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Storage and erasure of behavioural 
experiences at the single neuron 
level
t. L. Dyakonova, G. S. Sultanakhmetov, M. i. Mezheritskiy, D. A. Sakharov & V. e. Dyakonova

Although predictions from the past about the future have been of major interest to current 
neuroscience, how past and present behavioral experience interacts at the level of a single neuron 
remains largely unknown. Using the pond snail Lymnaea stagnalis we found that recent experience of 
terrestrial locomotion (exercise) results in a long-term increase in the firing rate of serotonergic pedal 
(peA) neurons. isolation from the cnS preserved the “memory” about previous motor activity in the 
neurons even after the animals rested for two hours in deep water after the exercise. in contrast, in 
the CNS, no difference in the firing rate between the control and “exercise-rested” (ER) neurons was 
seen. eR snails, when placed again on a surface to exercise, nevertheless showed faster locomotor 
arousal. The difference in the firing rate between the control and ER isolated neurons disappeared when 
the neurons were placed in the microenvironment of their home ganglia. it is likely that an increased 
content of dopamine in the cnS masks an increased excitation of peA neurons after rest: the dopamine 
receptor antagonist sulpiride produced sustained excitation in peA neurons from eR snails but not in the 
control. therefore, our data suggest the involvement of two mechanisms in the interplay of past and 
present experiences at the cellular level: intrinsic neuronal changes in the biophysical properties of the 
cell membrane and extrinsic modulatory environment of the ganglia.

Past experience, especially an unusual or stressful one, can be memorized by an organism and affect its “predictive 
models” of future events. This memory can impact the internal state and behavioral decisions for a long time. The 
fact, widely accepted by psychologists and human physiologists, receives notable support from studies in animal 
models1–4. Recently, it was demonstrated that even a comparatively simple invertebrate organism such as a mol-
lusk uses memories of past experiences to inform decisions5,6.

Surprisingly, little is known about how past and present experiences interact at the level of a single neuron. The 
idea that the key mechanism of memory formation is based on altered synaptic weights in the neuronal circuit 
has inspired generations of experimental and theoretical work and prevails in understanding the mechanisms of 
brain plasticity in general. In recent years, several research papers challenged this view, arguing the existence of 
memory mechanisms at the level of an individual neuron7–18. However, in a mammalian neuronal network, it is 
often difficult to directly demonstrate the memory trace within a single neuron and elucidate its dependence on 
network influence. Possible involvement of all kinds of non-synaptic events, including extrasynaptic neuromod-
ulatory influences in the mechanisms of past experience storage, has not been well elucidated.

The nervous system of mollusks provides a unique opportunity to directly investigate the interactions between 
a single cell and a neuronal network. Identified mollusk neurons can be isolated from the network to test whether 
circuit-level interactions or intrinsic cellular mechanisms underlie the phenomena observed at the system 
level12,19. Moreover, isolated neurons can be used as movable biosensors to monitor the extrasynaptic release of 
neuromodulators from certain parts of the nervous system20. This method helps elucidate whether synaptic or 
extrasynaptic mechanisms underlie a circuit-level interaction.

Earlier, in the mollusk L. stagnalis, we found that forced muscular locomotion (exercise) in low water pro-
duces long-term changes in the behavior and cell activity21. Previous exercise affected the behavioral state and 
decision-making of animals in a new environment and produced an excitatory effect on the activity of the seroton-
ergic neurons controlling locomotion. Here, we used this simple model of the memory trace of previous exercise 
to clarify possible underlying mechanisms of experience storage at the cellular level. Contribution and interplay of 
mechanisms that are intrinsic and extrinsic to the pedal serotonergic neurons were the focus of our investigation.
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We found that two hours of forced terrestrial locomotion (exercise) produced long-term changes in the elec-
trical activity of pedal serotonergic neurons (PeA) that are preserved even after isolation of a neuron from the 
pedal ganglion. Two hours of “rest” in normal aquatic conditions following intense locomotion abolished the 
effects of exercise on serotonergic cell activity in the CNS but not after isolation of neurons from the CNS. To 
investigate whether the extrasynaptic microenvironment of pedal ganglia contributed to the above masking effect 
of CNS on the PeA neurons after rest we placed isolated control (non-exercised) and ER neurons close to their 
home ganglia. There were no significant differences in the activity between control and experimental isolated neu-
rons in these conditions. When neurons isolated from control nervous systems were brought next to control and 
ER ganglia, a significantly stronger excitatory effect was detected in their response to the microenvironment of 
control ganglia than to the “rested after exercise” pedal ganglia. This finding supports our suggestion that rest after 
the exercise changes the pedal ganglia microenvironment content. Among other neurotransmitter ligands we 
tested were the effects of dopamine receptor antagonist sulpiride on PeA neurons. Sulpiride produced sustained 
excitation in PeA neurons from ER snails but not in the control group. Therefore, the increased content of dopa-
mine in the CNS is likely to mask the excitatory state of PeA neurons after rest. We conclude that past experience 
can be stored within the neuron while the present context may control individual cell memory manifestation via 
changes in the neurochemical microenvironment of the neuron.

