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traceable Quantum Steganography 
Scheme Based on pixel Value 
Differencing
Jia Luo1,2, Ri-Gui Zhou1,2*, GaoFeng Luo1,2,3, YaoChong Li1,2 & GuangZhong Liu1*

A novel and traceable quantum steganography scheme based on pixel value differencing (PVD) is 
proposed. In the proposed scheme, a quantum cover image is divided into non-overlapping blocks of 
two consecutive pixels. Then, by a series of reversible logic circuits, we calculate the difference value 
based on the values of the two pixels in each block and classify it as one of a set of continuous ranges. 
The secret image and operator information are embedded in the cover image by using the new obtained 
difference value to replace the original one. The number of bits of secret image that can be embedded 
in a block is determined, and the number of bits of operator information is decided by the range of the 
difference value belongs to. Moreover, when the embedded data is extracted from a stego image, it is 
not necessary to refer to the original cover image. The performance of the proposed scheme is based on 
the analysis of several categories of simulation results, such as visual quality, capacity, and robustness.

In recent decades, an increasing number of researchers have invested in the field of quantum image processing. 
Firstly, Vlasov1 proposed a method of recognizing orthogonal images. Later, G. Beach et al.2 showed that quantum 
algorithms like Grover algorithm3 can be used for image processing tasks. And then, the investigations about 
capturing and storing digital image on a quantum computer were explored. There are already a series of quantum 
representation models, such as Qubit Lattice4,5, Real Ket6 and so on. Among them, flexible representation of 
quantum images (FRQI)7 and a novel enhanced quantum representation of digital images (NEQR)8 are widely 
adopted. Then, on the basis of FRQI and NEQR, researchers have contributed to quantum image processing 
algorithms and applications, such as quantum image translation9,10, quantum image scaling11–15, quantum image 
feature extraction16, quantum image matching17–19, and so on20.

Especially quantum information hiding strategies have aroused considerable research interest, including 
quantum image steganography and quantum image watermarking. Like with classical steganography21, which 
has been thoroughly studied, quantum image steganography aims to make secret data concealed in the cover 
image undetectable by external observers.

Since the least significant bit (LSB) method hides secret information to a cover image in a simple way, it gained 
more and more researchers’ attention. In 2015, Jiang et al. proposed two quantum image steganography schemes 
based on moire patterns22 and LSB23, respectively. In 2016, Sang et al.24 constructed a scheme in which quantum 
color image is the cover image. Using basic gates, Miyake et al.25 designed quantum circuits to achieve the aim 
of embedding secret information. And Heidari et al.26 investigated three methods to embed the secret data to 
red-green-blue channels. Furthermore, in 2017, Heidari et al.27–30 also proposed some LSB based methods to 
protect copyright. Zhou et al.31 proposed a scheme that includes three processes of extension, scrambling and 
embedding. A scheme based on embedding color watermark image is proposed by Li et al.32. Zhou et al.33 pro-
posed a watermarking scheme adopting new scrambling transformation in 2018.

To improve the performance of robustness of the existing quantum steganography algorithm, we proposed 
a quantum steganography scheme based on pixel value differencing (PVD). The concept of PVD was first pro-
posed in ref.34. Because the human visual system has such a characteristic that human eyes are more sensitive to 
pixel modification of the smooth area of an image than the edge one, the amount of modification that each pixel 
of the digital image can tolerate is different. That is, without causing perceptible sensory distortion, each pixel 
can embed a different number of secret bits. But the amount of modification per pixel is uniform in the LSB 
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steganography algorithm. The LSB steganography algorithm does not consider the character and ignores the edge 
effect of the image, so the algorithm performance is general. Considering the image edge effect and human visual 
system characteristics, each pixel in the digital image can be tolerated different bits in the PVD algorithm.

