Analysis of cell 
signaling showed that FAK and ERK phosphorylation was reduced in cells expressing tail-less α11. 
Inhibition of ERK and FAK activation decreased α11-mediated cell proliferation, whereas α11-
mediated cell invasion was FAK-dependent and occurred independently of ERK signaling. In summary, 
our data demonstrate that the integrin α11 cytoplasmic tail plays a central role in α11 integrin-specific 
functions, including FAK-dependent ERK activation to promote cell proliferation.

Integrins are heterodimeric cell surface receptors composed of non-covalently associated α and β subunits, 
which act as cell surface links to the extracellular matrix (ECM) and to other cells in dynamic cell-cell link-
ages1. Integrin subunits are composed of different domains with different functions. The extracellular domain 
of collagen-binding α integrin chains contain an inserted α-I domain, which is responsible for collagen bind-
ing without direct involvement of the β subunit. Whereas different integrin β chains display conserved regions 
including their cytoplasmic tail, the cytoplasmic tails of integrin α chains show little sequence similarity except 
for the very proximal membrane sequence GFFXR2. It is interesting in this context to note that α11 integrin lacks 
the conserved GFFXR sequence, but instead the α11-tail contains the GFFRS sequence3. A number of proteins 
have been found to bind to the conserved GFFXR sequence without displaying specificity for any particular α 
chain2. The conserved GFFXR site has been demonstrated to bind, for example, SHARPIN4, which keeps inte-
grin in an inactive conformation. Other proteins reported to bind to the conserved membrane proximal region 
include Rab21, Nischarin and PP2A2. Deletion of GFFXR or mutation of Arginine in the GFFXR sequence render 
integrins constitutively active, suggested to occur as a result of breakage of a salt linkage between α chains and β 
chain5. If the deletion occurs beyond the GFFXR sequence, effects vary depending on the nature of the α chain 
and the cellular background6.

Molecular interactions of the integrin cytoplasmic tails can both regulate inside-out and outside-in signaling 
as well as strengthening the actin linkages2,7. The NPXY motifs located in the β subunits are important binding 
sites for talins and kindlins, both taking part in integrin inside-out signaling8,9. These important interactions 
in turn are regulated through binding of other proteins such as Dok1 and ICAP-1, to the same integrin β chain 
NPXY motifs. In addition, phosphorylation of the proximal NPXY motif appears to be a molecular switch to 
regulate tensin binding and localization of α5β1 to fibrillar adhesions10. More recent data have demonstrated that 
integrin α chains contribute to filamin A-, talin-, and kindlin-binding to the integrin β subunits11–14. Data are thus 
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accumulating with indications that integrin α cytoplasmic tails take an active part in interactions of importance 
for integrin heterodimer function.

Careful analyses of mice lacking individual collagen-binding integrins show that the collagen-binding inte-
grin receptors are dispensable for normal development, but suggest important roles for these receptors in tissue 
remodeling events occurring in wound healing, fibrosis and tumor-stroma interactions15. α11β1 integrin is a 
collagen receptor, which is the latest identified member of the integrin family3,16,17. Although α11 shows an overall 
sequence homology to other collagen-binding integrin α chains of the β1 subfamily and also displays similar col-
lagen specificity as α2β1 integrin, α11β1 integrin in vivo has functions distinct from the other collagen-binding 
integrins18–22. This suggests that α11 cytoplasmic tail may regulate α11 functions. The role of cytoplasmic tails of 
collagen-binding integrins has been studied extensively in the 1990s by the group of Hemler et al. Deletion of the 
α2 integrin cytoplasmic tail in K562 and RD cells (both requiring integrin activation) demonstrated that the α2 
-tail-less integrin showed reduced adhesive activity on collagen I, in a manner suggesting an activation defect23. 
In chimeric experiments where again the α2 cytoplasmic tail was replaced with the tail of other integrins, it was 
demonstrated that chimeric α2 integrins with α5-tail (Xα2 Cα5) could mediate collagen gel contraction, whereas 
chimeric Xα2 Cα4 failed to mediate contraction, but instead promoted cell migration24. Already at this time it 
was speculated that “α subunit cytoplasmic domains, probably acting in concert with their associated β subunit, 
also have important but distinct roles and perhaps eventually will be shown to interact with distinct set of intra-
cellular proteins”24. More recent data, using more sensitive assays, analyzing chimeras of all 12 α chains of the β1 
integrin subfamily confirm that cytoplasmic tails of integrin α-chains do affect integrin inside-out activation, but 
that this varies greatly between different integrin α chains25. Deletion experiments are thus not easy to interpret 
since one also has to consider possible modulatory effects on integrin α/β chain interactions.

In the current study, we have deleted the α11 cytoplasmic tail and studied the effect of this deletion on α11 
integrin function. Our data show that the integrin α11 cytoplasmic tail is dispensable for cell attachment but is 
essential for focal adhesion formation, ERK-dependent cell proliferation, cell migration and reorganization of 3D 
collagen matrices.