Results
previous motor activity produces long-term excitation of serotonergic peA neurons in the cen-
tral ganglia and after complete isolation. Our previous study suggested that intense muscular crawling 
produces an excitatory effect on the activity of serotonergic neurons of the PeA cluster controlling cilial and 
muscular locomotion21. Here, we confirmed this effect on the PeA cells in a sample of sufficient size. In the CNS 
preparations taken from snails which were previously forced to exercise (2 hours, Fig. 1A), PeA cluster neurons 
(Fig. 1B, marked with color) showed significantly enhanced firing rate compared to the control preparations 
(n = 32, Figs 2 and 3B, left panel). The five minute parallel records of the electric activity of the PeA8 neurons 
from the control and exercised snail are shown in the Fig. 2A. Below are the mean firing rate measured for 
25 minutes (Fig. 2B). Similar differences can be seen also in Fig. 3A depicting the process of isolation of control 
and exercised neurons. Statistical analysis is provided in Fig. 3B, left panel. The differences could be observed for 
several hours after CNS isolation (up to 4 hours).

PeA neurons, isolated from the ganglia of exercised or control animals and kept in the physiological solution 
(Fig. 3A), preserved the electrical differences (n = 29, Fig. 3B, right panel). Neurons isolated from exercised snails 
had a depolarized membrane potential in comparison to those taken from control specimens (−50 ± 4 mV versus 
control −58.9 ± 4.7 mV, p < 0.01) and a higher rate of firing (Fig. 3B,C). These differences could be observed for 
at least one hour following their isolation.

Experimental and control neurons hyperpolarized and decreased their firing rate after their isolation 
(Fig. 3A,B). This observation supports previous findings suggesting strong excitatory influence of chemical 
microenvironment on PeA neurons in intact conditions12,22–24. PeA neurons have long neurites (up to 1 cm), 
and so during the isolation they are moved from the ganglia at least a distance of two ganglia diameters. It has 
been previously established that at this distance, no influence of the chemical microenvironment of ganglia is 
detected20,22,23. Therefore, isolated neurons lose both the morphological and chemical connections.

These data indicate that the experience of intense locomotion changes the biophysical properties of PeA neu-
rons. These changes can be preserved even after the isolation of neurons from their functional network, i.e. after 
loss of of synaptic connections and distal parts of their neurites.

Excitation of PeA neurons after exercise is abolished by 2 hours of rest in the CNS but not after 
complete cell isolation. How long is this single cell memory maintained? In order to answer this ques-
tion we first let snails “rest” for two hours after the exercise. No difference was observed in the firing rate of 
the PeA neurons in the ganglia dissected from exercised-rested (ER) and non-exercised control snails (Fig. 4A). 
However, when neurons were isolated, there was the difference in the firing rate between the control and the ER 
PeA cells (Fig. 4A, right panel). The neurons from the control preparations (n = 23) responded to isolation with 
stronger hyperpolarization compared to the neurons from ER snails (n = 20) (Figs 4B and 5). The change in 
MP was significantly different between the two groups: + 2.3 ± 3 mV in the ER group in contrast to −10 ± 3 mV 
in the control group; p = 0.003) as shown in Fig. 5B. This opposite changes in MP of ER and control neurons 
after isolation resulted in significant differences in the firing rate between isolated neurons from the control and 
exercised-rested snails (Fig. 4A).

Therefore, we encountered “hidden” differences in the endogenous electrical activity of neurons from snails 
with past experience of intense locomotion. What are the factors that mask these differences when neurons are 
recorded in the CNS remained unknown.

extrasynaptic release from the pedal A cluster of the control and exercised-rested snails dif-
fers. Our experiments indicate that either the microenvironment or synaptic connections or both might be 
responsible for PeA masking in the CNS of ER snails. In the first series of experiments we tested the possible role 
of microenvironment: isolated neurons were moved back to their initial position in the ganglia. In accordance 
with the earlier data12,22–24, the control environment excited previously isolated control neurons (n = 14, Fig. 6). 
In contrast, already excited ER neurons (ER, n = 8) were not further excited by their microenvironment (Fig. 6B). 
In 5 out of 8 experiments, hyperpolarizing effect of ER microenvironment on ER isolated neurons was observed 
(Fig. 6A). A comparison of four groups, i.e., isolated control neurons in physiological solution(C), isolated control 
neurons near the control pedal ganglia (C near C), isolated ER neurons in physiological solution (ER), and iso-
lated ER neurons in their home microenvironment (ER near ER), revealed a highly significant difference between 
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group (C) and the other three groups at p level < 0.001 in all three cases. No difference between groups (ER), (ER 
near ER) and (C near C) was seen (Fig. 6B). Therefore, the influence of microenvironment might explain why 
neurons with different endogenous activity fire with a similar rate when recorded in the nervous system.