The proposed steganography scheme divides the cover image into blocks of two pixels that do not overlap. If 
the pixel difference of the pixel block is small, it indicates that this block is in the smoothing region. That means 
the human eye is more sensitive to it, and only less secret data can be hidden. Conversely, if the pixel difference 
value of block is large, it indicates that the block is located in the edge region of the image. The human eye is less 
sensitive to it, and more secret information can be embedded. The secret information includes a secret image and 
operation information, wherein the operation information may include operator information, operation time, 
etc., that can be used to trace the secret image.

preliminaries
The novel enhanced quantum representation for digital images (NEQR). NEQR model8 uses the 
basis state of a qubit sequence to store the grayscale value of pixels in the image. Therefore, two entangled qubit 
sequences are used in NEQR to store the whole image. For a 2n × 2n quantum image with ranged of 2q, the repre-
sentative expression of NEQR image is expressed as follows:
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1 1 0  encodes the grayscale value f(Y, X) of the corresponding 

pixel (Y, X) and | 〉 = | ⋅ ⋅ ⋅ 〉| ⋅ ⋅ ⋅ 〉− −YX y y y x x xn n1 1 0 1 1 0  represents the position information in vertical and hori-
zontal directions.

The pixel value differencing method (PVD). PVD method is first proposed in ref. 34, in which, a cover 
image is partitioned into non-overlapping blocks of two consecutive pixels, say pi and 

+pi 1. A difference value d is 
calculated from the values of the two pixels by subtraction operation, which may be in the range from −255 to 
255. Only consider the absolute values of di and classify them into a number of contiguous ranges, called Ri, where 

= …i n1, 2 . The number of bits can be embedded in a pixel pair is decided by which range the difference value 
belongs to. The difference value then is replaced by a new value to embed the bits of the secret information. This 
method provides an easy way to produce a more imperceptible result than those yielded by simple least significant 
bit (LSB) replacement methods. And also, the embedded secret information can be extracted from the stego 
image without referencing the original cover image.

Reversible logic circuits. In this section, a series of reversible logic circuits is predefined to accomplish the 
PVD method. More details are described as follows.

Cyclic shift transformation (CS). The cyclic shift is the realization of the position shifting transformation that was 
proposed in ref. 35. The reversible logic circuit is illustrated in Fig. 1, and its function can be expressed as

| … 〉 → | … + 〉− − − −x x x x x x x x x x( 1)mod 2 (2)n n n n
n

1 2 2 1 0 1 2 2 1 0

where n is the number of qubits in cyclic shift transformation.
Therefore, when we move the image to the left by one unit, the pixels will be transformed from | 〉f Y X( , )  to 

| + 〉f Y X( , 1) .

Plain adder module (ADDER). The addition of two qubit sequences | 〉A  and | 〉B  by plain adder module is used in 
the proposed scheme that writes the result of the computation into one of the input sequences, i.e.

| 〉 → | + 〉.A B A A B, , (3)

The reversible logic circuit of ADDER module36 is shown in Fig. 2.

Figure 1. The cyclic shift transformation for one unit. It is consisting of a series of Controlled-NOT gates, and 
the number of control qubits is from n-1 to 0. The simplified module is shown on the right.
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Calculate the absolute value (CAV). Zhou et al.15 designed a reversible parallel subtractor (RPS) through a series 
of basic modules. The simplified circuit module of RPS is illustrated in Fig. 3(a). There are two n-qubit inputs X 
and Y, where | 〉 = | …− −X x x x xn n1 2 1 0 and | 〉 = | … 〉− −Y y y y yn n1 2 1 0 . And the output | 〉 = | … 〉− −S s s s s sn n n1 2 1 0  is the 
result of | − 〉X Y . It is worth noting that the highest qubit sn is the sign bit. When sn is equal to 1, Y is greater than 
X and | 〉S  is the complement code of difference value. When sn is equal to 0, it means that X is greater than Y and 
| 〉S  is difference value.

To calculate the absolute difference value, the reversible logic circuit implementing the complement operation 
(CO) is constructed. The integrated CAV module is shown in Fig. 3(b). For more details, please refer to ref.15.

Quantum divider. The reversible logic circuit for implementation of division operation based on restoring divi-
sion algorithm was proposed in37. Figure 4(a) illustrates a compendious quantum divider module. The inputs are 
| 〉 = | … 〉− −A a a a an n1 2 1 0 , | 〉 = | … 〉− −B b b b bn n1 2 1 0  and n ancillary qubits with an initial value of | 〉0 . The output 
contains the value of quotient that is rounded down. And we add a controlled cyclic shift operation mentioned in 
subsection 3.1 to the QD to acquire the round up quotient.

