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Modelling optimal behavioural 
strategies in structured populations 
using a novel theoretical framework
Andrew Morozov1,3,4*, Oleg A. Kuzenkov2,4 & Elena G. Arashkevich3,4

Understanding complex behavioural patterns of organisms observed in nature can be facilitated 
using mathematical modelling. The conventional paradigm in animal behavior modelling consists of 
maximisation of some evolutionary fitness function. However, the definition of fitness of an organism 
or population is generally subjective, and using different criteria can lead us to contradictory model 
predictions regarding optimal behaviour. Moreover, structuring of natural populations in terms of 
individual size or developmental stage creates an extra challenge for theoretical modelling. Here we 
revisit and formalise the definition of evolutionary fitness to describe long-term selection of strategies 
in deterministic self-replicating systems for generic modelling settings which involve an arbitrary 
function space of inherited strategies. Then we show how optimal behavioural strategies can be 
obtained for different developmental stages in a generic von-Foerster stage-structured population 
model with an arbitrary mortality term. We implement our theoretical framework to explore patterns of 
optimal diel vertical migration (DVM) of two dominant zooplankton species in the north-eastern Black 
Sea. We parameterise the model using 7 years of empirical data from 2007-2014 and show that the 
observed DVM can be explained as the result of a trade-off between depth-dependent metabolic costs 
for grazers, anoxia zones, available food, and visual predation.

The complex behavioral responses and sophisticated life traits of organisms which are observed in the natural 
world are often considered to be outcomes of long-term evolutionary processes, and their quantitative description 
via mathematical modelling is usually challenging. Moreover, it is intuitively clear that optimal behaviour and/or 
life traits of an organism should gradually alter with maturation and progression through different developmental 
stages: a successful behavioral strategy for juveniles may not be effective for adults, which often experience a dif-
ferent environment. Structuring of populations in terms of size or developmental stage usually greatly enhances 
the complexity of our evolutionary models, and consequently existing modelling frameworks dealing with evo-
lution in structured populations are somewhat less developed compared to those for unstructured populations1,2. 
The aim of this paper is to propose a framework to reveal optimal strategies for different developmental stages in 
stage-structured population models with continuous growth. Our study is based on a revisited concept of evolu-
tionary fitness related to the long-term selection process and can be applied to deal with both scalar and function 
valued life traits or behaviours. As an important ecological study case, we explore patterns of regular diel vertical 
migration of zooplankton in aquatic ecosystems under variable environmental constraints.

The conventional wisdom of evolutionary modelling used to predict optimal life traits or behaviour is often 
based on the generic idea that a certain quantity known as the evolutionary fitness should be maximised3–6. 
However, the definition of fitness for an organism or a subpopulation is generally subjective and may depend 
on the personal preference of the researcher. For example, the existing models of diel vertical migration of zoo-
plankton use different definitions of population fitness such as the individual reproductive value7,8, the inverse 
mortality9,10, the ratio between the food intake and the mortality11–13, and the ‘venturous revenue’14 among others. 
As an unfortunate result, models of optimal behaviour using different definitions of fitness can predict clearly dis-
tinct patterns14–16. In recent works, however, a new mathematically straightforward approach for identifying the 
evolutionary fitness has been proposed16–18. This approach considers long-term dynamics of competing subpop-
ulations which are described by different inherited units (e.g. behavioural strategies, life traits, genotypes). The 
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evolutionary fitness can be defined based on the comparative ranking order of such subpopulations. As a result, 
the long-term evolutionary outcome only depends on the choice of the underlying population model rather than 
a speculative metric of fitness16.

Here, we extend the ideas of the approach mentioned above16,17 to explore optimal behavioral patterns in a 
generic age- or size-structured population model with continuous age or size settings. In particular, we demon-
strate how the evolutionary fitness can be derived for a generic von Foerster model with an arbitrary mortality 
term. Then we show that the optimal patterns of behaviour which are observed in the model can be derived by 
applying the variational principle of natural selection. Using this principle we obtain equations providing the 
optimal trajectories of regular vertical migration of zooplankton.

