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Pleione: A tool for statistical and 
multi-objective calibration of Rule-
based models
Rodrigo Santibáñez1,2, Daniel Garrido2 & Alberto J. M. Martin1*

Mathematical models based on Ordinary Differential Equations (ODEs) are frequently used to describe 
and simulate biological systems. Nevertheless, such models are often difficult to understand. Unlike 
ODE models, Rule-Based Models (RBMs) utilise formal language to describe reactions as a cumulative 
number of statements that are easier to understand and correct. They are also gaining popularity 
because of their conciseness and simulation flexibility. However, RBMs generally lack tools to perform 
further analysis that requires simulation. This situation arises because exact and approximate 
simulations are computationally intensive. Translating RBMs into ODEs is commonly used to reduce 
simulation time, but this technique may be prohibitive due to combinatorial explosion. Here, we 
present the software called Pleione to calibrate RBMs. Parameter calibration is essential given the 
incomplete experimental determination of reaction rates and the goal of using models to reproduce 
experimental data. The software distributes stochastic simulations and calculations and incorporates 
equivalence tests to determine the fitness of RBMs compared with data. The primary features of Pleione 
were thoroughly tested on a model of gene regulation in Escherichia coli. Pleione yielded satisfactory 
results regarding calculation time and error reduction for multiple simulators, models, parameter search 
strategies, and computing infrastructures.

Systems biology studies the behaviour of biological systems by determining and quantifying all of the molecular 
interactions that characterise them1. This area of science relies on different experimental, mathematical, and 
computational tools to address system generalities such as robustness and specific details such as bi-stability2,3. 
Notably, these computational approaches can be classified into two primary types: those that aim to determine 
cell component interactions (e.g., methods to infer Gene Regulatory Networks GRNs, from expression data4) and 
those used to study the dynamical properties that define such systems1,2.

In the post-genomic era, elucidating gene regulation remains one of the primary challenges of systems biol-
ogy5. This information is highly relevant to understanding metabolism6,7, cell responses8,9, and cell-to-cell interac-
tions10,11 and for developing industrial applications of microrganisms12. The increasing availability of omics data 
has facilitated modelling of biological systems with the goal of understanding and predicting their behaviour13. 
Frequently modelled experimental data include genomics, transcriptomics, proteomics, and metabolomics14. 
These datasets can be modelled in single-omics or integrated, multi-omics representations of cell behaviour15. 
Historically, Ordinary Differential Equations (ODEs)-based models have been extensively used for modelling 
biological systems14. Nowadays, Rule-Based Models (RBMs) are gaining popularity because of their advantages 
over their ODE counterparts16–18. For example, RBMs are best suited to modelling large systems that may be 
composed of millions of different types of components and transformations17,18. To simulate RBMs, most of the 
available tools use the Gillespie’s Stochastic Simulation Algorithm (SSA), a method to retrieve an exact numerical 
solution from a Chemical Master Equation19. The SSA and its derivatives are implemented in RBM simulators 
such as KaSim17, BioNetGen (BNG)20,21, and others22–26. Unfortunately, tools to perform calibration and deter-
mine parameter uncertainty of RBMs are generally lacking; they are available only for BioNetGen Language 
(BNGL) and Systems Biology Markup Language (SBML) models27,28. Without proper calibration, analysis of 
model perturbations and predictions beyond experimental data are impossible.

One significant difficulty of modelling biological systems is robustly estimating parameter values. This cali-
bration procedure is especially relevant considering that the purpose of models is to reproduce observed data 
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or phenomena29. Notably, this problem is computationally expensive in the case of RBMs, where conventional 
approaches rely on an equivalent ODE model to reduce the calculation time30,31. In general, multiple simulations 
of an RBM converge on a numerical solution to its ODE counterpart. However, both modelling frameworks entail 
different assumptions16. As a calibration example, Kozer et al.30 employed BNG to simulate multiple RBMs that 
differed only in parameter values, solving each model in a deterministic fashion with the CVODE software32. In 
contrast to Kozer et al.30, Aguilera et al.31 developed and performed a calibration of a stochastic model employing 
first-deterministic simulations. These authors argued that if a deterministic stationary state closely matches the 
modes of the experimental data, the employed parameters are good candidates for fitting stochastic simulations 
to the same data31. However, their approach fails if the stationary state is remarkably different from the simulated 
pseudo-stationary state of stochastic simulations, as was argued by Halh & Kremling33, or in situations where a 
deterministic simulation is not possible. For instance, KaSim17 does not provide an ODE solver and while KaDE34 
can export a kappa model to ODEs in a variety of compatible software versions, the size of the generated model 
is affected by combinatorial complexity, the explosion in the number of ODEs due to the numerous interactions 
and modifications modelled25. For example, the EGFR/ERK pathway model contains 70 rules that are equivalent 
to approximately 1023 ODEs17. Despite the availability of robust methods to calibrate and analyse ODE models, 
using these methods to calibrate RBMs may disregard the stochastic behaviour of a system and accordingly result 
in a loss of useful information. To circumvent these problems, Thomas et al.27 developed BioNetFit (BNF) and 
recently Mitra et al.28 developed PyBioNetFit (pyBNF). Both of these tools harness computational load schedulers 
to parallelise simulations and cut down on the time necessary to calibrate an RBM. Although BNF (and pyBNF) 
address the need for a calibration tool, they support only RBMs written in BNGL and SBML20 and rely on alge-
braic equations to compare experimental data and simulation that may be of special concern depending on the 
nature of the modelled phenomena.