To confirm the suggested differences in the microenvironment content between ER and control ganglia, we 
used isolated control cells placed first near the control and then near the ER PeA cluster (the order was different 
in different experiments) as shown in Figs 1B and 7. In all 9 experiments with 9 neurons, the excitatory effect 
of the chemical microenvironment of the control pedal ganglia was stronger than that of the ER pedal ganglia. 
Figure 7A illustrates the responses of the same isolated neuron to the control and to the ER ganglia. An obviously 
weaker response to the ER pedal A cluster can be seen. There was a statistically significant difference between the 
effects of chemical microenvironment of control and ER pedal ganglia (Wilcoxon paired test, p = 0.02, z = 2.2, 
Fig. 7B). However, in no control cell an inhibitory effect of the ER microenvironment detected, in contrast to the 
previous series in which the firing frequency of 5 out of 8 ER isolated neurons was reduced in the ER microenvi-
ronment. The responses of the ER isolated neurons to control and ER ganglia microenvironment were tested in 
two experiments only. In both, they had higher rate of firing near the C ganglia.

Finally, we checked whether the weaker excitatory effect of pedal microenvironment was induced by rest 
rather than intense locomotion itself. The responses of the isolated control neuron placed near the PeA cluster of 
the control and exercised (E) snails were examined (n = 13). In this series of experiments several neurons were 
silent after isolation (Supplement, Fig. 1). As a result, we used the difference in the membrane potential as an 
indicator of the neuronal response to the ganglia microenvironment. The excitatory response was significantly 
stronger near the pedal ganglia of E snails (Supplement, Fig. 1). A similar tendency (not significant at p = 0.05) 
was observed with active cells isolated from the nervous system of exercised snails (n = 5, Supplement, Fig. 2).
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Figure 1. Schematic illustration of the experimental approach. (A) Procedure for the investigation of the 
effects of enhanced motor activity (exercise) and rest after exercise based on the method described in21. Snails 
were divided into two groups and resided individually for two hours in similar light conditions. Control group 
snails (C, marked with blue color) were kept in a cylinder filled with up to 9 cm of water to be able to use ciliary 
locomotion. Snails of the “exercise” experimental group (E, marked with red color) were kept in a 25 × 50 cm 
container containing a 1 mm layer of water which protected them from drying but forced them to use intense 
muscular locomotion. Snails of the “rest after exercise” experimental group (ER, marked with purple colour) 
were placed into in a cylinder filled with 9 cm of water to be able to use ciliary locomotion for 2 hours after 
2 hours of exercise in low water. The procedure is modified after Korshunova, et al.21. (B) The procedure used 
for the investigation of modulatory effects of ganglia microenvironment based on method described in12. The 
neuron impaled with the microelectrode was isolated and moved away from the ganglion and placed in the 
middle between the control and experimental ganglia. Two approaches were used. (1) The neurons isolated 
from the control and experimental preparations were moved back close to their positions in their home pedal 
ganglia at a distance less than half-cell size (20–25 µm) and kept in this position for about two minutes; (2) 
Isolated neuron was first moved to the pedal cluster of experimental preparation, once again placed between 
the experimental and control ganglia, and then moved to the PeA cluster of the control preparation ganglia. The 
procedure was repeated several times.
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Therefore, we conclude that changes in extrasynaptic release may contribute to the masking effect, described 
above, of rest on the firing rate of PeA neurons in CNS preparations. Although it is unlikely that extrasynaptic 
release completely explains the differences in the activity of neurons in intact and isolated state (either in the 
control, or in the experimental conditions), its impact on neuron activity in the described situation is evident.

The dopamine receptor antagonist sulpiride unmasks the differences between the control and 
exercise-rested peA neuron states in the isolated cnS. In looking for possible neurotransmitters 
that might explain the masking effect in the CNS of ER snails we considered the dopaminergic system. Opposite 
effects of serotonin and dopamine on locomotor behavior have been found in several mollusk species25–27. To test 
possible involvement of dopamine, the dopamine antagonist sulpiride (0.01–0.1 mM) was added to the dish con-
taining CNS preparations isolated from the control and ER snails. This drug has repetitively been demonstrated 
to antagonize the dopamine effects in Lymnaea28,19. The PeA neurons activities were recorded simultaneously in 
the control and in the ER preparations prior to the drug application, during 5 minutes of sulpiride application and 
20–30 minutes of washing.