Regular diel vertical migration (DVM) of marine and freshwater zooplankton is often regarded as the largest 
synchronised movement of biomass on Earth19,20. Understanding DVM is so important because it plays a key role 
in the carbon exchange between the deep and surface waters, the oceans biological pump21,22. Typically, DVM 
consists of planktonic grazers ascending to plankton-rich surface waters to feed at night, then descending to 
deeper waters and remaining there during the day19,23. There exist several explanations of what causes organisms 
to migrate, but the most accepted hypothesis is currently that zooplankton perform DVM to avoid visual preda-
tion, mostly by planktivorous fish, by staying in the deeper and darker areas during daylight hours and ascending 
at night when visual predators are unable to see them23–26. The DVM phenomenon has been extensively studied 
both empirically23–26 and theoretically using a number of mathematical models8,26–28. However, we should stress 
that most of the existing models of DVM were based on the principle of maximization of some initially prescribed 
fitness criterion which was a personal choice of researcher, thus the generality of the modelling results remains 
questionable. Furthermore, the role of key factors affecting DVM is still poorly understood. This particularly con-
cerns the difference in migration behaviour for different developmental stages and the influence of environmental 
factors such as food, temperature, oxygen, and predators on the amplitude and timing of migration for each stage. 
We argue that mathematical modelling based on our revisited concept of fitness and also backed up by long-term 
empirical observation can provide us with a better understanding of zooplankton DVM7,13,27,29,30.

Here we implement the novel theoretical framework to explore the DMV patterns of dominant zooplankton 
herbivores in the north-eastern Black Sea ecosystem. We differentiate between strategies of different zooplank-
ton developmental stages and consider how key environmental parameters such as food availability, predation, 
and habitat size affect the optimal DVM. Using the model, we address the long-standing question of why the 
migration depth of zooplankton is two-three times greater than the size of the euphotic zone31–33. Our modelling 
research into optimal DVM is backed up by 7 years of empirical observation (2007–2014) of the migration of 
two abundant copepod species, Calanus euxinus and Pseudocalanus elongates, across seasons and under different 
biotic and abiotic conditions. Our study demonstrates that it is the depth-dependent variability of the metabolic 
costs of the grazers - related to the specific oxygen regime in the Black Sea - rather than trophic pressure by visual 
predators that determines the choice of the lowest migration depth. The model also predicts that the absence of 
diel migration of earlier stages of zooplankton might be mostly due to their high mortality rather than due to a 
high cost of DVM, contrary to what was believed previously.

The paper is organized as follows. Section 2.1 introduces the generalized variational principle of modelling 
natural selection and introduces the generalised fitness function. In Section 2.2, a generic size- or age- structured 
model is introduced and the evolutionary fitness for this model is derived. In Section 2.3, the generic model is 
implemented to explore patterns of optimal zooplankton DVM. In particular, Subsection 2.3.1 provides empirical 
evidence for zooplankton DVM in the Black Sea; subsections 2.3.2 explain parameterisation of the model coeffi-
cients; Subsection 2.3.3 shows the modelling results on the optimal DVM. The discussion in Section 3 summarises 
the main results and provides further ideas on revealing optimal behavioral strategies using the new framework.

Results
Establishing general variational principles of natural selection.  Here we provide a generic math-
ematical framework of modelling natural selection in a self-replicating system with inheritance and introduce a 
mathematically rigorous definition of evolutionary fitness.