In this study, we present and describe the features of Pleione, an open resource to calibrate RBMs. Pleione 
encodes a Genetic Algorithm (GA), a robust and general methodology that searches the parameter space with 
operations that select, recombine, and mutate models with increased fitness35. Pleione was developed to perform 
three primary tasks: calibrate RBMs regardless of their underlying formal language, statistically assess models 
against experimental data, and distribute calculations with minimal user intervention. Pleione supports BNG220, 
NFsim23, KaSim17,21, and PISKaS36 to perform simulations of RBMs either in BNG or kappa language. SBML 
models can be transformed with BNG into BNGL models20 or with PySB and exported to a myriad of formats18. 
Furthermore, Pleione can evaluate models employing unique or combined fitness functions37 referred to hereafter 
as single-objective GA (SOGA) or multi-objective GA (MOGA). Additionally, it incorporates parametric and 
non-parametric equivalence tests such as the two one-sided t-tests38, the Double Mann-Whitney U-test39, and the 
Wellek’s test40,41 as measurements of the fit between the experimental data and the stochastic simulations. Pleione 
can accordingly determine significant equivalences between experimental and simulated data. Lastly, we parallel-
ised calculations employing the SLURM software, the de-facto standard for high-performance computing infra-
structure. We also support parallelised calculations without SLURM using the python multiprocessing package.

We tested Pleione in a variety of settings and report its behaviour. We employed multiple search strategies with 
algebraic functions to calibrate 79 free parameters of the core GRN model of E. coli36. We also report the uncer-
tainty in parameter values using jackknife and bootstrap procedures. Subsequently, we calibrated the Aguilera’s 
simple model of gene regulation31 employing the equivalence tests alone and in combination with a second fitness 
function. Finally, we provide a comparison of the developed method against BNF27, and we perform a calibration 
of an example RBM with six free parameters.

Results and Discussion
Single-objective genetic algorithm.  Algebraic fitness functions.  Pleione calculates nine algebraic equa-
tions commonly used as fitness functions (see the Methods section for the definition of these equations). We 
provide all fitness functions in a single file and separately from the Pleione main code for three reasons. First, the 
supported stochastic simulators report their results in different formats. Second, the separation enables transpar-
ent parallelisation of fitness calculations and its utilisation to validate models with new or independent data not 
used to calibrate the model. And third, the separation allows a straightforward and easy way to add new fitness 
functions following specific guidelines (https://pleione.readthedocs.io) and to give support to new deterministic 
or stochastic simulators.

To test Pleione, we employed an elitist GA (see the Methods section, strategy 1) and transcriptomic data from 
Jozefczuk et al.8 to calibrate the core GRN model36. Jozefczuk et al. used a variety of conditions to evaluate the 
changes in mRNA expression using microarrays. We selected cold stress to exemplify the use of Pleione, although 
any experimental procedure that determines the abundance of mRNA molecules is suitable for matching with 
the model utilised in this work. We used Pleione with the same seed for the random number generator so all GAs 
started from the same population of models. The resulting error convergence for each fitness function is shown 
in Fig. 1A for the ten best models. To provide a fair comparison between each of the fitness functions, we report 
the fractional error that corresponds to the averaged error normalised by the average error at the first iteration 
for the elite of models. This procedure makes it possible to determine the fitness function characterised by the 
largest error reduction compared with its first iteration. For the tested model, calibration strategy, and fitness 
functions, the squared difference of averages (SDA, Eq. 1), the normalised pair-wise squared deviation (NPWSD, 
5), the chi-square error (CHISQ, Eq. 8), and the mean normalised standard error (MNSE, Eq. 9) exhibited the 
best performances. These four fitness functions reduced the average error for the elite of models to nearly 20% of 
their original value (Fig. 1A).

Overall, we obtained good agreement between most of the experimental mRNA observations compared with 
their simulated values. Figure 1B shows the dynamics of the rpoS mRNA for the best-fit model based on CHISQ, 
and for all ten simulated mRNAs dynamics in Supplementary Fig. S1. The remarkably poor fit for rpoA, rpoB, and 
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rpoD mRNAs (Supplementary Figs. S1C,D,F) may be explained by the lack of negative regulatory mechanisms 
in the model. There is a second regulatory layer in E. coli composed of antagonist proteins of sigma factor activ-
ity and a third layer that includes the antagonists of sigma-factor antagonists36. Incorporating those regulatory 
proteins into the model would benefit the calibration of mRNA responses that exhibit increased degradation 
and recovery, or vice versa. For instance, the fecI mRNA is rapidly synthesised and then degraded throughout 
the cold stress experiment (see Supplementary Fig. S1A), however, the model predicted positive net synthesis. 
Moreover, the model that we used as an example has constant levels of proteins. Extending the model beyond 
gene regulation to incorporate protein translation, degradation, and metabolism would increase the repertoire of 
responses and regulatory mechanisms that are active in a given condition. Finally, the model represents a small 
portion of the complete E. coli GRN and ignores all transcription factors and small regulatory RNAs with known 
function42,43 that directly or indirectly affect the dynamics of the considered mRNA. For instance, the Rsd protein 
accumulates throughout exponential growth and sequesters the RpoD protein, enabling higher activity of the 
sigma factor RpoS that drives gene expression in the stationary growth phase44. Another example is the rpoH 
mRNA that responds to high temperatures by restructuring its folding and increasing its translation rate45.