Sulpiride had no effect on the control PeA neurons in the CNS preparation (n = 9; Fig. 8A). Remarkably, in 
the CNS preparations from ER snails, it produced an excitatory effect on the PeA neurons (n = 9, Fig. 8A). These 
results support the data obtained in the experiments with neuron isolation suggesting increased endogenous 
excitation of the PeA cells in ER snails. They suggest that there is a tonic dopamine release that leads to a contin-
uous reduction of PeA neuron activity in ER animals.

To further verify the possibility that excitatory effect of sulpiride relies on disinhibition of neurons hyperpo-
larized by dopamine, dopamine effects on activity of PeA neurons were tested in control preparations. Dopamine 
(0.01 mM) decreased the firing rate of PeA neurons (n = 10, Fig. 8B).

Whether dopamine acts on the PeA neurons directly or indirectly, or both, remained unknown. Our data indi-
cate that it may act directly on the isolated PeA neurons (n = 10, Fig. 8C). In these experiments, dopamine at the 
same concentration of 0.01 mM produced hyperpolarization as well. Recent findings also suggest that the effects 
of exercise and rest after exercise can be reproduced in isolated paired pedal ganglia (Sultanakhmetov, Master’s 
Thesis, 2018). Together these data suggest that dopamine might indeed be responsible for the changes observed 
in the microenvironment of these ganglia in ER snails.

We conclude that an increased tone of the dopaminergic system in the CNS of ER snails is likely to be respon-
sible for masking the excitatory state of the serotonergic PeA neurons. The precise mechanisms of its action as 
well as the possible cellular sources of an increased dopamine tone during ER state need further investigation.

eR snails show faster locomotor arousal on dry surface. The ambiguous state, characterized by both 
keeping memory of the past and adjusting to the present context, is interesting in its potential to return rapidly 
to a previous state of enhanced activity, if necessary. We tested whether locomotor behavior of the ER and con-
trol snails (n = 30; 30) differs when animals are taken from water and placed on a dry surface. We used the same 
procedure as in the earlier paper21. Snails were placed in the asymmetrically lit dry arena. Two minutes later, their 
speed of locomotion was analyzed for four minutes with the Ethovision program. ER snails showed faster loco-
motion than the control ones with the median speed 2.5 cm/min versus 1.9 cm/min in the control group (z = 2.18; 
p < 0.03; Mann-Whitney U Test). This finding is in line with the suggestion that the endogenous excitation of PeA 
neurons in the ER snails may underlay a faster behavioral switch from aquatic to terrestrial crawling.
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Figure 2. The effect of locomotion in low water (exercise) on the activity of PeA neurons in an isolated CNS. 
(A) Records of PeA8 neuron electrical activity in CNS from exercised (E) and control snails (C). The MP 
value is measured at the end of the records[procedure??]. (B) The frequency of action potentials per minute 
of PeA8 neurons for 25 minutes of recording from exercised (E) and control snails (C), first derivative without 
smoothing.
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Discussion
Predictions from the past about the future are important for survival29,30. However, relying on the past may turn 
out to be erroneous in certain circumstances. How should one know when it is time to stop relying on the past 
and to make models of the future relying on the present? How should one make a decision when the past and 
present experiences contradict? This task is very difficult and very important for all living organisms, with no 
exception. It is the cause with some psychological and even some psychiatric problems in humans.
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Figure 3. The effect of locomotion in low water (exercise) on the activity of PeA neurons in an isolated CNS 
and after complete isolation. (A) Records of control and exercised PeA neurons during isolation from the 
nervous system. The red line indicates mechanical isolation (electrode touch by the experimenter, pulling the 
neuron out of the ganglion, and moving the neuron away from the ganglion chemical microenvironment). 
The activity of control and exercised neurons in the CNS (left of the black line), and the activity of the same 
neurons in complete isolation (right of the black line) is shown. Isolation results in the decreased firing rate and 
hyperpolarized MP in both the control and the experimental cells. The MP volume is shown for isolated cells. 
Nevertheless, the differences between the control and exercised neurons are preserved after isolation. (B) The 
median frequency of action potentials per minute (AP/min). Left to right: control neurons recorded in the CNS, 
neurons from exercised snails recorded in the CNS, measurements are performed 5 minutes after electrode 
penetration into the neuron (n = 32, p < 0.005), control neurons recorded after 5 min of complete isolation and 
neurons from exercised snails recorded after 5 min of complete isolation (n = 29, p < 0.01). Mann-Whitney test. 
All values are given as the median with quartiles. (C) Records of control (C) and exercised (E) PeA neurons after 
5 min of isolation from the nervous system.
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In very simple and common cases, the longer the circumstances related to the past experience are absent, the 
more likely an organism will exclude them from its “predictive model of the external world”. Here, we addressed 
the questions of how past and more recent experiences interact on the level of a single neuron. In the gastropod 
snail Lymnaea stagnalis, which is useful for studies of freshly isolated neurons, we found that a single isolated 
neuron is capable of storing the memory about its activity during the past behavioral state. Second, we discovered 
that this persistent memory can be masked by the nervous system when newer information becomes available. 
We propose that the neuroactive chemical microenvironment and specifically, an increased content of dopa-
mine, plays a role in the adjustment of serotonergic neurons that were modified by previous experience to novel 
circumstances.