Results
Generation and expression of a human integrin α11-tail-less variant. In order to identify the role 
of the α11 cytoplasmic tail, a mutant variant (Huα11-1171) with a deletion of the terminal 17 amino acids in 
the cytoplasmic tail of human integrin α11 (Huα11) was generated. Since the antibodies used to detect human 
α11 react with the cytoplasmic tail26, we have EGFP-tagged the integrin carboxy terminus using a 10 amino 
acid linker to avoid interference of the EGFP tag. Horwitz et al. pioneered this strategy for integrin α5 and the 
resultant tagged α5 integrin was characterized in detail without any evidence of artifacts due to the EGFP tag27. 
Full-length (Huα11-WT) and tail-less (Huα11-1171) Huα11 variants were tagged with enhanced green fluorescence 
protein (EGFP) and expressed in C2C12 mouse myoblasts, which do not express any collagen-binding integrins28 
(Fig. 1A). Based on EGFP intensity, the transfected cells were sorted by flow cytometry with uniform gating to 
obtain similar expression levels of EGFP. The expression of comparable levels of Huα11-EGFP in the total protein 
lysates was confirmed by immunoblotting, either with an anti-Huα11 polyclonal antibody or with an anti-EGFP 
antibody (Fig. 1B). Comparable expression levels of Huα11-EGFP at the cell surface were also confirmed, using 
mock transfected cells (Mock, empty GFP vector) as a negative control (Fig. 1C).

integrin α11 cytoplasmic tail is dispensable for cell adhesion but mediates focal adhesion for-
mation, collagen reorganization, cell migration and cell proliferation. To examine the role of inte-
grin α11 cytoplasmic tail in cell adhesion, Huα11-WT and Huα11-1171 cells were allowed to attach to collagen 
I or fibronectin using BSA coated wells as negative control. Mock transfected cells did not adhere to collagen, 
whereas Huα11-WT and Huα11-1171 cells adhered equally well to collagen I and fibronectin. This suggests that 
the deletion of 17 amino acids in the cytoplasmic tail of Huα11 had no apparent negative influence on integrin 
activation or cell adhesion to collagen I (Fig. 2A). However, Huα11-1171 cells displayed fewer focal adhesions after 
2 hours, with a reduction of 50% in the total area of focal adhesions (Fig. 2C) and 35% reduction in cell spreading 
(Supplementary Fig. 2). This indicates that cytoplasmic tail of integrin α11 is involved in mediating cell adhesion 
signaling. To confirm this hypothesis, we assessed the ability of Huα11-1171 cells in mediating: collagen gel reor-
ganization, cell migration and proliferation.

When cells were allowed to attach on collagen I for 24 hours in low serum conditions, Huα11-1171 cells dis-
played a significant reduction in cell proliferation compared to Huα11-WT cells, but not on fibronectin, suggesting 
that the α11 cytoplasmic tail-mediated signaling is involved in the regulation of cell proliferation (Fig. 2B). We 
further examined the ability of these cells to contract 3D collagen I lattices, a process previously shown to be 
α2β1- and α11β1- mediated18,28,29. Sixteen hours after the contraction was initiated, the Huα11-1171 cells dis-
played 50% reduction in collagen contraction compared to Huα11-WT cells (Fig. 2D).

We also investigated the role of the α11 cytoplasmic tail in cell migration using a spheroid migration model in 
a 3D collagen matrix. The radial cell density profile of the spheroid was analyzed from the center of the spheroid 
to quantify migrated cells in relation to their distance of migration. Huα11-WT cells migrated out 50% more than 
Huα11-1171 and mock transfected cells, beyond 400 µm from the center of the spheroid (Fig. 2E). Interestingly, 
the size of the spheroid core for the Huα11-WT cells was smaller than that observed for spheroids formed from 
the Huα11-1171 and Mock cells. These results indicate that the α11 cytoplasmic tail is indeed essential to mediate 
cell proliferation, collagen reorganization and cell migration.

integrin α11 cytoplasmic tail contributes to FAK and ERK activation. Localization of focal adhe-
sion kinase (FAK) in focal adhesions and its autophosphorylation at Tyrosine residue 397 (FAKY397) is a pri-
mary event in integrin signaling leading to cell migration and proliferation30–33. Analysis of FAKY397 activation 
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at different time points revealed that Huα11-1171 cells demonstrated less FAKY397 activation than Huα11-WT 
cells at 30 and 45 minutes on collagen I (Fig. 3A). Since other collagen-binding integrins have previously been 
shown to activate MAPK pathways, we investigated activation of ERK, p38 and JNK following attachment of 
cells to collagen I34–36. Interestingly, Huα11-1171 cells showed a strong reduction in ERK activation compared to 
Huα11-WT cells on collagen I (Fig. 3A). In contrast, activation of p38 and JNK was not affected by the deletion of 
the α11 cytoplasmic tail. To confirm the role of integrin α11 in FAK and ERK activation in primary cells, human 
gingival fibroblasts (hGF) were transfected with control siRNA (Ctrl) or α11 siRNAs (Fig. 3B and supplementary 
Fig. 3A). The knockdown of α11 did not affect expression of the collagen-binding integrins α1 and α2 chains 
(Supplementary Fig. 3B,C). Phosphorylated FAKY397 and ERK levels were only reduced in α11 siRNA-treated 
hGF (Fig. 3B and supplementary Fig. 3A). These results demonstrate that cytoplasmic tail of integrin α11 con-
tributes to FAK and ERK activation.