Complementary to the results, we also estimated the uncertainty on parameter values using leave-one-out 
jackknife and bootstrap resampling (Supplementary Tables S1 and S2). Furthermore, we provide the predicted 
values for all mRNAs, free and bound proteins, and protein complexes (40 variables) in Supplementary Video 
S1 (before calibration) and Video S2 (after calibration). The videos show that the model simulates a fast regime 
dominated by the formation of protein complexes during the first minute and then a slow regime dominated by 
the synthesis and degradation of mRNA later on. Small multiple snapshots of the model dynamics at 0, 1, 10, 
and 90 minutes are shown in Supplementary Fig. S2. To validate with independent data, we compared the free 
fraction of RNA Polymerase (RNAP) with that quantified experimentally by Patrick et al.46. The free RNAP simu-
lated fraction was in close agreement with the reported value. In this case, the best model selected by the CHISQ 
function predicted a free RNAP fraction in the 17–22% range (Fig. 1C); an ANOVA test revealed no statistical 
difference among the nine simulated time points (F(8,81) ≈ 0.4185, p-value ≈ 0.9067). For comparison, Patrick 

Figure 1.  Parameter calibration using algebraic fitness functions. The RBM representing the core GRN of E. 
coli was calibrated against transcriptome data and evaluated algebraically. (a) Error convergence. The traces 
correspond to the mean of the 10 best models (the elite population) per iteration, normalised by the mean error 
at the first iteration (fractional error). (b) Comparison of the best model. The 10 simulations used to evaluate the 
best model at the end of the GA employing the chi-squared fitness function are plotted along with experimental 
data for the rpoS mRNA. The symbols correspond to the mean and one standard deviation. Data were plotted 
purposely with an offset to prevent the error bars from overlapping. (c) Independent validation. The calibrated 
model predicts free RNAP in a pseudo-stationary state in the 17–22% range; stars denote where a one-sample 
t-test concludes the model simulates a larger value (at 10 minutes, p-value ≈ 0.041; at 30 minutes, p-value ≈ 
0.049; at 40 minutes, p-value ≈ 0.036) and a smaller value (at 20 minutes, p-value ≈ 0.038; at 50 minutes, p-value 
≈ 0.040) compared with the 17–22% interval.
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et al. showed that the free fraction of RNAP in E. coli depends on the growth rate, and they reported a free fraction 
of 28% in fast-growing cells46.

Iterative equivalence tests as fitness functions.  Statistical tests are commonly used to determine significant dif-
ferences between treatments. Usually, researchers use parametric tests such as the paired and unpaired t-tests 
or their non-parametric counterparts, the Wilcoxon rank-sum and the Mann-Whitney U-test, to determine if 
responses are different47. However, the applicability of those statistical tests for calibrating models simulated sto-
chastically is questioned in the base of their null hypotheses. While common statistical tests determine whether 
two particular values such as the mean or variance from two distribution are statistically different, equivalence 
tests determine opposite hypotheses. Equivalence tests aim to determine the significance of the extent to which 
two distributions can differ and also be equivalent for practical purposes39.

We incorporated three equivalence test in Pleione: the parametric two one-sided t-tests38 and the 
non-parametric Double Mann-Whitney U-test39 and Wellek’s test40,41. The two one-sided t-tests and the Double 
Mann-Whitney U-test are straightforward implementations of the t-test and U-test employed to determine 
whether a distribution shifted to the left and the right is now smaller and greater respectively compared to the 
other distribution. If one of the shifted distributions lie outside the predefined equivalence range, the equivalence 
test cannot reject its null hypothesis. On the other hand, Wellek’s test determines whether the probability of one 
random variable being greater than another is between a (small) range centred at 50%40. Pleione calculates the 
selected test for each time point and variable, a procedure conducted to build a rejection matrix. Then, the itera-
tive equivalence test is defined as the sum of the non-rejected equivalence tests (i.e., tests that do not conclude the 
distributions are equivalent). A characteristic of the above definition is that the iterative equivalence tests are dis-
crete functions with known limits: A perfect model has a score equal to zero, and a completely wrong model score 
equals the number of variables times the number of experimental time points. For instance, if the experimental 
setup measured ten variables for ten time points, the maximum score is 100. Additionally, defined in a way that 
counts how many failed tests were, the iterative equivalence tests are fitness functions suitable to be minimised, 
therefore useful to improve stochastic models through an evolutionary algorithm or similar procedure.

