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An improved method for the 
calculation of unsaturated–
saturated water flow by coupling 
the feM and fDM
Yulong Gao1,2,4,5, Shengyan Pu3,5, Chunmiao Zheng2,4 & Shuping Yi2,4*

Numerical modeling of water movement in both unsaturated soils and saturated groundwater 
aquifers is important for water resource management simulations. The development of efficient 
numerical algorithms for coupling unsaturated and saturated flow has been a long-lasting challenge 
in hydrologic modeling, especially for regional-scale modeling. In this study, a new method coupling 
the Finite Element Method (FEM) and Finite Difference Method (FDM), FE-FDM, is developed to solve 
Richards equation for simulating unsaturated–saturated water flow. The FEM is adopted to discretize 
the governing equation in the horizontal direction, while the FDM is used in the vertical direction. 
This method combines the advantages of FEM in domain discretization, especially for complex 
computational domain, and the advantages of FDM in modeling simplicity and efficiency. The validity 
of the new method is demonstrated with three test cases that show that the FE-FDM solutions are 
accurate and are applicable for regional scale problems. In the test cases, the FE-FDM solutions are 
compared with experimental data and numerical results calculated with common software packages 
including FEFLOW and COMSOL. This study verified that the FE-FDM is applicable for simulating water 
flow in the unsaturated–saturated zone.

Understanding the hydrologic cycle is critical for proper management of groundwater resources. In the context 
of surface-water and groundwater interaction, the hydrologic interactions among soil, vegetation, atmospheric 
processes, and groundwater dynamics should be considered, which depends to a large extent on the character-
istics of the unsaturated zone1,2. The commonly used equation for flow in the unsaturated zone, the Richards 
equation3,4, can be troublesome to solve because it is highly nonlinear often causing convergence issues with solu-
tion schemes, especially with scale differences between horizontal and vertical dimensions in regional models1,5. 
Because of these difficulties, there are limitations to the coupling of unsaturated and saturated flow in numerical 
simulations6. Therefore, it is essential to develop a mathematical/computational method that can efficiently simu-
late the coupled unsaturated–saturated flow to manage groundwater resources, especially at the regional scale2,7.

The solutions methods for simulating coupled saturated and unsaturated water flow have been studied by many 
researchers. Rubin8 developed a transient numerical model integrating the saturated and unsaturated zones, which 
solved Richards equation for two-dimensional, transient groundwater flow in a rectangular saturated-unsaturated 
soil domain. Freeze9 further developed a three-dimensional, transient, saturated-unsaturated flow model to solve 
the saturated-unsaturated flow equation in the unsaturated zone and the saturated flow equation in underlying 
unconfined and confined aquifers. These early solution methods were prone to mass-balance errors. This issue 
was investigated by Mitly10 and he suggested lumping procedures and methods of time averaging of the storage 
term to reduce mass-balance errors. Of course, a number of researchers simulate the saturated-unsaturated flow 
to solve elliptic problems that are robust for high contrasts in material properties and heterogeneity while provid-
ing locally conservative velocities for transport over the years11–17. However, variably saturated flow simulation 
has proven challenging6.
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Since the 1970s, a number of commonly used groundwater flow and transport models have been devel-
oped that simulate saturated and unsaturated flow conditions. FEFLOW was first introduced in 1979 by the 
Institute for Water Resources Planning and Systems Research Inc. (WASY GmbH) of Berlin, Germany a part 
of The Danish Hydraulic Institute (DHI) group18. A 2D finite-element simulation model called SUTRA for 
saturated-unsaturated, fluid density-dependent groundwater flow with energy transport was developed by Voss19. 
Yeh and Ward20 further developed a 3D finite-element model for variably saturated flow, 3DFEMWATER, in 
1987. The DHI21,22 developed a more comprehensive saturated-unsaturated flow model, based on the FDM, MIKE 
SHE (Système Hydrologique Européen), where the unsaturated flow is simplified to 1-D in Richards equation 
while saturated flow is controlled by 3-D Boussinesq equation. COMSOL Multiphysics23 is a numerical simu-
lation software based on finite element method which builds models on the basis of general partial differential 
equations or partial differential equations. Richards equation is built into subsurface flow module of COMSOL to 
simulate unsaturated-saturated flow. FDM and FEM are recognized as the most popular numerical methods for 
common groundwater flow models24. Although FDM is simpler and more efficient, it is not flexible and efficient 
for representing irregular boundaries and using refined local grid spacing. FEM requires more computer memory 
than FDM, though FEM has good mesh adaptability for representing complex boundaries and mesh refinement.