FAKY397 activation is involved in integrin α11 cytoplasmic tail-mediated cell proliferation and 
migration. We next examined if the reduced cell functions observed with the α11-tail-less cells was due to 
the defect in FAK and ERK activation. Inhibition of FAKY397 activation by PF573228 inhibited cell proliferation 
in both Huα11-WT and Huα11-1171 cells, on collagen I. Similarly, inhibition of ERK activation by U0126 also 
inhibited α11β1-mediated cell proliferation on collagen I, implying that both FAKY397 and ERK activation are 
required for α11β1-mediated cell proliferation (Fig. 4A). Inhibition of both FAK and ERK activation weakly 
decreased cell proliferation in Huα11-WT cells on fibronectin, suggesting that cell proliferation mediated by 
fibronectin-binding integrins is less dependent on these signaling molecules than α11β1-mediated cell prolif-
eration. In order to understand the overlapping function of FAK and ERK in α11β1-mediated cell proliferation, 
we investigated the relationship between FAK and ERK activation. Inhibition of FAKY397 activation by PF573228 
significantly inhibited ERK activation 30 minutes after cells attached to collagen (Fig. 4B). In contrast, inhibition 
of ERK activation by U0126 did not affect FAKY397 activation, indicating that FAKY397 phosphorylation is required 
for ERK activation.

In spheroid migration assays, inhibition of FAKY397 phosphorylation, completely abrogated migration for both 
Huα11-WT and Huα11-1171 cells (Fig. 5A). Contrariwise, inhibition of ERK in spheroid assay did not inhibit 

Figure 1. Generation and expression of integrin α11 variants in C2C12 cells. (A) Schematic illustration 
showing the amino acid sequences in the linker and the cytoplasmic tail of Huα11 variants. (B) Western blot 
showing total protein expression of Huα11-EGFP in C2C12 cells transfected with Huα11-WT-EGFP and Huα11-
1171-EGFP (full size immunoblot is shown in supplementary) (C). FACS analysis of the cell surface expression 
α11 in Huα11-WT, Huα11-1171 and mock transfected cells (Mock).
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Figure 2. Integrin α11 cytoplasmic tail is not involved in cell adhesion but mediates focal adhesion formation, 
collagen reorganization, cell migration and cell proliferation. (A) Role of α11-tail in cell adhesion. Huα11-WT, 
Huα11-1171 and mock transfected cells (Mock) were allowed to attach on collagen I or fibronectin or BSA in 
serum-free conditions for 50 mins. Attached cells were fixed, stained with 0.1% crystal violet and absorbance 
was read at 595 nm. (B) Role of α11-tail in cell proliferation. Huα11-WT, Huα11-1171 and Mock cells were 
allowed to attach on collagen I or fibronectin in reduced serum condition for 24 hours. Attached cells were 
fixed, stained with 0.1% crystal violet and absorbance was read at 595 nm. (C) Role of α11 tail in focal 
adhesion formation. Cells were allowed to attach collagen I for 120 mins. Cells were fixed with 4% PFA and 
focal adhesions were imaged using TIRF microscopy and quantified. Scale bar: 10 µm. (D) Role of α11-tail 
in collagen reorganization. Huα11-WT, Huα11-1171 and Mock cells were mixed with collagen I solution and 
allowed to contract for 16 hours. Gel diameters were measured, and percentage of initial gel area was calculated. 
(E) Role of α11-tail in spheroid migration. Homospheroids of Huα11-WT, Huα11-1171 and Mock cells were 
embedded in collagen I gel and spheroid migration was quantified after 24 hours. Radial profile plot depicts 
the radial cell intensity from the center of the spheroid and the intensity of cells that have migrated beyond 
400 µm was calculated. Scale bar: 200 µm. Data shown are pooled from triplicates of at least three independent 
experiments for cell attachment, cell proliferation and collagen gel contraction. Results were expressed as 
mean ± standard deviation of at least three replicates from one representative experiment of at least three 
independent experiments. Statistical significance was assessed by two tailed, unpaired t-tests and P-values are 
expressed as ***P < 0.001; **P < 0.01 and *P < 0.05.
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migration beyond 400 µm of both Huα11-WT and Huα11-1171 cells, suggesting that in contrast to cell prolifer-
ation, ERK activation is not involved in integrin α11-mediated cell migration in this 3D model. Furthermore, 
neither inhibition of FAKY397 activation nor ERK activation inhibited serum-stimulated collagen gel contraction 
(data not shown).