To determine the applicability of these equivalence tests, we used Aguilera et al.’s simple model of gene regu-
lation31. These authors employed the model with known parameters to test their calibration method. Thanks to 
these known or “true” parameters, we constructed large batches of synthetic data. We randomly selected ten rep-
lications and calibrated the model using strategy 1. In general, the GA recovered the four “true” parameters. In the 
case of the two one-sided t-tests, the per cent error between the found and “true” parameters was no greater than 
13.5% (31.2% cumulated per cent error for the four parameters) when using one standard deviation as symmetric 
equivalence range. Similarly, employing the Double Mann-Whitney U-test, the GA recovered all parameters rea-
sonably well, with a cumulated per cent error close to 40%. Finally, employing the Wellek’s test with equivalence 
probabilities in the range of 19–76% (as similarly done in Wellek40) yielded two parameters with per cent errors 
less than 2.0%. However, the other two parameters were approximately 88% the value of the “true” parameters. 
All of the results are listed in Table 1. Next, we will show that combining the equivalence test with other search 
strategies and fitness functions greatly improved the calibration of the considered model. Also, results for the 
core GRN model calibrated with the Wellek’s test are shown in Fig. 2 and Supplementary Fig. S1. As depicted in 
Fig. 2A, calibration with the Wellek’s test yielded a low reduction in error, despite good agreement for rpoS mRNA 
(Fig. 2B) and free RNAP (Fig. 2C).

Multiple-objective genetic algorithm.  Discrepancies between fitness functions can be resolved using 
multi-objective calibration. We present the fitness calculated by one of each fitness functions included in Pleione 
for the core GRN model (Supplementary Fig. S3). For nearly all of the fitness functions, the model with the lowest 

Fitness function Score

Parameters Per cent error Cumulative 
errorr1_v r2_k1 r3_k1 r4_k1 r1_v r2_k1 r3_k1 r4_k1

strategy1

TOST 4 5,672 0,034 0,097 0,029 13,43% 12,60% −2,92% −2,26% 31,21%

DUT 3 5,672 0,034 0,094 0,028 13,43% 12,60% −6,30% −6,81% 39,14%

WMWET 5 9,355 0,056 0,099 0,029 87,10% 87,77% −1,47% −1,71% 178,05%

strategy2

TOST 3 5,264 0,031 0,092 0,026 5,28% 3,22% −7,79% −12,49% 28,77%

DUT 5 5,616 0,033 0,092 0,028 12,32% 10,99% −7,79% −6,93% 38,02%

WMWET 4 5,275 0,032 0,094 0,028 5,49% 6,53% −5,98% −6,77% 24,77%

strategy3

TOST 5 8,493 0,050 0,216 0,015 69,85% 68,30% 116,40% −49,29% 303,85%

DUT 6 7,242 0,046 0,236 0,029 44,83% 52,36% 136,36% −3,99% 237,54%

WMWET 6 5,792 0,035 0,297 0,017 15,84% 17,43% 196,97% −43,96% 274,20%

strategy3

TOST + SDA 8 5,065 0,032 0,099 0,029 1,29% 8,30% −1,25% −3,94% 14,78%

DUT + SDA 7 6,117 0,037 0,091 0,027 22,34% 22,58% −9,11% −11,66% 65,70%

WMWET + SDA 4 4,829 0,028 0,097 0,029 −3,42% −6,89% −3,46% −3,71% 17,48%

Table 1.  Results of employing each equivalence test for the calibration of the Aguilera’s simple model31. Each 
strategy and fitness function (see the Methods section) was run once and the table shows the parameters of 
the best model at the end of the calibration. A comparison is shown for the percentual error compared to the 
“true” value of the parameters (r1_v = 5, r2_k1 = 0.03, r3_k1 = 0.1, r4_k1 = 0.03) and the cumulative error of all 
parameters.
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error was noted with the employed objective function as well with other fitness functions. This result reveals the 
strong correlation between the employed metrics (see Supplementary Fig. S4). The included fitness functions 
accordingly consider and measure the variability of data and simulations in different ways and justify the devel-
oped multi-objective capability in Pleione. There are multiple procedures for implementing such MOGAs, which 
were reviewed by Konak et al.37. We included the sum of individual rankings per fitness function (without weight-
ing) to determine the contribution of each metric to the overall error. To exemplify the use of the multi-objective 
capability of Pleione, we selected multiple fitness functions based on the Spearman’s ρ correlation coefficient cal-
culated between all fitness at the first iteration (see Supplementary Fig. S4). We could accordingly exclude fitness 
functions that would yield the same result after the calibration. In other words, the use of two highly correlated 
fitness functions is redundant. For instance, calibrations with the SDA (Eq. 1) and with the sum of squares func-
tion (SSQ, Eq. 7; see the Methods section) were highly correlated for the core GRN model; differences in the final 
error would be marginal if the user decided to use SDA instead of the other to calibrate the model. In the tested 
strategy 1, the fractional error for the elite of models employing SDA as fitness function was 23.8% while for SSQ 
was 31.6%.

We expect that combining fitness functions with low correlation among them will lead to better calibrations 
compared with using a single function. We found that the convergence behaviour of some fitness functions in a 
MOGA was comparable or better to those in a SOGA (see Supplementary Fig. S5). However, other fitness func-
tions exhibited erratic behaviour consistent with a search strategy that attempts to satisfy multiple objectives at 
the same time. One remarkable example was the CHISQ (Eq. 8), where the error diverged compared with the 
single-objective optimisation in the tested configuration. The fit of rpoS mRNA is shown online in Supplementary 
Fig. S6 for two of the three tested calibration settings (see the Methods section, strategies 4 and 5). Comparisons 
between the MOGA and SOGA strategies are shown in Fig. 3 and Supplementary Fig. S7. Figures 3A,B, and S6 
show the mean ratio between a fitness function in a MOGA for the same fitness function in a SOGA for strategies 
4, 5, and 6, respectively. In general, utilizing a MOGA reduced the calibration error (i.e., the ratios were below 
unity), but modest or no improvement was observed for the Wellek’s test compared with the situation where the 
Wellek’s test was used as a single objective. Although, the primary rationale for using a MOGA is that the resulting 
model is more robust because it minimises multiple fitness functions simultaneously.