In saturated and unsaturated flow models, the horizontal dimension is generally much larger than the vertical 
dimension, especially in regional models. In addition, the magnitude of the hydraulic conductivity varies greatly 
in the vertical direction of the unsaturated zone in the process of rainfall recharge. Thus, a much finer mesh is 
required in the vertical direction than in the horizontal. Using Different Methods to discrete Equations in hori-
zontal and vertical directions respectively is one of ways to resolve this difference.

This study developed a new numerical method, FE-FDM by coupling FEM and FDM, to solve the Richards 
equation for simulating unsaturated–saturated water flow. The FEM is adopted to discretize the governing equa-
tion in horizontal direction, while the FDM is used in the vertical direction. This method combines the advan-
tages of FEM in domain discretization especially for the irregular boundaries and the advantages of FDM in 
modeling simplicity and efficiency.

Numerical form of Richards Equation Discretized by FE-FDM
Governing equation. The Richards equation, which is commonly used to describe saturated–unsaturated 
groundwater flow, is expressed as2,3:
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where Kx(h), Ky(h), and Kz(h) are x-, y-, and z-directions hydraulic conductivity as a function of pressure head; 
h is the pressure head; w is a source/sink term; z is the elevation head; C(h) is the specific moisture capacity as a 
function of pressure head; Se is the water saturation; S is the specific storage; t is time; and H is hydraulic head 
calculated by:

= +H h z (2)

The specific moisture capacity C(h) and the hydraulic conductivity K(h) both are functions of the pressure 
head h in the governing Eq. (1), which leads equation to be nonlinear. In order to solve the nonlinear governing 
equation, functional relations must be obtained between two model parameters, C(h) and K(h), with unknown 
variable h. Van Genuchten25 developed a model for soil water retention curve and hydraulic conductivity function 
based on earlier work from Mualem26.

The saturation-pressure relation is expressed by:
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where θ is the water content; θs the saturated water content; θr the residual water content; α, m and n are coeffi-
cients specifying a particular medium type, and m is restricted as m = 1 − 1/n.

The hydraulic conductivity function in both saturated and unsaturated soils is written as:
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Development of the FE-FDM method. The objective of this section is to obtain the numerical form of 
Richards equation by FE-FDM. The FEM is used to discretize the governing equation in in horizontal direction 
while the FDM is used in the vertical direction.

Finite element method in the horizontal direction. The governing equation for horizontal flow is discretized by 
the FEM. According to the Galerkin method, the discrete form in horizontal direction is constructed as follows:
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where Np is node number in a horizontal layer; Ni, Nj is basis function which is a function of x and y; k stands the 
kth horizontal layer; q is specified flux in the boundary.

Symbols were introduced as follows:
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Then the Eq. (7) is expressed as:
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Finite difference method in the vertical direction. In this section, Eq. (12) is discretized by FDM in terms of the 
space (z direction) and time. A central difference method and a fully implicit difference method are developed for 
the z- direction and time, respectively.

Equation (12) discretized in the z direction is expressed as:
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where n is nth time step; −Kz
k 1

2  is harmonic mean of hydraulic conductivity in (k-1)th layer and kth layer; +Kz
k 1

2  is 
harmonic mean of hydraulic conductivity in kth layer and (k + 1)th layer.

The method of full implicit discretization is adopted in time discretization. Then the expression is obtained as:
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According to Eq. (14), the final global equation of the system is formed assembling all the horizontal layers.

=DH F (15)

where D is global matrix consisting of the coefficients in the Eq. (14); H is the unknown hydraulic head values in 
the nodes for the current time step and current iteration level; F is the known values in the nodes from the last 
time step and last iteration level.