Since FAK is localized in focal adhesions, we investigated the phosphorylation of FAKY397 in focal adhesions. 
Similar to our previous results with immunoblotting, we observed significantly reduced amounts of phosphoryl-
ated FAKY397 positive adhesions for Huα11-1171 cells as compared to Huα11-WT cells (Fig. 5B). These findings 
suggest that the reduced activation of FAK Y397 in Huα11-1171 cells is due to fewer focal adhesions in these cells 
per se.

To summarize, our results strongly suggest that the cytoplasmic tail of integrin α11 is essential to stabilize 
focal adhesions that in turn mediate FAKY397 activation involved in cell proliferation and cell migration.

Discussion
Although integrin cytoplasmic tails are relatively short, they are able to exert control of integrin activity and 
mediate a number of interactions of importance for integrin function7,8. There are in total more than 20 inte-
grins and various research groups have independently deleted cytoplasmic tails and expressed the mutated 
variants with different results6,37–39. When integrin β-tails are expressed as chimeric proteins with non-integrin 

Figure 3. Integrin α11 cytoplasmic tail contributes to FAK and ERK activation. (A) Serum-starved Huα11-WT 
and Huα11-1171 cells were plated on collagen I in serum-free conditions and cells were lysed at different time 
points (T0, T30, T45 and T60). Total and phosphorylated levels of FAKY397, ERK, p38, JNK were detected by 
Western blotting and the protein bands were quantified by densitometry analysis (full size immunoblots are 
shown in supplementary). (B) Human gingival fibroblasts (hGFs) were transfected with control (ctrl) siRNA or 
α11 siRNA (SMARTpool) and 48 hours post transfection, cells were serum-starved and plated on collagen I in 
serum-free conditions. After 30 mins, cells were lysed, and the lysates were analyzed by western blotting. Protein 
bands were quantified by densitometry analysis. Statistical significance was assessed by two tailed, unpaired 
t-tests and P-values are expressed as ***P < 0.001; **P < 0.01 and *P < 0.05.
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transmembrane- and extracellular parts, the β1 integrin tail sequence can direct chimeric proteins into focal 
adhesions40. When integrin α-tails are deleted, some α-tail-less heterodimers localize to focal adhesions in a 
ligand-independent manner41–43 and often become constitutively activated.

In the current study, we have used EGFP-tagged α11 integrins, in a strategy where the tag is separated by a 10 
amino acid linker. Like for EGFP tagged α4 and α5 integrins we find no evidence that addition of the tag inter-
feres with integrin function27,44. It could be argued that addition of a tag on tail-less integrin would be more likely 
to interfere with integrin function than a tag added to full-length integrin. However, independent experiments 
suggest that the loss of α11 integrin activity seen in the tail-less variant can be duplicated by a specific point muta-
tion in the α11-tail, excluding that non-specific interference of the EGFP-tag (data not shown).

In our present study, we found that deletion of α11 cytoplasmic tail led to reduced focal adhesion formation, 
reduced cell spreading, reduced collagen gel contraction, reduced cell migration in a 3D context and reduced 
ERK-dependent cell proliferation, but that the α11-tail was dispensable for cell adhesion under the conditions 
used. Deletion of α1 cytoplasmic tail in fibroblastic 3T3 cells leaves cell adhesion to collagen IV unaffected but 
results in ligand-independent focal contact localization45, whereas in endothelial cells α1-tail deletion leads to 
reduced adhesion to collagen IV36. Deletion of α2 cytoplasmic tail reduces cell adhesion to collagen I in RD 
rhabdomyosarcoma cells, but this effect can be overcome by ions or ligand concentration, suggesting that a major 
function of the cytoplasmic α2-tail is to mediate intracellular inside-out activation events, and that α2 deletion 
effects on cell attachment can be overcome by activating the extracellular domain23. The reduced number of focal 
contacts seen in α11-tail-less expressing cells probably reflects a contribution of α11-tail to a cytoskeletal linkage, 

Figure 4. FAKY397 activation is involved in integrin α11 cytoplasmic tail-mediated cell proliferation and 
migration. (A) Effect of FAK and ERK inhibition in α11-mediated cell proliferation. Huα11-WT and Huα11-
1171 cells were allowed to attach on collagen I or fibronectin in presence of either DMSO or U0126 (20 µM) 
or PF573228 (10 µM) in reduced serum conditions for 24 hours. Attached cells were fixed, stained with 0.1% 
crystal violet and absorbance was read at 595 nm. Results were expressed as mean ± standard deviation of 
at least three replicates pooled from three independent experiments. (B) Integrin α11 tail-mediated ERK 
activation is dependent on FAKY397 activation. Serum starved Huα11-WT and Huα11-1171 cells were treated 
with DMSO or U0126 or PF573228 and allowed to attach on collagen I for 30 minutes. After 30 minutes, cells 
were lysed, and the lysates were analyzed for total and phosphorylated levels of FAKY397 and ERK by Western 
blotting. Protein bands were quantified by densitometry analysis and data shown are pooled from at least three 
independent experiments (Full size immunoblots are shown in supplementary). Statistical significance was 
assessed by two tailed, unpaired t-tests and P-values are expressed as ***P < 0.001; **P < 0.01 and *P < 0.05.
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whose nature remains to be established, rather than need for α11-tail in integrin activation. In vivo integrin α2β1 
is expressed in platelets and hematopoietic cells46 where integrin activation is essential, whereas α11β1 is mainly 
expressed on fibroblastic cells26 where β1 integrins are constitutively activated47.