The PeA cluster serotonergic neurons are involved in the modulatory control of locomotion. The cells deliver 
serotonin to the ciliated epithelium and foot muscles of Lymnaea31,32. Excitation of pedal serotonin neurons is 
associated with the locomotor arousal (swimming) in the marine gastropod mollusks Aplysia fasciata and Clione 
limacina33–35. In several distantly-related mollusk species, the serotonergic neurons have excitatory chemical and 
electrical interconnections. It was suggested that they form a “distributed arousal network” that may underlie the 
locomotor arousal of the animal36–39. Since the extrasynaptic release of serotonin from the PeA neurons within the 
central ganglia of Lymnaea was found, a wider neuromodulatory role was ascribed to these cells12,20,22,23. Serotonin 
is known to facilitate many forms of behavior beyond locomotion, including cognitive traits such as learning and 
memory in mollusks18,39,40.

Here, we found that previous motor load is represented in the electrical properties of isolated serotoner-
gic neurons. Earlier, we demonstrated a similar representation of hunger in the activity of isolated PeA neu-
rons12. Locomotor arousal is typically observed in hungry animals, including mollusks41. It results in random 
or directional food-seeking behavior. The increased excitatory state of “hungry” and “exercised” PeA neurons 
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Figure 4. The effect of rest after exercise on the activity of PeA neurons and their response to isolation. (A) The 
median frequency of action potentials per minute (AP/min). Left to right: control neurons recorded in the CNS, 
ER neurons recorded in the CNS (n = 62, p = 0.5), control neurons recorded after 5 min of complete isolation 
and ER neurons recorded after 5 min of complete isolation (n = 43, p < 0.05). All values are given as the median 
with quartiles. (B) The median difference in the membrane potential in response to isolation in the control 
(left) and the ER neurons (right) (n = 43, p < 0.05). Mann-Whitney test. All values are given as the median with 
quartiles.
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corresponds to their functional role in natural behavior. Together, these findings clearly show that memory of 
recent activity is stored in the neurons and, at least in some stages, does not require network involvement.

A cellular “set of memory” has been broadly discussed during recent years. The common point of view that 
memory is represented in synaptic strength has been criticized recently by several authors. Memory was sug-
gested to be encoded on the inside of neurons7–18,42–44, in the cellular microenvironment45,46, and in unique 
neuronal ensembles47. In mollusks, a persistent depolarization of membrane potential was demonstrated to con-
tribute to a long-term associative memory trace16–18.

Our results, on the one hand, provide the strongest support to the idea that the memory of previous activity 
can be stored inside of the neuron. On the other hand, we unveil the complex interactions between a single neu-
ronal memory and a system “knowledge” of the current situation. We demonstrated that memory of past activity 
is preserved within a neuron and does not require ensemble effects at a certain stage. In comparison to previously 
reported forms of memory revealed in delicate changes of synaptic strength, our “excited after isolation” neuron 
is probably one of the boldest and simple examples of how previous experience can be stored.

The masking effect of the nervous system on the increased activity of ER neurons is probably the most inter-
esting finding presented in this work. The difference in the firing rate between the control and the ER PeA neu-
rons not seen in the ganglia became apparent when the neurons were isolated. The membrane potential of ER 
neurons hyperpolarized more weakly than the membrane potential of control neurons after isolation, which is 
consistent with and partially explains this effect. These findings suggest that not only do the inner properties of 
pedal neurons differ between the control and ER snails, but so does the impact of the neuron network on these 
cells. This impact seems to be able to compensate for the differences between the control and ER neurons. It is 
likely that dopamine may play a key role in this masking effect, since its antagonist produced excitation in the 
PeA neurons from ER snails, and had no effect in the control group. In other words, we encountered a peculiar 
situation characterized by the seemingly equal activity of neurons in the CNS, which was maintained by different 
mechanisms.