Figure 2. Circuit realization of plain adder module ADDER. The circuit in the dashed box implements the 
addition of two qubit sequences, and the three basic modules are illustrated below. The simplified module of 
ADDER is also given together.

Figure 3. (a) Simplified circuit module of RPS (b) Module of calculating the absolute value

Figure 4. Quantum divider circuits (a) Round down quotient module (b) Round up quotient module. When 
the remainder is not equal to zero, the circuit module CS is adopted to round up the quotient.
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proposed Scheme
The secret image and the information of operator are embedded in cover image in the proposed traceable steg-
anography scheme based on pixel value differencing. Wherein, the secret image is embedded regardless of the 
difference of the pixel values, and the operator information is embedded with different qubit numbers according 
to the level of the pixel value difference. Traceability of secret information is realizing by extracting operator 
information. More details are described next.

Quantization of differences of gray values of two-pixel blocks. Through analysis of the PVD 
method as described in subsection 2.2, it is known that the difference value d of | 〉f Y X( , )  and | + 〉f Y X( , 1)  can 
be calculated by the reversible logic circuit CAV module so that we can partition the difference values in ranges 
Ri. Firstly, the way of dividing the square cover image into two-pixel blocks runs through all the rows of image in 
a consecutive and non-overlapping manner, and an example is shown in Fig. 5(a).

In general, small difference value indicates that the two-pixel block is in a smooth area, whereas a large dif-
ference value of a two-pixel block is corresponding to an edge area. The blocks in edge areas may, as mentioned 
previously, tolerate larger changes of pixel values than those in the smooth areas. Therefore, more information is 
embedded in edge areas than smooth areas.

Specifically, | 〉d  is classified into a set of continuous ranges, say Ri where = …i 0, 1 4 as shown in Fig. 6. The 
proposed scheme is based on selecting the range widths of 8, 8, 16, 32, and 192, which partition the total range of 
[0,255] into [0, 7], [8, 15], [16, 31], [32, 63], [64, 255]. Two qubits in secret image are embedded in the pair pixels 
in every range. In contrast, the number of embedded operator information qubits varies with the difference value. 
That is, when the difference value is at R0, it is not embedded. When it is at R1, one qubit is embedded. By this 
analogy, when the difference value is at R4, four qubits are embedded.

Data embedding. We propose a traceable steganography scheme utilizing the NEQR model, which hides a 
secret grayscale image and a bit stream (operator information) into a cover grayscale image. The size of secret 
image and cover image is ×− −2 2n n1 2 and ×2 2n n, respectively. In order to correspond to the number of differ-
ence values, the secret image with ×− −2 2n n1 2 and 8 bits grayscale is expanding to an image with × −2 2n n 1 and 
2 bits grayscale. Figure 5(b) illustrates an example about how to decompose eight bits sequence into four two-bit 
sequences.

Then, the cover image and the decomposed secret image are transformed into quantum images | 〉C  and | 〉S , 
respectively. The representations can be expressed in Eq. (4):
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and the difference values of the cover image | 〉d  are written as below:
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To realize the partition of | 〉d , based on thresholds the pixel value differences comparison operation Ut are 
proposed. The module of classification and the corresponding circuit is illustrated in the dotted box of Fig. 7. The 
number of t is changed according to the upper bound of ranges to be compared. Firstly, it is utilized to compare 
| 〉d  with | 〉00000111  that is the upper bound of first range and the parameter t is equal to 3 at this time. If the output 

Figure 5. Two examples. (a) Example of the non-overlapping two-pixel blocks. The two pixels of same gray 
color in the image are the non-overlapping block. (b) Example of decomposing eight bits to four two-bits. The 
eight bits are divided into pairs, and then orderly filled into four positions.
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Figure 6. Ranges of the difference value