Here we showed that interaction of α11β1 with collagen I mediated ERK signaling. This signaling is thus 
similar to that observed for α1 (although the preferred ligand for α1β1 is collagen IV48), but is different than for 
α2β1-mediated signaling, which occurs mainly via p38 in 3D collagen I matrix34. Interestingly, in mouse endothe-
lial cells, limited α2-dependent p38 signaling is observed36. These data suggest for collagen-binding integrins that 
the presence of cell-dependent factors influence which MAPK signaling pathway will be activated upon colla-
gen ligation. siRNA knockdown of α11 reduced FAK and ERK activation, supporting that α11-mediated ERK 
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Figure 5. Integrin α11 cytoplasmic tail is involved in focal adhesion formation and FAKY397 activation. (A) 
Effect of FAK and ERK inhibition in α11-mediated spheroid migration. Homospheroids of Huα11-WT and 
Huα11-1171 cells were embedded into collagen I gel and treated with either DMSO or U0126 or PF573228. 
Spheroid migration was quantified after 24 hours. Radial profile plot depicts the radial cell intensity from the 
center of the spheroid and the intensity of cells that have migrated beyond 400 µm was calculated. Scale bar: 
200 µm. (B) Localization of phospho-FAKY397 in focal adhesions. Huα11-WT and Huα11-1171 cells were allowed 
to attach on collagen I for 120 minutes. Cells were fixed with 4% PFA and stained for phospho-FAKY397. Focal 
adhesions positive for phospho-FAKY397 were quantified using ImageJ. Scale bar: 10 µm. Results were expressed 
as mean ± standard deviation of at least three replicates from one representative experiment of at least three 
independent experiments. Statistical significance was assessed by two tailed, unpaired t-tests and P-values are 
expressed as ***P < 0.001; **P < 0.01 and *P < 0.05.
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signaling is central in fibroblasts, which is the major cell type expressing α11. Previous studies have demonstrated 
α11-dependent ERK and PI3K phosphorylation in mesenchymal stem cells expressing multiple collagen-binding 
integrins49. However, in our cell system (C2C12 cells lacking other collagen receptors than the overexpressed 
α11β1), we failed to detect α11-dependent PI3K activation (data not shown).

Blocking α11-dependent cellular signaling in C2C12 and human gingival fibroblasts cells also blocked 
ERK-dependent cell proliferation. A majority of the α11-dependent ERK signaling appeared to be dependent 
on FAK, since FAK inhibition also attenuated the α11-dependent ERK signaling. In the case of α1, FAK inde-
pendent ERK signaling via Shc has been noted50. Later studies have demonstrated that FAK may enhance and 
prolong integrin-mediated activation of ERK through p130 (CAS), Crk, and Rap1 in cells expressing B-Raf51. 
α2-mediated p38 activation has been suggested to depend on specific residues within the α2 integrin subunit 
cytoplasmic domain52, and independent experiments failed to record FAK activation in 3D collagen gel under 
conditions of α2-mediated p38 activation34.

To analyze cell migration in 3D collagen gel we used a spheroid assay. Cell migration53, MMP-induction54 and 
collagen gel remodeling55 has been shown to depend on ERK signaling in some conditions. In our study, ERK 
inhibition did not impair cell migration in a collagen matrix. ERK inhibition could attenuate G-protein depend-
ent integrin inhibition as has been reported for α2β1 integrin-dependent cell migration in smooth muscle cells56.

Finally, the collagen gel contraction was not affected by ERK or FAK inhibition suggesting that an alternative 
signaling pathway is operative in the C2C12 cells overexpressing α11. We have previously demonstrated that 
TGF-β-dependent contraction of floating collagen lattices by dermal fibroblasts depends on α11- and JNK- sig-
naling19. This signaling pathway might be restricted to dermal fibroblasts or depend on relative levels of cru-
cial components in non-canonical TGF-β signaling pathway being present in the cells. Previous studies have 
demonstrated that thrombospondin 1 in scleroderma fibroblasts can activate TGF-β to stimulate ERK-dependent 
collagen contraction57. Since αvβ3 signals via ERK, it is possible that αvβ3 mediates this collagen gel contrac-
tion under these conditions58. ERK activation has been shown to stimulate phosphorylation of MLC and in this 
way contribute to collagen lattice contraction53, but in our experiments pharmacological inhibition of ERK in 
α11-C2C12 cells failed to inhibit contraction.

In summary, our data suggest that the unique functions of α11 that separates it from other collagen-binding 
integrins is in part due to its cytoplasmic tail, which is needed for efficient focal contact formation, cell spreading, 
cell proliferation, cell migration and collagen remodeling.