This finding imposes an obvious question: what is the physiological reason for keeping locomotor neurons in 
an internally excited state under external inhibition in ER animals? We suggested that this ambiguous state, char-
acterized by both keeping memory of the past and adjusting to the present context, is interesting in its potential 
to return rapidly to a previous state of enhanced activity, if necessary. Indeed, ER snails showed faster locomotor 
arousal when they were placed again in terrestrial conditions. This finding points to possible benefits of this 
ambiguous state for transition from aquatic to terrestrial locomotion. It also agrees with presumption that the 
memory of the past is still used for predictive models of a possible future.
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Figure 5. Records of electrical activity of PeA neurons during isolation from the nervous system of exercise-
rested (ER) snails in three different experiments. The line indicates the mechanical isolation (electrode touch 
by the experimenter, pulling the neuron out of the ganglion, and moving the neuron away from the ganglion 
chemical microenvironment). The activity of neurons in the CNS (left of the black line), and the activity of the 
same neurons in complete isolation (right of the black line) is also shown. Note that the decrease in the firing 
rate in response to isolation, which is characteristic of control and exercised neurons (Fig. 2A) is not evident 
here. In the upper trace it is weaker than in the control while in the middle and low traces the opposite effect is 
clearly seen: excitation and an increase in the firing rate after isolation.
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There is a growing understanding that the neuromodulatory microenvironment of a network is not less 
important than the connections in the functional physiology of the nervous system. The role of neuromodulation 
in neural mechanisms underlying decision-making has been demonstrated in many studies48,49. It is well estab-
lished that in addition to synaptic interactions, there is a broad range of nonsynaptic chemical communication 
between neurons. Extrasynaptic neurotransmitter release is proven to play an important role in the nervous 
system of mammals50–55 and various invertebrates19,20,22–24,56,57. Recently, changes in the extrasynaptic modulatory 
state were shown to be associated with different behavioral states12. Still, we know surprisingly little about the 
contribution of nonsynaptic communication to memory formation.

Here, for the first time, we found evidence that changes in the extrasynaptic release can contribute to a pecu-
liar masking effect of the network on the persistent memory of past behavioral experience in individual neurons. 
We found that the difference in the firing rate observed between control and ER isolated neurons was masked 
when these neurons were placed in their home microenvironment. This effect is remarkably consistent with the 
absence of difference between these neurons when the measurement are made while these are in the ganglia. The 
control isolated neurons with lower endogenous activity responded to their home ganglia microenvironment 
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Figure 6. Influence of the pedal ganglia microenvironment on the activity of isolated control and ER PeA 
neurons. (A) Upper trace, record of activity of an isolated control neuron at the distance of two ganglia 
diameters from the PeA cluster, and near the PeA cluster of its home ganglia taken from a control snail (blue 
frame). Lower trace, record of activity of an isolated ER neuron in the same experiment in the same dish at 
the distance of two ganglia diameters from the PeA cluster, near the PeA cluster of its home ganglia taken 
from an ER snail (purple frames). This is an example of a clearly hyperpolarizing influence observed in several 
experiments. In other experiments, a depolarizing influence was observed: however, it was significantly weaker 
than that in the control. The vertical lines of the frames mark the end of the neuron movement. (B) The median 
frequency of action potentials per minute (AP/min). Left to right: control isolated neurons kept at a distance 
from ganglia, control isolated neurons near their home pedal A cluster of control snails (n = 14), ER isolated 
neurons at a distance from ganglia, and ER isolated neurons near their home pedal A cluster of ER snails 
(n = 8). All values are given as the median with quartiles. Significant differences were observed between the 
isolated control neuron placed at the distance of two ganglia diameters from the PeA cluster and the three other 
groups (Multiple comparisons test, Kruskal-Wallis test: H (3, N = 47) = 28.77 p < 0. 0015; z > 3.6 for all three 
comparisons). There is no difference between the other groups (z < 0.94; p > 0.1). Compare this effect with 
Fig. 4a illustrating the differences between a control isolated neuron and three other groups (namely, the control 
neurons recorded in the CNS, the ER isolated neurons and ER neurons recorded in the CNS).
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with profound excitation, while the ER isolated neurons with a higher firing rate either demonstrated the opposite 
inhibitory response to their ganglia microenvironment or a significantly weaker excitatory one.

The difference in the extrasynaptic release between the control and ER ganglia was confirmed when the same 
cells were used to detect the activity of the microenvironment of both preparations. They similarly demonstrated 
significantly weaker excitation near the ER ganglia. It can be noticed, however, that in this experimental series we 
never observed the inhibitory effect of the ER ganglia. This may potentially indicate that not only the microen-
vironment but also the receptiveness of the neurons from the ER snails was changed. It was not the aim of the 
present study to establish this, but it can be an interesting task for further investigation.

Finally, we checked whether the shift in the balance between the excitatory-inhibitory components in the 
ER microenvironment was induced by the return to aquatic conditions. We compared the responses of isolated 
neurons near the control and the exercised (E) ganglia. The effect on the E and ER ganglia microenvironment was 
completely different. The neurons detected an even stronger excitatory influence of the E ganglia compared to that 
of the control ones. This result agrees with the idea that an increase in the inhibitory influence of the microenvi-
ronment is induced by a cessation of intense locomotion and a return to aquatic conditions.