Figure 7. Circuits of classifying the difference value. In the dotted box, after flipping the highest q-t qubits 
using the X gates, a Controlled-NOT gate and an auxiliary qubit are used to assess if the highest q-t qubits are 
all zero, and then restore the original value with the same number of X gates. Four simplified module Ut are 
employed to divide the absolute difference value into five ranges, that is, R0, R1, R2, R3 and R4. For different 
ranges, different Ei will be adopted. (The module Ei is described below)
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| 〉ri  is equal to 1, it means that | 〉d  is less than 8. That is, the range of | 〉d  is R1. If the output | 〉ri  is equal to 0, | 〉d  is 
compared with the next upper bound. Similarly, all | 〉d  can be partitioned in accordance with Ut , where 

=t 3, 4, 5, 6. For realizing the pixel value differencing and the determination of ranges, the whole reversible 
logic circuit is designed as shown in Fig. 7.

Since the number of embedded qubits in each range is confirmed, a new difference d′ then is computed by:

′ = +d l b (6)k i

where bi is the denary value of embedded qubits, that is consisted of 2-qubit in secret image and i-qubit in opera-
tor information. And the value bi is in the range from 0 to −u lk k, hence the value of d′ is in the range from lk to 
uk, where uk and lk represent the upper and lower bounds of the range Rk. According to the previous discussions, 
if we replace d with d′, the resulting changes are presumably unnoticeable to the observer. Through a series inverse 
calculation, bi is embedded in two-pixel block with pixel values of gj and 

+gj 1, respectively. The function is defined 
to be:
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where | 〉 = || ′ − |〉m d d . The corresponding reversible logic circuit, that is module Ei, is demonstrated in Fig. 8. To 
assist one better comprehend the embedded procedure, an example of data embedding is illustrating in Fig. 9.

extraction procedure. The extraction procedure is as follows:

 1. The stego image is divided into adjacent two-pixel blocks ′
+
′( )y y,j j 1

 according to the same partition method 
in the embedding step.

 2. Calculate the difference value by Eq. (8), and determine the range Ri in which it is located.

= | − |′ ′
+
′d y y (8)j j j 1

 3. Extract the secret qubits from ′dj by:

= −′b d l , (9)i j i

where the last + i(2 ) qubits of bi are the target.
 4. Reorganize all extracted qubits to get the original secret image and operator information.

So far, the accurate extraction of secret image without the original cover image is achieved. Simultaneously, we 
also extract operation information about the secret image. The extraction circuit is given in Fig. 10.

Figure 8. The embedding circuit Ei. i is the level of difference value range. Distinguishingly, when i = 0, the 
number of X gate is set to zero. The first ADDER module adds the lower bound of the range to the secret 
information qubits, and the result is subtracted from the pixel value difference. After dividing by 2 using the 
module QD, the round up or down quotient is added or subtracted from the original pixel values according to 
the constraint of Eq. (7).
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time complexity
In order to calculate the time complexity of quantum image processing algorithms, usually a basic gate is consid-
ered. For all complex unitary operations on many qubits can be expressed as compositions of all one-qubit quan-
tum gates and the two-qubit quantum CNOT gate38. Therefore, the time complexity of any one-qubit gates and 
two-qubit gates is taken as a basic unit. The circuits of classification are dividing into one CAV module and (q-4) 
Ut modules. And in the embedding circuit shown in Fig. 8, there are including two CAV modules, five ADDER 
modules, four RPS modules, one QD module and one CS module.

For a q-qubits CAV module, it contains a CO module that includes q CNOT gates and q q-CNOT gates and a 
RPS module which complexity is −q7 2. Thus, the complexity of CAV module is:

+ × − + − = − −q q q q q q(12 11) 7 2 12 3 2 (10)2

And the q-qubit ADDER module is composed by 2q carry module (which circuit complexity is 3), q sum 
modules (which circuit complexity is 2) and an additional CNOT gate. So the circuit complexity of ADDER 
modules is:

× + × + = +q q q2 3 2 1 8 1 (11)

In addition, a q qubits QD module37, the circuit complexity is + +q q q3 63 2 . Reference39 points out that a 
q-CNOT gate is equivalent to −q(2 1) Toffoli gates and 1 CNOT gate with adequate ancillary qubits, and one 
Toffoli gate can be simulated by six CNOT gates. So the circuit complexity of CS module is:

Figure 9. An illustration of the data embedding. The gray values of a sample two-pixel block are assumed to be 
(40, 27). The difference value is 13, which is in the range of 8 through 15. Therefore, the difference value is in the 
range of R1, which means that three qubits are embedded in cover image, that is, the value of S SYX YX

1 01  and 
operator information qubit is | 〉01  and | 〉0 , respectively. It is added to the lower bound value 8 of R2, resulting in a 
new difference value 10. Next, the new pixel values (38, 28) are obtained by the operational criterion in Eq. (7).