Materials and Methods
Cell culture. Mouse C2C12 mouse satellite cells were provided by Prof. Anna Starzinski-Powitz (Goethe-
Universität, Frankfurt am Main, Germany) and Phoenix 293 cells were provided by Prof. James Lorens, University 
of Bergen. Primary human gingival fibroblasts (hGF) were isolated from healthy gingival tissues as described ear-
lier59. MRC5 human lung fibroblasts (American Type Culture Collection) were obtained from Robert Lafyatis lab-
oratory (University of Pittsburgh Medical Center, Pittsburgh, PA, USA). Cells were cultured at 37 °C in Dulbecco’s 
modified Eagle’s medium (DMEM; Gibco®, Invitrogen) with 10% fetal bovine serum (FBS; Gibco®, Invitrogen), 
1% penicillin-streptomycin (PEST; Sigma-Aldrich) and 5 µg/ml plasmocin (InvivoGen). Human gingival fibro-
blasts were grown from biopsies obtained during oral surgery after obtaining informed consent and in accord-
ance with guidelines and regulations at the Department of Prosthetic Dentistry, Karolinska Institute, Stockholm 
in the 1990s following approval of experimental protocols by local ethics committee at faculty of Odontology, 
Karolinska institute and were kindly provided by Prof. Kamal Mustafa (University of Bergen)60.

Generation and expression of integrin α11 variants in C2C12 mouse satellite cells. To construct 
pBABE ITGA11 retroviral expression constructs, pBABE-puro-Itga11 plasmid, pBJ1- Huα11-WT-EGFP and 
pBJ1- Huα11-1171-EGFP (for detail, see Supplementary information) were used as templates. The ITGA11-EGFP 
cDNAs from pBJ1-Huα11-WT-EGFP and pBJ1-Huα11-1171-EGFP were excised with XhoI (blunted) and EcoRI 
and subcloned into pBABE-puro-Itga11 plasmid at BamHI (blunted) and EcoRI sites. The constructs were 
transfected into Phoenix 293 packaging cell line with X-tremeGENE 9 transfection reagent (Roche Diagnostics 
GmbH), according to manufacturer’s instructions. The viral supernatant medium was collected after 48 hours 
post transfection. C2C12 cells, cultured on 6-well plates were infected with viral supernatants containing poly-
brene at 5 µg/ml by spinfection at 1200 g for 90 minutes. After 36 hours, the culture medium was changed to a 
selection medium containing 2 µg/ml of puromycin. In addition, the cell populations with similar levels of EGFP 
intensity were sorted by Fluorescence-activated cell sorting (FACS).

Estimation of cell surface protein expression by FACS. FACS was performed at The Molecular 
Imaging Centre (MIC), University of Bergen. Cells were detached with Trypsin-EDTA (0.05% Trypsin and 0.02% 
EDTA; Gibco®, Invitrogen) and neutralized with DMEM containing 10% FBS. The cell suspension was filtered 
with a 40 µm syringe filter and 2 × 106 cells were used for the analysis. Cells were washed twice with PBS for 
5 minutes at 210 × g with phosphate buffered saline (PBS) and the cell pellet was fixed with 2% paraformaldehyde/
PBS for 10 minutes. After fixation, cells were washed three times with PBS and blocked with 2% Bovine serum 
albumin (BSA/PBS) for 30 minutes in room temperature (RT). Cells were incubated with mouse anti- Huα11 IgG 
(mAb 203E3)61 at a final concentration of 5 µg/ml in 2% BSA/PBS for 60 minutes at 37 °C. After washing three 
times with PBS, cells were incubated with goat anti-mouse IgG conjugated with Alexa fluor® 647 for 60 minutes 
in RT. Cells were washed 3X with PBS and analyzed using FACS Accuri for the intensity of Alexa fluor® 647 by 
using uniform gating for all samples and data was analyzed using FLOWJO computer software for FACS analysis 
(FLOWJO, LLC).
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Cell adhesion assay. Forty-eight-well plates were coated with fibronectin (1 μg/cm2: Sigma-Aldrich) or col-
lagen type I (5 μg/cm2: Bovine PureCol®, Advanced BioMatrix) and incubated for 2 hours at 37 °C. After washing 
with PBS, the plates were blocked with 2% BSA for 1 hour at 37 °C. Cells were washed three times with DMEM 
and 1 × 105 cells/well were cultured for 50 minutes at 37 °C. Unattached cells were removed carefully by washing 
three times with PBS containing Ca2+ and Mg2+. Cells were then fixed with 96% ethanol for 10 minutes at room 
temperature followed by staining with 0.1% crystal violet for 20 minutes at room temperature. Plates were washed 
three times with distilled water and the cells were lysed with 1% Triton X-100 for 5 minutes. The lysates were 
transferred to a 96-well plate and absorbance was read at 595 nm.