Figure 2.  Parameter calibration using the non-parametric Wellek’s equivalence test. The RBM representing the 
core GRN of E. coli was calibrated against transcriptome data and evaluated algebraically. (a) Error convergence. 
The heat map correspond to the value of the 10 best models (the elite population) per iteration. (b) Comparison 
of the best model. The 10 simulations used to evaluate the best model at the end of the GA are plotted along with 
experimental data for the rpoS mRNA. The symbols correspond to the mean and one standard deviation. Data 
were plotted purposely with an offset to prevent the error bars from overlapping. (c) Independent validation. 
The calibrated model predicts free RNAP in a pseudo-stationary state in the 24–29% range; stars denote where 
a one-sample t-test concludes the model simulates a larger value (at 30 minutes, p-value ≈ 0.039) and a smaller 
value (at 70 minutes, p-value ≈ 0.037) compared with the 24–29% interval.
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Comparison with BioNetFit: The “example 6” model.  Recently, Thomas et al.27 developed BNF 
intended for BNGL models, and Mitra et al.28 presented an improved version of Thomas’ software with more 
calibration algorithms and analysis (e.g., determination of the uncertainty of parameters values48). To perform a 
comparison between Pleione and BNF, we translated the “example 6” model (github.com/RuleWorld/BioNetFit) 
to PySB18 and then exported it to BNGL and kappa. The resulting models were calibrated with both BNF employ-
ing the network-free simulator NFsim and Pleione with the network-free simulators KaSim and NFsim, and the 
network-based Gillespie’s SSA within BNG2. Figure 4A shows the square root of the SDA (Eq. 1) for the best 
model achieved at each iteration. Our calibrations reveal that the error after calibrating the kappa “example 6” 
model is similar to the calibration with BNF. A comparison of the first and last iterations is shown in Fig. 4B, 
where each dot represents an independent calibration. The calibration with BNF yielded the smallest error. 
However, BNF only calibrates BNGL models; Pleione introduces the necessary methods to calibrate kappa RBMs. 
Moreover, we tested the equality of the independent runs using the Kruskal-Wallis H-test. We concluded that 
there was no significant difference between the lowest model errors at the last iteration (H(4) ≈ 4.128, p-value 
≈ 0.248). This result further supports the notion that Pleione can perform as well as available tools for finding a 
candidate model. Notably, Pleione extends the use of GAs to a second RBM language as well to other stochastic 
simulators such as KaSim, PISKaS, and NFsim.

Figure 3.  Comparison of MOGAs with their corresponding SOGAs. The RBM representing the core GRN of E. 
coli was calibrated against transcriptome data. (a) Strategy 4 mean ratio. The panels show the behaviour of the 
chi-squared (CHISQ, Eq. 8) and the Wellek’s test (WMWET) fitness functions in a multi-objective optimisation 
ratioed by the same error in the respective single-objective optimisation (minimising CHISQ, pink lines; or 
the Wellek’s test, blue lines). (b) Strategy 5 mean ratio. The panels show the behaviour of ANPWSD (Eq. 6), 
WMWET, and PWSD (Eq. 3) in a MOGA divided by their corresponding error in a SOGA (purple lines: 
minimising ANPWSD; blue lines: minimising WMWET; green lines: minimising PWSD). Values below 1.0 
correspond to MOGA found an average error lower that SOGA. The legend indicates the objective function 
employed to calibrate the model.

Figure 4.  Comparison of calibration with BNF and Pleione. The “example 6” model from Thomas et al.27 was 
calibrated with synthetic data provided by the authors. Left. The traces correspond to the square root of the SDA 
(1) for the best model per iteration. Each GA was run three times with the same initial population of models for 
each stochastic simulator. Differences at the first iteration are due to the stochastic simulations of each model. 
Each model was simulated with the network-free simulators KaSim and NFsim and with the Gillespie’s SSA 
within the BNG software. Right. The dots indicate the error achieved at the last iteration (lower group) and the 
initial error at the first (blue, seed = 0), second (orange, seed = 2), and third independent calibration (green, 
seed = 2596283685).
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Calibration of the core GRN model without using elitism.  Multiple strategies have been developed 
to select individuals and generate new solutions from them with GAs35. To calibrate RBMs, BNF selects individ-
uals to recombine from the entire population; Pleione choses individuals from an elite of models. Furthermore, 
BNF prohibits self-recombination by default while Pleione allows it. Moreover, another difference between the 
approaches pertains to the probability distribution used to select a model as a parent. In BNF, the selection is 
inversely proportional to the rank (see the BNF Manual27); Pleione selects individuals from a uniform distribution 
within the elite of models. To thoroughly analyse the developed method, we also calibrated the core GRN model 
with Pleione following an inverse rank strategy to select parents within the GA. This technique is referred to as 
strategy 2 (see the Methods section). For instance, from a population of 100 individuals, the first-ranked model 
has a probability of 19.28% of being selected as a parent; the second-best model has a probability of 9.64%.