Consider some population, where organisms are described by inherited elements v, strategies or life traits, for 
instance. Mathematically, an element v can be a scalar, a vector, or a function, so we consider that v belong to a 
certain function space V. In particular, for a stage-structured population, v can be a vector of functions describing 
each developmental stage. From now on we will refer to v as a strategy for the sake of simplicity. For simplicity, we 
consider that strategy v is passed unchanged to each offspring from its parent, i.e. as in the case of a clonal repro-
duction (note that our methodology can be extended to a more complicated case allowing for mutations16). We 
assume that v belongs to a compact domain in a metric space V equipped with a Borel measure μ*. We also 
assume that the measure of any open set (except ∅) is greater than zero.The need for introducing a metric and 
using a measure comes from the following.

We assume that elements of V can be somehow compared in terms of similarity (or closeness) to each other. 
Mathematically, this means that we need to introduce a distance between elements v; thus the space V is required 
to be a metric space. The existence of a metric allows us to generate neighbourhoods and open sets in V. Our 
framework should also be able to quantitatively describe and compare the sizes of different sets in V. For this 
purpose, we use the concept of σ - algebra of ∑ subsets in V and then introduce a measure of those subsets. Note 
that almost for any choice of subsets ∑, there will be always non-measurable sets. Thus, it is logical to use only 
such σ - algebra which will contain all subsets which are of interest for further applications (e.g. all open sets). The 
minimal σ - algebra containing open sets is known as a Borel algebra, and a measure introduced on it is called 
a Borel measure. Note that in practical applications, almost all considered measures are Borel measures. For 
examples, in the finite dimension space, a Borel measure will be extension of the ‘classical’ concept of volume. In 
infinite dimension spaces (function spaces), a Gaussian measure is typically used34.
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The presence of the subpopulation with strategy v at time t is indicated by a non-negative numeric value η v t( , ) 
which can be understood as a generalized density. This may be the density of the subpopulation with strategy v, 
but we can also describe the presence of strategies in the population via the logarithmic scale of the biomass, for 
example. Alternatively, we can characterize the presence of strategies in the population via any positive power of 
population size which can be strategy-dependent. We postulate that η v t( , ) should satisfy the following 
requirements:

•	 η =v t( , ) 0 indicates the absence of v in the population at time t.
•	 η >v t( , ) 0 indicates the presence of v in the population at time t.
•	 If η v t( , ) approaches zero this signifies extinction of v.
•	 It is a continuous function over the space V and it is integrable over V with regard to μ*.
•	 It is a smooth function of time.
•	 ∫ η μ⁎v t dv( , ) ( )

V
 is uniformly bounded by a constant, i.e. ∫ η μ ≤⁎v t dv c( , ) ( )

V
 for any t. This takes into account 

the natural assumption that limitation of resources for the population restricts its population growth.

We suggest that we know the equation which govern the temporal dynamics of η v t( , ); for example, it can be 
derived from the underlying model of population dynamics.

We can now introduce the following definition of ranking of strategies.

Definition 1 (Ranking order of strategies). We state that element v′ is better (or fitter) than element w′ ( ′ ′v w ), 
if there exists a neighborhood ′O v( ) of point v′ and a neighborhood ′O w( ) of point w′ such that the ratio of gener-
alised densities (1) tends to zero uniformly in the neighborhoods ′O v( ) and ′O w( ) for v in the neighborhood ′O v( ) 
and w in ′O w( ), i.e.

η
η

 → → ∞.
w t
v t

t( , )
( , )

0,
(1)uniformly

Note that the above definition should be considered as a partial ordering and may also depend on the initial 
conditions in the system. Using this definition of the ranking order of two strategies one can easily conclude that 
the subpopulation with a strategy of lower ranking should eventually go extinct. This is formally given by the 
following theorem.

Theorem 2. If v′ is a better strategy than w′ ( ′ ′v w ) then there exists a neighborhood ′O w( ) such that the general-
ised density η w t( , ) tends to zero with → + ∞t  uniformly in ′O w( ).

The proof of the above theorem is given in Supplementary Material SM1(i). Using the above definition of 
ranking and the theorem, one can now define the evolutionary fitness in the system as follows.