Cell proliferation assay. Cells were seeded on 24-well plates coated with fibronectin (1 μg/cm2) or collagen 
type I (5 μg/cm2) and cultured for 24 hours in DMEM containing 1% FBS. Cells were washed with PBS and fixed 
with 96% ethanol for 10 minutes at room temperature followed by staining with 0.1% crystal violet for 20 minutes 
at room temperature. After washing three times with distilled water, the cells were lysed with 1% Triton X-100 
for 5 minutes and lysates were transferred to a 96-well plate. The absorbance was read at 595 nm. For inhibition 
experiments, cells were incubated with U0126 (20 µM; Sigma-Aldrich) or PF573228 (10 µM; Sigma-Aldrich). 
Data were normalized considering proliferation of wild-type cells as 100% on collagen and fibronectin.

Collagen gel contraction. Collagen gel contraction was performed as described earlier28,59. In brief, 24-well 
plates were blocked with 2% BSA, overnight at 37 °C and then washed three times with PBS. Collagen solution 
was prepared by mixing 5 parts of DMEM 2 × (SLM-202-B, Merck Millipore), one part of 0.2 M Hepes at pH.8.0 
and 4 parts of Collagen I (3 mg/ml; Bovine PureCol®, Advanced BioMatrix). Collagen solution was then mixed 
with cells to obtain a final concentration of 1 × 105 cells/ml. To each well, 400 µl of cell-collagen suspension was 
added and allowed to polymerize for 90 minutes at 37 °C. Polymerized collagen gels were floated with 400 µl of 
DMEM containing 0.5% FBS. Gel diameters were measured using a ruler and the percentage of the initial gel area 
was calculated.

Immunocytofluorescence. Glass bottom dishes (3.5 mm, MatTek) were coated with collagen type I (50 μg/
cm2) for 60 minutes at 37 °C. Dishes were washed three times with PBS and 2 × 105 cells were cultured for 2 hours 
in DMEM with 10% FBS. Cells were then fixed with 4% paraformaldehyde/PBS for 10 minutes at RT and followed 
by washing three times with PBS for 5 minutes per wash. Focal adhesion images were captured using Nikon Total 
Internal Reflection Microscope (TIRFM).

For phospho FAKY397 staining experiments, coverslips (12 mm, 1.5 H; Marienfeld) were coated in 24-well 
plates with collagen type I (50 μg/cm2) for 60 minutes at 37 °C. Cover slips were washed three times and blocked 
with 2% BSA/PBS for 1 hour at 37 °C. Later, 4 × 104 cells were seeded per well in serum-free conditions. Cells 
were cultured for 2 hours and fixed with 4% paraformaldehyde/PBS for 10 minutes at RT. Cells were permea-
bilized in 0.5% Triton X-100 /PBS buffer for 5 minutes and blocked with 5% BSA/PBS containing 0.1% Triton 
X-100 for 1 hour at RT. Next, cover slips were incubated with polyclonal rabbit anti-phospho FAKY397 IgG 
(1:400; 44-624, Biosource) in 5% BSA/PBS with 0.1% Triton X-100 for 1 hour at 37 °C. After washing with 0.05% 
Tween-20/PBS, cover slips were incubated with Alexa fluor® 594 conjugated goat anti-rabbit IgG (1:400, Jackson 
ImmunoResearch) for 1 hour at RT. Later, coverslips were incubated with DAPI (0.25 μg/ml, Invitrogen) and 
mounted with ProLong Diamond Antifade mounting medium (Thermo Scientific). Cells were visualized under 
a Zeiss Axioscope fluorescence microscope and pictures were acquired with a digital AxioCam MRm camera.

Spheroid preparation and migration assay in 3D collagen gel. Homospheroids were made with 
C2C12 cells using hanging drop method as described earlier62. In short, C2C12 cells were harvested and sus-
pended in culture medium to have a final concentration of 1 × 106 cells/ml. Approximately, 28 drops of cell sus-
pension (25 µl/drop; 2.5 × 104 cells) were made on the lid of a 10 cm Petri dish, containing cell culture medium. 
The lid was carefully inverted over the Petri dish bottom, without disturbing the drop form. The spheroids were 
cultured for 3 days under regular cell culture conditions. Collagen I solution was prepared as described in col-
lagen gel contraction assay and 100 µl of collagen I solution was added onto a 96-well plate and incubated for 
15 minutes at 37 °C. One spheroid was embedded per well and the spheroid-collagen gel was allowed to polymer-
ize for 90 minutes at 37 °C. After polymerization, 100 µl DMEM was added to each well and cultured for 24 hours. 
Spheroids were visualized under an inverted light microscope (Leica DMIL) and images were captured. When 
indicated, DMSO or 20 µM U0126 or 10 µM PF573228 were added to the medium.

SDS-PAGE and western blotting. Cells were seeded on 6-well plates and cultured until confluency. Later, 
cells were lysed with buffer containing 0.5% Nonidet P-40, 20 mM Tris-HCl pH7.4, 150 mM NaCl, 1 mM MgCl2, 
1 mM CaCl2 and proteinase inhibitor complete (Roche, Germany). Protein concentration was determined by 
BCA assay. Protein samples of 20 μg from each clone, mixed with SDS sample buffer (Biorad) containing 2% 
of 2-β-mercaptoethanol were loaded and separated by 6% SDS-polyacrylamide gel. Then, the purified proteins 
were transferred to a PVDF membrane using iBlot® system (Invitrogen). Membranes were analyzed with mouse 
anti-EGFP IgG (1:2000, Clonetech) or polyclonal rabbit anti- Huα11 IgG (PA5-23897, Thermo Fischer Scientific) 
or mouse anti-β-actin IgG (1:5000, Sigma-Aldrich). Blots were developed using ECL system (Pierce protein 
research products) and ChemiDoc XRS (Bio-Rad).