Equation (15) is a non-linear equation which is solved by Picard iteration.

Verification Examples
In this study, three test problems are used to verify the accuracy and reliability of the method. The results calcu-
lated by FE-FDM are compared with popular models and empirical data.

Test problem 1: 2D unsaturated-saturated water flow. In this test problem, the study domain is a 2D 
rectangular unconfined aquifer between two rivers 40 m apart with a 3 m thick aquifer. The soil parameters are 
presented in the Table 1. The conceptual model of test problem 1 is shown in Fig. 1. The initial hydraulic head is 
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2 m. The recharge flux is 0.002 m/d at the top boundary. The hydraulic head is 2 m at the left and right boundaries, 
which are constant head boundaries. The bottom boundary is impermeable.

FE-FDM and FEFLOW are used to solve this test problem to calculate both a steady-state solution and a 
transient solution. FEFLOW, based on the FEM, is widely used in unsaturated-saturated flow simulation. The 
same rectangular mesh is used for both FE-FDM and FEFLOW with the mesh spacing of 0.5 m in the horizontal 
direction and 0.3 m in the vertical direction. The domain is discretized with 40 rows and 10 columns of nodes.

The steady-state results are described first. The steady-state water tables calculated with FE-FDM and 
FEFLOW are shown on Fig. 2. The water table elevations calculated with FE-FDM are a little lower than that 
calculated with FEFLOW. The biggest difference in the water table elevations between FE-FDM and FEFLOW is 
0.023 m.

The pressure heads calcualted by FE-FDM and FEFLOW at t = 5d, 15d, 25d and 35d are shown on Fig. 3. 
FE-FEDM results are in good agreement with FEFLOW solutions at the different times. At early time (i.e. t = 5d), 
the pressure heads are similar to initial conditions. The smaller the contour of the pressure head, such as −0.7 m, 
has the greater the change, since the moisture content mainly in the unsaturated zone. At t = 35d, all the pressure 
heads have been raised obviously. Figure 4 shows this process more clearly. In Fig. 4, pressure head change process 
is shown at the location of (20,2) m which is at the center of water table in the initial time. As shown in the Fig. 4, 
the pressure head begins to grow after about 0.1d. There is a lag time when groundwater is recharged, since infil-
trated water should pass through the vadose zone. The lag time depends on the characteristics of the vadose zone.

Test problem 2: Sand tank experiment. In this example, FE-FDM and FEFLOW are used to simulate a 
transient sand tank experiment which was conducted by Koichi et al.27. The sand tank is 315 cm in length, 23 cm 
in width and 33 cm in height. A two-dimensional vertical profile model was used to simulate the sand tank exper-
iment. The soil parameters for the tank experiments, which are the same as those used in the model, are presented 
in Table 2. Figure 5 shows the conceptual model for test problem 2. The hydraulic head on the left boundary is 
increased from 10 cm to 30 cm at time equal zero, and the hydraulic head on the right boundary is 10 cm, both of 
which are constant head boundaries. The top and bottom boundaries are impermeable. The initial condition is 
a water table at 10 cm. The same rectangular mesh is used for the FEFLOW and FE-FDM models. The domain is 
discretized with 41 rows and 31 columns of nodes. The transient simulation was run for 4,800 seconds.

Figure 6 shows the water table evaluations measured in the experiment and the water table elevations cal-
culated with FE-FDM and FEFLOW as various times ranging from 30 seconds to 4,800 seconds. The results of 
FE-FDM are in good agreement with experimental data and FEFLOW. The water table elevations calculated by 

Ks (m/d) n (1) α (1 /m) θs (1) θr (1)

0.5 2 0.1 0.3 0

Table 1. Soil parameters of test problem 1.

Figure 1. The model of test problem 1.

Figure 2. Comparison the water heads distribution calculated by FE-FDM and FEFLOW.
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FE-FDM are closer to the experimental data than those calculated with FEFLOW. As shown in Fig. 6, the water 
tables gradually rise during the experiment.