Figure 10. The extraction circuit. The last i + 2 qubits of output of RPS module which calculate the difference 
value of ′dj and the lower bound of the range are the target qubits, wherein last i qubits are the operator 
information and other two qubits are the value of secret image.

https://doi.org/10.1038/s41598-019-51598-8
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Thus, the complexity of embedding circuit is
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For the Fig. 7, the complexity is:
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Thus, the total circuit complexity of data embedding is + + +q q q3 53 25 233 2 , that is, Ο q( )3 .
For the extraction procedure, the circuit of classification is same as the embedding procedure which is given 

in Eq. (14) and the extraction circuit consists of one CAV module and one RPS module. Therefore, the circuit 
complexity is:

− + + − − + −

= − +

q q q q q
q q

(16 27 30) (12 3 2 7 2)
28 23 26 (15)

2 2

2

that is Ο q( )2 .
We can see from the above, the complexity of embedding and extraction procedures is Ο q( )3  and Ο q( )2 , 

respectively. This is only related to the qubits representing the gray scale. Compared with the complexity related 
to image size in the classical counterpart, our algorithm has a larger improvement than the classical algorithm.

Furthermore, we compare the time complexity of proposed scheme with other quantum information hiding 
schemes, in which the image size is ×2 2n n and gray scale is 2q. The results are enumerated in Table 1, we can see 
that the complexity of other schemes is related to the size of image, but the proposed scheme is related to the gray 
scale. Therefore, different from the complexity of other schemes that varies with image size, the complexity of the 
proposed scheme does not increase as the image gets larger.

Simulation experiments and Discussion
In order to evaluate the proposed scheme comparing with the existing literature, in this section, simulations of the 
properties are demonstrated. All the simulations are based on a classical computer equipped with software Matlab 
R2014b. The cover images used in the simulation experiments are “Male”, “Peppers” “Sailboat on lake” and 
“Airplane” with size of ×256 256. Besides that, in order to facilitate the traceability, the operator information is a 
bit stream that full of quantum representation of the text “Quantum Text and Quantum Image”30.

invisibility. The histogram analysis. Image histogram can be considered as a visualized tool for evaluating 
the visual effects caused by image steganography on cover images. The image histogram is a statistic of the gray 
level distribution in the image, that counting all the pixels in the image according to the gray value. Wherein, the 
abscissa is a gray level, and the ordinate is a frequency at which the gray level appears. By comparing the histo-
gram graphs of two images one can judge whether the images similar or not. In image steganography algorithms, 
more similarity can be observed between the histogram of cover image and corresponding stego image, more 
invisibility can be obtained after the image steganography scheme manipulated.

Figure 11 indicates the histogram graphs of the six original images and the histogram graphs of their corre-
sponding stego images where the image “Male” with size of ×128 64 is considered as the secret image. According 
to the histogram graphs, it can be seen that the stego images are in good agreement with the original ones.

The peak signal-to-noise ratio (PSNR). Since the peak signal to noise ratio (PSNR) is generally used to evalu-
ate the quality of the stego image, we adopt that to evaluate fidelity of our steganography scheme. The PSNR is 
defined as follows:

Scheme The time complexity

Reference20 +n19 8

Reference25 +n3 2

Reference26 -first method + +n n18 42 942

Reference26 -second method + +n n18 90 5042

Reference26 -third method + +n n18 98 1662

Proposed scheme + + +q q q3 53 25 233 2

Table 1. The comparison of complexity.

https://doi.org/10.1038/s41598-019-51598-8
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MSE
20log

(16)
P
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Herein, MAXP is the maximum pixel value of the cover image, i.e., 255. MSE is defined as the mean squared 
error for two ×m n images P and Q, where P and Q are associated with the stego image and the cover image, 
respectively.