Definition 3 (Evolutionary fitness). In the case where there exists a functional J v( ) such that it preserves the 
ranking order of strategies given by, i.e. J v J w v w( ) ( ) > ⇒ , this functional is referred to as an evolutionary 
fitness.

Maximizing a given fitness function provides the variational principle of modelling natural selection: only 
the strategies v* realizing the global maximum of the fitness J will remain in the population, the others will go 
extinct. Thus, the strategies v* will be evolutionary optimal. We should stress again that, since the ranking order 
for a particular population model may depend on the initial conditions, the evolutionary fitness can also depend 
on the initial conditions. Also, the fitness functional is not unique: any increasing function of J will also be an 
evolutionary fitness.

According to the formulated variational principle of selection, we need to find an evolutionary fitness based 
on model equations and then find the strategy or strategies which maximise its value. Note that in general, finding 
J can be challenging. In the next section we will show how the evolutionary fitness can be derived for an age- or 
size- structured population model described by the von Foerster equation.

Deriving evolutionary fitness in an age (stage)-structured model.  We consider a single population 
model with structuring described by a von-Foerster-type equation35,36. The population is characterised by the 
density z v W t( , , ) at the moment of time t with body weight W and behavioral strategy v. Here by v we under-
stand the overall set of strategies across all developmental stages, where each strategy can be a function with 
known mathematical formulation with a fixed number of evolving parameters or can be an unspecified 
function-valued trait, essentially an infinite number of evolving parameters. The evolution is governed by:

∂
∂

+
∂

∂
= − −

z v W t
t

z v W t r v W
W

A v W z v W t R v z v W t y t( , , ) ( , , ) ( , ) ( , ) ( , , ) ( ) ( , , ) ( ), (2)

where r v W( , ) describes the increase in the body weight of individuals due to growth; A v W( , ) is the linear mor-
tality rate. The second mortality term in the right hand side describes effects of competition between adults and 
juveniles across all possible strategies as well as possible effects of predation, harvesting, or any external forcing. 
Note that in this term, we incorporate the effects of strategy into R, and consider that y t( ) equally affects the mor-
tality of each stage.
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The production of offspring which initially have a minimal body weight Wmin is due to the reproduction of the 
whole cohort of adults which is given by

∫ θ θ θ θ=
+∞

z v W t r v W b v r v z v t d( , , ) ( , ) ( , ) ( , ) ( , , ) ,
(3)min min

WA

where b v W( , ) is the reproduction coefficient. Biologically, WA is the weight at which organisms become mature 
and can reproduce, after which >b v W( , ) 0. The increase of the body weight W is described by the following 
growth equation:

= =
dW
dt

r v W W W( , ), (0) , (4)min

where r v W( , ) is the body growth rate.
Model (2) with structuring in terms of body weight can be transformed37 to the equivalent model with struc-

turing in terms of age τ by introducing the following variable ρ τ =v t z v W t r v W( , , ) ( , , ) ( , ). The equations for 
ρ τv t( , , ) will read

ρ τ ρ τ
τ

τ ρ τ ρ τ∂
∂

+
∂

∂
= − −

v t
t

v t A v v t R v v t y t( , , ) ( , , ) ( , ) ( , , ) ( ) ( , , ) ( ), (5)

and the renewal equation becomes

∫ρ θ ρ θ θ= .
τ

+∞

⁎
t v b v v t d( , 0, ) ( , ) ( , , )

(6)v( )

Here ρ τv t( , , ) should be understood as a re-scaled population density; τ⁎ v( ) is the time at which organisms 
mature and can begin to reproduce.