In conclusion, we show the involvement of the two mechanisms in the interplay of past and present experi-
ences at the cellular level (Fig. 9): (1) intrinsic neuronal changes in the biophysical properties of the cell mem-
brane and (2) extrinsic neuronal changes in the extrasynaptic microenvironment of the pedal ganglia. Exercise 
results in an enhanced firing rate of individual neurons and a stronger excitatory influence of the microenviron-
ment, while rest following exercise enhances the inhibitory extrasynaptic influence (presumably via dopamine 
release) on still-excited individual neurons. The latter results in nearly equal activity of the control and the ER 
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Figure 7. The responses of control neurons to a nearby PeA cluster of pedal ganglia taken from control and ER 
snails. (A) Upper trace, records of activity of one cell at the distance (no frames) and near the PeA cluster from 
the control snail (blue frames). The lower trace shows the activity of the same cell moved to the PeA cluster 
of ER ganglia (purple frames). The frame indicates the neuron position near the PeA cluster. It corresponds 
to the immobile state of the neuron. In all cases, excitation is seen when the neuron is in the PeA cluster 
microenvironment; however, it is significantly weaker near the ER ganglia. (B) The median frequency of action 
potentials per minute (AP/min, n = 9) near the pedal A cluster of control snails, and near the pedal A cluster of 
ER snails. Wilcoxon test for dependent samples shows significant differences between the responses of isolated 
neurons to the C and ER ganglia microenvironment (p = 0.02, z = 2.2). All values are given as the median with 
quartiles.
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neurons in the CNS. However, this similarity is explained by totally different states of both the neurons and their 
chemical environment. The results agree with the idea proposed for central pattern generators and supported 
by mathematical modeling that “multiple solutions produce similar outputs”58,59. We hypothesize that the same 
output (behavior) can be produced by circuits with different combinations of neuron parameters depending upon 
the past experience of the animal and its expectations about the future. ‘The right combination’ may facilitate the 
transition from the current behavior to the predicted one.
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Figure 8. The influence of dopaminergic signaling on the activity of PeA neurons in isolated CNS from control 
(C) and exercised-rested (ER) snails. (A) The effect of dopamine receptor antagonist sulpiride (0.01 mM). Left 
panel: the mean frequency of action potentials per minute (AP/min) of PeA neurons from control snails (n = 9) 
in normal saline (NS); the activity of the same neurons after 10 min of sulpiride application (Sulp); the same 
after 20 min washing (NS). Right panel: the mean frequency of action potentials per minute (AP/min) of PeA 
neurons from exercised-rested snails (n = 9) in normal physiological saline (NS) and after 10 min of sulpiride 
application (Sulp); same after 20 min washing (NS). Significant differences after posthoc comparisons are 
marked with asterisk (ER preparations), Friedman ANOVA for multiple comparisons of dependent variables 
Chi Sqr = 7, p = 0 0.03). All values are given as the mean with standard deviations. (B) The effects of dopamine 
on the PeA neurons activity in the CNS. Left panel: the mean frequency of action potentials per minute (AP/
min, n = 10) of PeA neurons from control snails in normal saline (NS); the activity of the same neurons after 
10 min of dopamine application (dopamine); the same after 20 min washing (NS). Significant differences after 
posthoc comparisons are marked with asterisk, Friedman ANOVA for multiple comparisons of dependent 
variables Chi Sqr = 7.8, p = 0 02). Right panel, the record of PeA8 activity in the CNS of control snail prior to, 
during and after application of dopamine. (C) The effects of dopamine on the activity of isolated PeA neurons. 
Left panel: the membrane potential (mV, n = 10) of PeA neurons isolated from control snails in normal saline 
(NS); the membrane potential of the same neurons after 10 min of dopamine application (dopamine); the same 
after 20 min washing (NS). Significant differences are marked with asterisk, Friedman ANOVA for multiple 
comparisons of dependent variables Chi Sqr = 7.2, p = 0.027). Right panel, the record of isolated PeA neuron 
activity prior to, during and after the application of dopamine.
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Materials and Methods
Animals. Mature snails Lymnaea stagnalis were obtained from a breeding colony. The colony originated from 
mixed groups of wild animals collected in the Oka river, Moscow region, in 1992–1998. Animals were kept in 
dechlorinated tap water at room temperature and fed on lettuce ad libitum.

Enhanced motor activity was evoked as in21 by putting snails for two hours into a 25 × 50 cm tank filled with 
1 mm of water which prevented the mollusks from drying but stimulated them to perform intense terrestrial-like 
muscular locomotion (Fig. 1A). Control snails were kept in deep water so they could use ciliary locomotion for 
two hours in similar light conditions. “Rest after exercise” was evoked by putting snails for two hours after motor 
activity into a cylinder filled with water. The experimental and control animals were chosen at random and tested 
in one experiment at the same time.

electrophysiological experiments and neuron isolation. Standard procedure described previously 
in12,19 was used. In each experiment, the central ganglia were dissected from two animals (control and exper-
imental), anesthetized with an injection of 0.1 mM MgCl2. The central ganglia (with exception of buccal ones) 
were placed into a 2.5 mg/ml solution of pronase E (Sigma) for 15 minutes, washed in a standard snail Ringer’s 
solution (50 mM NaCl, 1.6 mM KCl, 4 mM CaCl2, 8 mM MgCl2, 10 mM Tris, pH 7.6), and pinned to a Sylgard in a 
four-milliliter chamber with a distance of approximately 1 cm between preparations. The connective tissue sheath 
was then removed from the pedal ganglia.