∑ ∑= −=
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=
−MSE
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P i j Q i j1 [( ( , ) ( , )) ] (17)i

m
j
n

0
1

0
1 2

The simulation results of PSNR are shown in Table 2, in which frequently-used images are selected as cover 
images, i.e., “Peppers”, “Sailboat on lake” and “Airplane”. Although the LSB based methods presented by Heidari 
et al.27,29,30,40 has higher PSNR, our proposed algorithm also achieves a satisfactory visual quality from invisibility 
analyses.

capacity. The capacity of quantum steganography scheme is defined as the ratio of the number of secret 
qubits and the number of cover pixels. Thus, the proposed scheme’s capacity is given as follows:

Figure 11. Each column from left to right is (a) original images (b) stego images (c) original image histogram 
graphs (d) stego image histogram graphs.
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where m and q are the embedded qubits of operator information and the gray scale of secret image, respectively. 
Therefore, the capacity of the proposed scheme is s that is greater than 1.

Robustness. Robustness performance under noise. Obviously, the secret image can be integrally extracted in 
a noise-free environment. However, the extraction procedure of the proposed scheme is not always carried out in 
a noiseless environment. The robustness of the proposed scheme under the salt and pepper noise is analyzed. Salt 
and pepper noises are applied with different density of from 0 to 0.15 into ×256 256 stego image “Peppers”. Peak 
signal-to-noise ratio (PSNR) is employed to evaluate the fidelity of the extracted secret image. The corresponding 
results from the stego images with noise are shown in Table 3. The table also shows the PSNR values of the scheme 
proposed in refs22,25,27. As can be seen from Table 3, the value of PSNR in our scheme is obviously higher than the 
other three schemes.

Robustness performance under attack. Since pure LSB based methods are easy detected, it is vulnerable to steg-
analysis. Regular and Singular (RS) steganalytic technique, first proposed in ref.41, is very efficient in detecting the 
presence of a message in a gray image and to estimate its approximate size. The technique originated by analyzing 
the capacity for lossless data embedding in the LSB. Randomizing the LSB decreases the lossless capacity in the 
LSB plane, but it has a different influence on the capacity for embedding that is not constrained to one bit-plane. 
Thus, the lossless capacity turned out to be a very sensitive measure for the degree of randomization of the LSB 
plane. And the secret message length can be derived by inspecting the lossless capacity in the LSB plane.

In the proposed scheme, the differences of the gray values in the two-pixel blocks of the cover image are used as 
features to cluster the blocks into a number of categories of smoothness and contrast properties. Different amounts 
of data are embedded in different categories according to the degree of smoothness or contrast. Therefore, we have 
no significant change in the ratio of regular and singular groups compared to the original image. This means that 
RS technique cannot detect the embedded data in the cover image of the proposed scheme.

conclusion
A new and traceable quantum steganography scheme for embedding secret image and operation information 
into cover image without producing noticeable changes has been proposed. The scheme is based on pixel value 
differencing which follows image edge effects and human visual system characteristics well. Pixels located in the 
edge area of the image are embedded with more secret information, including operator information for traceable 
secret images. Secret image and operation information are embedded into cover image by replacing the differ-
ence values of the two-pixel blocks of the cover image with similar ones in which qubits of embedded data are 
included. It is worth mentioning that the extraction process is absolutely blind. Furthermore, by embedding data 
in each adjacent pair of signals of images, the steganography scheme can also be easily extended to efficiently 
carry content-related messages such as captions or annotations in quantum audio and video.

Data availability
All data needed to evaluate the conclusions are available from the corresponding authors upon reasonable request.
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Cover image Secret image PSNR

Peppers Airplane 42.65

Sailboat on lake Peppers 41.31

Airplane Male 42.26

Table 2. The PSNR for the proposed scheme.

Scheme

Density

0.05 0.1 0.15

Reference22 15.03 12.15 10.20

Reference25 26.96 22.14 18.34

Reference27 — 31.30 30.14

Proposed scheme 41.90 38.92 37.39

Table 3. PSNR of extracted image under the salt and pepper noise.
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