The weight W and the age τ are related by τ=W W v( , ) (we assume that >r v W( , ) 0 which should guarantee 
a one to one correspondence between τ and W), in particular, the maturation age τ* is given by τ= ⁎W W v( , )A . 
For simplicity, we will further consider model (5) - (6) for discrete stages = ...i n0, 1, , . For each stage i and for 
a given strategy v we assume the model coefficients to be constant. Thus, for the mortality and production rates 
we have

τ
τ τ

τ τ τ
τ τ

=







≤ <
≤ < ≤ ≤ −
≤ < +∞

+A v
a v
a v i n
a v

( , )
( ), 0 ,
( ), , 1 1
( ), ,

i i i

n n

0 1

1

τ
τ τ τ
τ τ τ

=





≤ < ≤ ≤ −
≤ <

+

+
b v

b v i n
b v

( , )
( ), , 1 1
( ), ,

i i i

n n n

1

1

Here we formally assume the reproduction to be possible from stage =i 1. However, the model still allows us 
to consider the case where some reproduction rates =b 0i  for >i 0. Note also that the reproduction of the final 
stage ends at the age τ +n 1, whereas the organisms can live for longer.

The evolutionary fitness is in the above structured model given by the following theorem.

Theorem 4. In the age-structured model (5)– (6) with discrete stages = ...i n0, 1, , , the strategy which maxim-
ises the evolutionary fitness will outcompete the other strategies. The fitness is defined by

λ
=

RJ v v
R v

( ) max ( ( ))
( )

,i i

where λi is the solution (the eigenvalue) of the characteristic equation provided in SM1(ii); R denotes the real 
part of this eigenvalue.

The proof of the above theorem is given in supplemental Material SM1(ii).
In this paper, we will consider the case where the number of developmental stages is 3 (i.e. =i 0, 1, 2) and the 

reproduction starts from the oldest stage only (i.e. =b 01 ). We denote = >b b 02 . In SM1(iii), it is shown that in 
this case the characteristic equation determining the fitness J is given by

τ τ τ τ τ τ τ= − − − − − − − − − .J b
R

a a JR JR a a
R

exp( ( ))[exp( ) exp( ( ))] (7)0 1 1 2 1 2 3 2 3 2
2

Thus, to find the optimal strategies for all three stages =v v v v( , , )1 2 3 , one needs to maximise fitness given by 
(7). Note that in the given model the fitness does not depend on initial conditions.

Study case: exploring optimal DVM of zooplankton.  Empirical observation of DVM.  We now use 
the theoretical framework introduced above to explore patterns of diel vertical migration (DVM) of herbivorous 
zooplankton. The modelling study is motivated by our long-term empirical observation of DVM of zooplankton 
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in the north-eastern Black Sea. Samples were collected throughout all seasons in the years 2007–2014 for two of 
the most abundant herbivorous mesozooplankton species: Calanus euxinus and Pseudocalanus elongatus. Details 
on samples collection and data analysis are provided in the supplementary material (SM2) as well as in a satellite 
paper38.

Figure 1 show a typical pattern of DVM for the investigated species; the graphs represent the variation in the 
mean depths of the copepod distribution across the 24 h period for all developmental stages. Note that the zoo-
plankton population is scattered around a certain depth in each instant, and the figures show the spatially average 
depth of the zooplankton distribution in the column (calculated using the computational algorithm from SM2). 
One can see that for both species only the copepods from the older developmental stages (starting from CIV) 
exhibit a pronounced migration: they feed on phytoplankon at depths of h = 35–45 m at night and stay in deeper 
waters (h = 110–120 m) during the daytime.

Interestingly, the amplitude of DVM for both species varies across seasons, as is demonstrated in Fig. 1C,D, 
which show the lower and upper depths for migrating females through the daily cycle (denoted by the open and 
filled squares, respectively) as well as the daily average depth of non-migrating stages of the same species (denoted 
by semi-filled circles). One can see that the deepest depth of DVM increases in summer and decreases in winter. 
In the literature, seasonal variation of migration depths is often connected to seasonal change of the width of (i) 
the oxygen zone in the north-eastern Black Sea and (ii) the zone with suitable water temperature ranges for the 
species considered32. However, the role of the oxygen zone and temperature conditions in DVM are not yet well 
understood and this model study is intended to shed some light on this long-standing question31–33.