Figure 7 shows the lateral velocity and the vertical velocity distributions in the unsaturated zone at z = 20 cm 
segment. As the Fig. 7 shows, both the lateral velocity and the vertical velocity decrease with distance from the 
infiltration line. The lateral velocity is much larger than the vertical velocity near the infiltration line. Thus the 
horizontal movement of water flow has an important role in the unsaturated zone where lateral flow is evident. 
Some numerical models ignore the horizontal velocity, because the horizontal hydraulic gradient is usually smaller 

Figure 3. Comparison of pressure heads from FE-FDM and FEFLOW.

Figure 4. The change process of pressure heads in the location of (20,2) m.

Ks (cm/s) n (1) α (1/cm) θs (1) θr (1)

0.33 1.8 0.35 0.44 0.04

Table 2. Soil parameters of test problem 2.
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than the vertical gradient24,28,29. This case, demonstrates why a fully 3D coupling of the saturated-unsaturated 
model is necessary.

Example 3: 3D unsaturated-saturated water flow in large scale. In this example, a hypothetical 
large-scale region is simulated by FE-FDM. The model domain is 10,000 m × 10,000 m × 30 m. The soil param-
eters are presented in the Table 1. The hydraulic head is 20 m around the boundary of the model domain, which 
is a constant head boundary. The bottom boundary is impermeable. The recharge is 0.005 m/d at the top surface. 
The initial hydraulic head is 20 m in the model. Although this model is highly simplified, the model can be used 
to verify whether the FE-FDM can be applied to large-scale sites.

In this model, the scale in the horizontal direction is much larger than that in the vertical direction. Because 
hydraulic conductivity varies greatly in vertical direction in the unsaturated zone, a fine mesh spacing of 2 m is 
specified in the vertical direction. Course meshing is specified in the horizontal direction which has 256 triangle 
elements in every layer. The average side length of meshes is 954 m in the horizontal direction. The average side 
length of the meshes in the horizontal direction is 477 times the length in the vertical direction in this model. 
Therefore, the horizontal dimension is much larger than the vertical direction not only for the whole model but 
also for a single mesh.

FE-FDM and COMSOL are used to solve this test problem. COMSOL is a multiphysical field numerical sim-
ulation software which is a stable program that covers a wide range of applications for those interested in ground 
water modeling based on FEM30. The same mesh is used for both FE-FDM and COMSOL. Figure 8 shows the 
water table elevations in the central section at 1d, 3d and 5d. There are differences between the values calculated 
by FE-FDM and COMSOL. The differences mainly are lower by 0.035 m and their ratio to COMSOL solution 
are mainly less than 0.2%. The changes of the water table elevations with time as calculated by FE-FDM and 
COMSOL are consistent. The water table elevations fluctuate near the boundary of the model as the mesh is not 
fine enough to accurately calculate the water table position near the boundary. It is obvious that the results of 
FE-FDM are less affected by the boundary than that of COMSOL. The FE-FDM has better adaptability to coarse 
mesh than COMSOL. This proves that FE-FDM can be applied to large scale models.

conclusion
In this study, a new method FE-FDM is developed to simulate and solve the saturated-unsaturated flow equation. 
In this method, FEM and FDM are used to solve Richards equation in the horizontal direction and in the vertical 
direction, respectively. The new method combines the advantages of FEM in domain discretization especially 
for the model boundaries and the advantages of FDM in modeling simplicity and efficiency. Three examples 
are used to evaluate the accuracy and numerical behavior of FE-FDM. Results of FE-FDM are compared with t 
experimental result and common software including FEFLOW and COMSOL. The results show that solutions of 

Figure 5. The model of test problem 2.

Figure 6. Experimental elevations of water table and water table elevations calculated with FE-FDM and 
FEFLOW at times ranging from 30 seconds to 4800 seconds.
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FE-FDM are accurate. The FE-FDM model has good potential for efficiently simulating complicated large-scale 
unsaturated–saturated water flow problems. The solving speed is not superior to general software because of the 
Picard iteration which has good stability but slow speed used in this paper. Future work will improve the solving 
speed for FE-FDM.
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