The calibration results of the core GRN model with all fitness functions are shown in Fig. 5A for the elitist GA 
(see the Methods section; strategy 1), in Fig. 5B for the non-elitist GA (strategy 2), and in Fig. 5C for strategy 3, 
the selection and recombination strategy most similar to BNF. Notably, the results revealed that the selection of 
parents implemented in Pleione (referred to as strategy 1) outperformed the selection of parents implemented in 
BNF (strategy 2) for the core GRN model (Fig. 5B). That is, the selection of individuals from an elite of models 
was more beneficial to find better solutions than selecting individuals from all models. These results must be spe-
cifically interpreted for the considered model in which the number of parameters is nearly 13 times larger than in 
the “example 6” model. Moreover, the parameter search benefits from other feature in BNF that recombines two 
individuals in multiple points, not just one as initially tested. We performed a calibration employing an inverse to 
the rank selection, a multiple crossing-over, and a mutation strategy within a ±10% range of the original param-
eter value (strategy 3). The results, shown in Fig. 5C, expose that the strategy used in BNF performed better for 
the considered model. For instance, the fractional error at the final iteration with the CHISQ error was roughly 
5% of the original error for all models. That is nearly a six-fold improvement compared with strategy 1, where the 
fractional error was 29% for all models.

Complementary to the calibration of the core GRN model, we calibrated the simple model of gene regulation 
with each one of the equivalence tests using strategy 3. In the case of the Wellek’s test, the per cent error for each 
parameter was as low as 3.42% and as high as 6.89%, with a total per cent error of 17.48%, but only when com-
bined with SDA (Eq. 1). In general, strategy 3 exhibited worst performance than strategy 1 at recovering the “true” 
parameters using equivalence tests. In the case of Wellek’s test, the total per cent error was increased from 178% 
(strategy 1) to 274% (strategy 3) and in all cases reduced employing a second fitness function (e.g. SDA, Eq. 1) for 
calibration employing strategy 3 (see the Methods section). All of the results are listed in Table 1.

Figure 5.  Calibration of the core GRN model with strategies 1, 2, and 3. The RBM representing the core GRN 
of E. coli was calibrated against transcriptome data and evaluated individually. (a–c) Error convergence in a 
single-objective calibration. The traces correspond to the mean of all models per iteration, normalised against 
the maximum value achieved at the first iteration (fractional error).
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Conclusion
Parameter estimation is a common problem when developing predictive models in systems biology. In the case of 
stochastic simulations, the problem is magnified when data variability is disregarded using deterministic simula-
tions to reduce simulation time or when fitness functions disregard simulation variability even when the model 
is simulated stochastically. Our method, Pleione, solved these two issues. Pleione takes less time to calibrate as 
the increasing availability of CPUs reduces the burden of multiple stochastic simulations, leveraging the need for 
deterministic simulations of RBMs. Parallelisation permits Pleione could use a sufficient number of stochastic 
simulations to be compared with experimental data. Regarding fitness functions, we propose using equivalence 
tests to determine similarity of data and simulations. Although we included parametric and non-parametric 
tests, the Wellek’s test makes it possible to render a confident assessment of the pertinence of a few stochastic 
simulations to reproduce a small number of experiment replications. Moreover, our approach provides support 
to kappa RBMs and can select models according to multiple metrics which overcomes the drawbacks of each 
fitness function.

One limitation of our method is the source of noise as Pleione does not currently consider experimental var-
iability. Also, Pleione does not perform identifiability and parameter uncertainty determination on its own. We 
developed Alcyone (see the Methods section) to supplement this deficiency using jackknife and bootstrapping 
methods. However, Approximate Bayesian Computation (ABC, reviewed by Warne et al.49) has strengths in terms 
of identifiability and parameter uncertainty. ABC methods are preferred, but they take exceedingly long compu-
tational times as the discrepancy threshold is lower (as shown by Warne et al.49) and selecting the discrepancy 
metric may be non-trivial.

Features within Pleione are extensible. The incorporation of a noise model into simulated data, new fitness 
functions, and other statistical approaches like the ones introduced by Liu and Faeder50 and others49 are consid-
ered and will take advantage of parallelisation of simulations and calculations. Finally, Pleione is part of a larger 
project that will introduce common procedures to analyse RBM like swarm particle optimisation51 (already pres-
ent in Mitra’s pyBNF), maximum likelihood optimisation52, and sensitivity analysis53,54 of parameter values, all 
based on parallelisation of stochastic simulations. We also expect that Pleione will facilitate broader adoption and 
development of RBMs to reproduce the structure and dynamics of complex biological systems.