For signaling experiments, cells were cultured overnight with reduced serum conditions (1% FBS) and serum 
starved for 3 hours before the experiments. Trypsinized cells were neutralized with DMEM containing Soyabean 
trypsin inhibitor (50 µg/ml). Cells were washed three times with DMEM and incubated for 45 minutes on rota-
tor at RT. 106 cells were seeded on to 6-well plates pre-coated with collagen (5 μg/cm2) and blocked with 2% 
BSA/PBS, as described previously. For T0 samples, cells were lysed directly with 1X SDS sample buffer. For the 
remaining samples, cells in each were lysed in 1X SDS sample buffer after 30 min (T30), 45 min (T45) and 60 min 
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(T60). Protein lysates were separated by SDS-PAGE and analyzed by western blotting using the following anti-
bodies: Rabbit monoclonal anti-phospho p44/42 MAPK IgG (20G11), rabbit monoclonal anti-p44/42 MAPK 
IgG (137F5), rabbit anti-FAK IgG (#3285), rabbit monoclonal anti-phospho-SAPK/JNK IgG (81E11), rabbit 
anti-SAPK/JNK IgG (#9252), mouse monoclonal anti-phospho p38 IgG (28B10), rabbit anti-p38 IgG (#9212) 
from Cell Signaling Technology and rabbit anti-phospho FAKY397 IgG from Biosource. Relative protein expres-
sion was quantified using Image Lab™ Software (Bio-Rad).

integrin α11 silencing with siRNA. Primary hGFs were harvested and 5 × 105 cells were plated on 10 cm 
culture dishes 30 min prior to transfection. Cells were transfected with SMARTpool ON-TARGET plus ITGA11 
siRNA (L-008000-00-0005, Dharmacon) or Individual ON-TARGET plus ITGA11 (J-008000-10, Dharmacon) 
or ON-TARGET plus Non-Targeting siRNA (D-001810-02-05, Dharmacon) at a final concentration of 20 nM 
with HiPerfect transfection reagent. After 48 hours, cells were serum starved for overnight. Cells were prepared 
as described for signaling experiments. Six-well plates were coated with thin film fibrillar collagen I gel prepared 
using the collagen I solution described in collagen gel contraction section and allowed to polymerize for 60 min 
at 37 °C. Cells were harvested and 5 × 105 cells were plated on to each 6-well and lysed as described above for 
SDS-PAGE and Western blotting analysis. Western blots stained with anti-phospho p44/42 MAPK IgG were rep-
robed with a custom-made mouse monoclonal anti- Huα11 IgG, mAb 210F4 (Supplementary Fig. 1) to confirm 
the silencing of ITGA11. In addition, membranes were analyzed with rabbit monoclonal anti-human α2 (EPR 
5788, Abcam), mouse monoclonal anti-human α1 antibody (MAB 5676, R&D Systems), mouse GAPDH anti-
body 6C5 (sc-32233, Santa cruz biotechnology) and mouse anti-β-actin IgG (AC-74, Sigma-Aldrich) to confirm 
the unchanged levels of integrin α1 or α2 protein. MRC5 protein lysates were used as positive controls.

Image analysis. Focal adhesions were quantified as described previously63. Briefly, raw images were sub-
jected to background correction with a rolling ball radius of 50 using ImageJ. Image contrast was enhanced using 
ImageJ plugin CLAHE and threshold adjusted. The number of focal adhesions, area of individual focal adhesion 
and total area of focal adhesions were quantified for a single cell. Cell spreading was quantified by measuring the 
cell surface area, which was in turn calculated by drawing the cell boundary using ImageJ. Spheroid images were 
also subjected to background correction and contrast enhancement using CLAHE plugin in ImageJ. Threshold 
adjusted images were used to quantify the radial cell density profile from the center of the spheroid, using the 
Radial Profile plugin from ImageJ. The cell densities of migrated cells at different distant points were used to 
quantify the distance of migration from the center of the spheroid as described earlier64.

Statistical analysis. Statistical significance was assessed by using two tailed, unpaired t-tests as indicated 
in the figure legends and P < 0.05 considered statistically significant. Statistical analysis and all graphs were done 
using GraphPad Prism 5 software (GraphPad Inc, USA). Data normalization was done based on maximum value 
in each experiment and data from three independent experiments was pooled together, and average ± standard 
deviation was calculated for each cell type and condition. For cell adhesion assay, data normalization was done 
based on the average absorbance values of the fibronectin-coated wells in each experiment.

Data availability
No datasets were generated or analyzed during the current study.
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