Visual identification of the PeA2/A8 neurons was performed based on their location, size and color. Other 
neurons were randomly taken from serotonergic Pedal A (PeA) clusters (Fig. 1B, marked with color) to assess 
whether the observed effects of motor load were common to different cluster members. In terrestrial snails the 
serotonergic neurons of the pedal cluster were shown to produce different secreted and non-secreted peptides60.
Whether Lymnaea PeA cells co-express different peptides is unknown.

The neuron that was selected for examination was impaledpenetrated with a standard glass microelectrode 
(10–20 M filled with three molar KCl). A standard setup for microelectrode recording was used. The electrophys-
iological recordings were stored in computer files using a home-developed program.

For neuron isolation, we utilized previously developed methods61,62. The neuron was gently pulled out of 
the tissue using the intracellular microelectrode until separation of the proximal neurite from the neuropil was 
achieved. The electrical activity of the cell was monitored during isolation. The cells that demonstrated membrane 
injury were not used for the experiments.

Investigation of modulatory effects of the pedal ganglia microenvironment on the electric 
properties of peA neurons. Our approach was developed based on the earlier methods for the detection of 
extrasynaptic release from the ganglia of Lymnaea12. Preparations of central ganglia were used in one experiment 
and placed in the same chamber with a distance of approximately 1 cm between them. One nervous system was 
used as a source of isolated neurons and was treated as above (the neuron isolation procedure). The positions of 
control and experimental preparations in the chamber were altered in different experiments, and the investigator 
was not aware of where the control and experimental preparations were placed (“blind procedure”). The connec-
tive tissue sheath was removed from the pedal ganglia.

The isolated neuron penetrated with the microelectrode was moved away from the pedal ganglion and placed 
in the middle between the control and experimental pedal ganglia for two minutes (Fig. 1B). After that two 
approaches were used. (1) Neurons isolated from the control and experimental preparations were moved back 

C E ER

isolated
neuron

micro-
environment

neuron +
microenvironment

Figure 9. Schematic representation of two mechanisms in the interplay of past and present experiences at the 
cellular level: (1, upper panel) intrinsic neuronal changes in the biophysical properties of the cell membrane 
and (2, medium panel) extrinsic neuronal changes in the extrasynaptic microenvironment of the ganglia. 
Exercise (E) results in an enhanced firing rate (marked with red color of different intensity) of individual 
neurons and a stronger excitatory influence of the microenvironment (marked with yellow color), while rest 
following the exercise (ER) enhances the inhibitory extrasynaptic influence (marked with blue color) on still-
excited individual neurons. The latter results in nearly equal activity of the control and the ER neurons in the 
CNS (lower panel). However, this similarity is explained by totally different states of both the neurons and their 
chemical environment. Different intensity of red color reflects the difference in the rate of firing of PeA neurons, 
with more intense color corresponding to higher activity. Balance between excitatory (yellow) and inhibitory 
(blue) neurotransmitters/neuromodulators is suggested to define the polarizing effect of microenvironment.
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close to their positions in their home ganglia. (2) Isolated neuron was first moved to the pedal cluster of experi-
mental preparation at a distance less than half-cell size (20–25 µm) and kept in this position for up to two minutes, 
placed at the distance from the ganglia, then moved to the PeA cluster of the control preparation of ganglia. The 
procedure was repeated several times.

Data analysis. The significance of the differences was subjected to the Mann-Whitney test (the differences 
in spike frequency and membrane potential between control and experimental neurons in situ and in isolation) 
or by the paired Wilcoxon signed-rank test for dependent samples (the differences in the activity of neurons near 
the control and experimental ganglia) or the multiple comparisons test (Kruskal-ANOVA for independent and 
Friedman ANOVA for dependent variables) for multiple comparisons with posthoc tests using the STATISTICA 
program (StatSoft Inc.). All values are given as medians with the upper and lower quartiles.

Highlights. We addressed the question of how past and present behavioral experience interacts at the level 
of a single neuron. Using the pond snail Lymnaea stagnalis, we found that a single isolated neuron is capable of 
storing the memory about its activity during the past behavioral state. However, this persistent memory of an 
individual neuron can be masked by the nervous system when newer information becomes available. We show 
that the chemical microenvironment plays a role in the adjustment of neurons that were modified by previous 
experience to novel circumstances.

Data Availability
The datasets generated and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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