Methods
Software implementation.  Pleione is open software written in python3 and it is cross-platform compat-
ible. The GA implemented is a simple iterative process of selection, recombination, and mutation of parameter 
values35. Before performing any optimisation, Pleione reads an RBM and identifies the free parameters in the 
model, i.e., user-selected variables that are going to be calibrated and their allowed search space. After building 
the first population, Pleione writes as many models as defined by the user with each parameter set; it then queues 
the simulation jobs using SLURM or the python multiprocessing API. After the first population is simulated, the 
models are ranked using one or more of the nine algebraic and two statistical fitness functions. Then, two selec-
tion strategies can be used. The first is a uniform probability selection that selects two parents from the best (“elite 
of ”) models. The second strategy employs a distribution that is inversely proportional to the rank (and optional 
elitism). The latter is a selection strategy previously implemented in BNF35. The user can control crossover and 
select between single and multiple crossover points. Finally, each parameter value can be mutated, and a new 
value can be selected from a uniform or log-uniform distribution or multiplied by a random factor centred on 
the old parameter value. The simulation, selection, and mutation procedures are repeated until the number of 
iterations reaches the user-defined value. Pleione’s default is to perform elitism with multiple crossing points and 
parameter mutations from a uniform distribution. Pleione is able to perform calibrations employing BNG220, 
NFsim23, KaSim17,21, and PISKaS36, regardless of differences in model configuration, command-line interface, or 
format of the reported simulation results. Other (stochastic) simulators can be incorporated into Pleione if they 
provide a command-line interface. Pleione is freely available at Python Package Index and Github (see the Pleione 
Manual for installation and user instructions at https://pleione.readthedocs.io).

Fitness functions.  Software implementation of iterative equivalence tests.  Equivalence tests aim to deter-
mine the significance of the extent to which two distributions differ or are equivalent to practical purposes39. The 
tests determine the rejection of one of the two null hypotheses that the difference lies beyond the equivalence 
range. The first of these implemented tests were the “two one-sided t-tests”38 from the python statsmodels package 
with a predefined 5% significance level. The fitness function is selected by its acronym TOST (see the Pleione 
Manual for details at https://pleione.readthedocs.io). TOST shifts simulated values to the left and right and test 
whether the resulting distribution is statistically smaller or larger than unaltered data. Only when both unpaired 
t-tests reject their null hypotheses does TOST reject its own.

The second test, the Double Mann-Whitney U-test, is a straightforward adaptation of the Mann-Whitney 
U-test as mentioned by Cornell39 and discussed by Wellek40. The fitness function is selected by its acronym 
DUT (see the Pleione Manual for details at https://pleione.readthedocs.io). Like TOST, DUT shifts the simulated 
variables toward the left and the right and compares them with unaltered data using a one-sided U-test. The 
U-test determines whether a random variable is stochastically larger than another random variable55; it is the 
non-parametric counterpart of the unpaired t-test. To calculate the U-test, we first determined how many exper-
imental values were smaller and greater than the shifted simulated values using Algorithm 1. Here, exp stands for 
an experiment replication; shifted sim stands for shifted stochastic simulations of an RBM. Lower and upper are 
the threshold limits. After comparing the experimental data and simulations, the observed difference Uexp and 
Usims were compared against a critical value using Algorithm 2.

The third equivalence test is the Wellek’s test40,41 that determines whether if the probability of the difference 
of two random variables lies within a (small) threshold around 50%. We implemented the mawi.R routine from 

https://doi.org/10.1038/s41598-019-51546-6
https://pleione.readthedocs.io
https://pleione.readthedocs.io
https://pleione.readthedocs.io


9Scientific Reports |         (2019) 9:15104  | https://doi.org/10.1038/s41598-019-51546-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

the EQUIVNONINF R package (https://rdrr.io/cran/EQUIVNONINF/) in python. Pleione uses WMWET as an 
acronym for the fitness function.

All three equivalence tests were calculated for each variable and time point, and the fitness functions minimise 
the total sum of succesful equivalence tests substracted from the total number of performed tests (e.g. Umax in 
Algorithm 2).

Algebraic functions.  Pleione includes nine algebraic fitness functions which are described below with their acro-
nyms in parentheses. As noted previously, exp stands for an experiment replication, stands for a simulated value, 
exp refers to the average, and σexp is the standard deviation of experimental values.
•	 Squared Difference of two Averages (SDA):
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•	 Absolute value of the Difference of two Averages (ADA):
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•	 Pair-Wise Square Deviation (PWSD):

Algorithm 1.  Count how many times experimental data is larger than shifted simulated values.

Algorithm 2.  Double Mann-Whitney U-test. Determine if the difference is statistically significant for each 
variable.
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•	 Absolute Pair-Wise Deviation (APWSD):
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•	 Normalised Pair-Wise Square Deviation (NPWSD):
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•	 Normalised Absolute Pair-Wise Deviation (ANPWSD):
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•	 Sum of Squares (SSQ)27:

( )exp sim
(7)i

m

j

n

i j
1 1

2
∑ ∑ −
= =

•	 Chi-Square (CHISQ)27:
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•	 Mean Normalised Square Error (MNSE)27:
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Models and experimental data.  Calibration of transcriptional dynamics.  To test Pleione, we employed a 
simple model of gene regulation31 and the core GRN model of E. coli that we published previously36. The former 
is a four-equation model developed and used by Aguilera et al.31 with known parameters to create a synthetic 
dataset. The equations describe the synthesis and degradation of an mRNA and its encoded protein. We randomly 
selected ten simulations using the “true” parameters and then set all rates as free parameters. The latter model 
resembles the GRN, protein-protein interactions, and genome architecture of E. coli K-12 (see Supplementary 
Fig. S8). The core GRN is composed of ten genes, of which seven encode sigma factors56. The other genes corre-
spond to the α, β, and β’ subunits of the E. coli RNAP. This GRN was built from EcoCyc43 and complemented with 
literature data56. It resulted in a network of 30 positive regulations (see Supplementary Fig. S8). The experimental 
data used to calibrate the model correspond to microarrays of E. coli gene expression after stress performed by 
Jozefczuk et al.8 (GEO accession GSE20305). These data were processed as in Marbach et al.4, and the resulting 
values were assumed to represent the absolute quantity of mRNA per cell for each available time point after stress 
induction (see Supplementary File S1). We selected the binding and unbinding of each sigma factor to the core 
RNAP (14 parameters), the binding and unbinding of the seven RNAP holoenzymes to their cognate promoters 
(56 parameters), and the decay of RNA molecules (9 parameters) as free parameters.

We employed six different GA configurations, which are described below. All strategies included 100 models 
simulated ten times through 100 iterations. We repeated the calibration from the same initial population choosing 
the same random number generator seed to test the fitness functions included in Pleione. All of the simulations 
for the Aguilera’s simple model were done with BNG v2.2.6 (https://github.com/RuleWorld/bionetgen/releases/
tag/BioNetGen-2.2.6-stable). For the core GRN model, the simulations were done with KaSim v4.0 (https://
github.com/Kappa-Dev/KaSim/releases/tag/v4.0). The scripts to repeat the calibration are in Supplementary File 
S2. The differences between strategies to calibrate are as follows:

•	 Strategy 1, elitist GA: After each iteration, the ten best models were selected and left unaltered until the next 
iteration. From this elite of models, two parents were selected with a uniform probability and crossed in a 
single, random point. We allowed self-recombination of parents. Mutation of parameters resulted in a new 
value from the original range with a 30% probability. We did not repeat simulations from the elite population.

•	 Strategy 2, non-elitist GA. After each iteration, all models were subjected to selection with an inverse to the 
rank probability distribution. For instance, the model i with rank ri had a probability of selection pi equal to 
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j1 . After selecting two different parents, they were recombined in a single, random point. The 
mutation of parameters values was the same as in Strategy 1.

•	 Strategy 3. The same as Strategy 2, but the mutation of parameters yielded a new value with a 20% probability 
from a random factor within a ±10% interval centred at the old value. This strategy was applied using BNF.

•	 Strategies 4, 5, and 6 (MOGA). These strategies were similar to Strategy 1, but we selected the CHISQ (Eq. 8) 
and WMWET; the ANPWSD (Eq. 6), WMWET, and PWSD (Eq. 3); and the CHISQ, WMWET, SDA (Eq. 1), 
and NPWSD (Eq. 5) simultaneously as fitness functions for the rank models.

Comparison with BioNetFit.  Pleione was also used to calibrate an equivalent model to “example 6” reported by 
Thomas et al.27 in kappa language. Although Thomas et al. published another two models, some of the BNGL 
syntax within them do not have a simple or equivalent expression in kappa language. The “example 6” is a toy 
model with synthetic experimental data that resemble the ligand-induced autophosphorylation of a receptor27. 
The model was rewritten employing PySB version 1.5.018 and exported to kappa and BNGL. The latter was sim-
ulated with BNG2 and compared with the original model to discard syntax misinterpretation while rewriting 
the model. The kappa model was further modified to enable an equilibration step similar to that of the original 
model. To perform the comparison with BNF, both GAs were run employing strategy 3. The first population was 
drawn from a log-uniform distribution between 10−2 and 10+2. The same options were used when calibrating 
with BNF, and we selected equivalent objective functions to fit with BNF and Pleione. The simulators were BNG 
v2.2.6 https://github.com/RuleWorld/bionetgen/releases/tag/BioNetGen-2.2.6-stable and NFsim v1.12.1, which 
was compiled from source obtained at the BNF GitHub repository (https://github.com/PosnerLab/BioNetFit). 
BNF was obtained from https://github.com/RuleWorld/BioNetFit/releases/tag/v1.01.

Complementary analysis and statistical tests.  The core GRN model simulates the availability of 
RNAP, also referred to as the free RNAP fraction. To determine whether the simulated free fraction was in a 
pseudo-stationary state, we employed the one-way ANOVA test and the Kruskal-Wallis H-test, both from the 
python SciPy package57. Additionally, to determine the probability of a range of simulated free RNAP, we repeat-
edly employed the one-sample t-test with a 95% confidence level in a one-tail test; we adjusted the threshold of 
free RNAP fraction over the entire time interval until the t-test rejected the null hypothesis at least once. Finally, 
to determine which fitness functions to employ in a multi-objective GA, we calculated the Pearson’s, Spearman’s 
rank (ρ), and Kendall’s rank (τ) correlation coefficients, which were also implemented within the SciPy package57. 
Parameter uncertainty for the core GRN model was assessed using Alcyone https://github.com/networkbiolab/
alcyone/tree/master/example employing the leave-one-out jackknife and the bootstrap resampling methods. The 
latter was performed with 20 GA runs, which enabled a maximum 90% confidence interval. Animations of the 
dynamics were prepared from 1000 simulations with KaSim. We plotted the average and one standard deviation 
for a total of 40 variables during the first minute at intervals of one second; the remaining simulated times had 
intervals of 0.1 minutes (i.e., 6 seconds).

Data availability
All data generated during this study are included in this published article (and its Supplementary Information 
files).
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