The data confirms the link between the amplitude of DVM and the variation in the boundary of the oxygen 
and the temperate zone. Figure 2A shows the seasonal variation of the sigma-theta profile (its value of 15.7 
approximately corresponds to the minimal comfortable oxygen concentration of 0.4 mg/l) as well as the depth of 

Figure 1.  (A,B) Typical pattern of DVM of two dominant zooplankton herbivores Calanus euxinus and 
Pseudocalanus elongatus observed in the north-eastern Black Sea in summer. The samples were collected on 
21/06/2011. For each developmental stage the centers of vertical abundance distribution is shown, see the main 
text and SM2 for detail. (C,D) Annual variation of the depths of DVM for migrating females (denoted by filled/
open squares for night/day depths) and non-migrating stages CI-CIII (denoted by semi-filled circles).
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the temperature level of T = 12 °C which specifies the critical boundary for comfortable living for both species 
preferring colder temperatures. The influence of the oxygen level and the warm waters depths on DVM can be 
seen more clearly in Fig. 2B,C. Figure 2B demonstrates a positive correlation between the night time depths and 
the profile of the temperature level of T = 12 °C for both species (Pearson correlation coefficients are = .r 0 860 
and = .r 0 814 for C. euxinus and P. elongatus, respectively). Figure 2 shows a stronger correlation between the 
maximal depth of migration and the density sigma-theta of 15.7 (Pearson correlation coefficients are = .r 0 96 
and = .r 0 841, for C. euxinus and P. elongatus, respectively).

We also investigated the vertical profiles of Chl-a concentration as the index of autotrophic phytoplankton—
the primary food for zooplankton grazers—in the water column. We found, however, that phytoplankton distri-
bution is rather variable both seasonally and from year to year. For modelling purposes we combine the data on 
chlorophyll and construct the annual average density of chlorophyll using our observational data for 7 years (see 
Fig. 2D), and do not show here the chlorophyll profile for each year and season. We fit the data with the curve 

σ− − +P h h(tanh( ( )) 1)/2p0  which is further used in modelling; h is the depth (for details see the next section). 
This curve exhibits a poor fit in the surface waters, denoted by the dashed vertical line, but we can still implement 
the above fit for modelling purposes since individuals rarely enter the upper surface zone.

Figure 2.  (A) Seasonal variation of the depths of the upper and lower unfavorable zones for C. euxinus and P. 
elongatus observed in the north-eastern Black Sea. The upper zone is dictated by temperatures higher than 12 
°C, whereas the boundary of the lower zone is given by σθ curve achieving 15.7 (see SM3). Dependence of the 
upper (B) and the lower (C) depths of DVM (females) on the depths of the unfavorable zones corresponding to 
panel (A). Triangles and circles denote, respectively, C. euxinus and P. elongatus. The solid and the dashed lines 
fit, respectively, the data for P. elongatus and C. euxinus. (D) The average (across all observations) vertical profile 
of chlorophyll a. The curve fitting to the data is discussed in text.
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Parametrisation of the model.  We further need to parameterise the model coefficients and relate them to the 
daily trajectory of the individual grazer in the water column, i.e. the vertical coordinate h(t) which describes the 
strategy v in our original model settings. We consider that h = 0 at the water surface and that the positive direction 
is downwards. We re-scale time so that a 24 h period corresponds to the interval ∈t [0, 1], and assume that due 
to periodicity of this function we have =h h(0) (1). Times t = 0 and t = 0.5 will correspond to midnight and mid-
day, respectively. The life cycle of a zooplankton grazer consists of 6 distinct copepodite stages (see the previous 
section), however, here we combine some stages and only consider three age groups consisting of the youngest 
juvenile stages (CI-III), older juvenile stages (CIV-V) and reproductive adults (CVI). Their DVM patterns are 
mathematically described by the functions h t( )Y , h t( )J  and h t( )A , respectively. Note that one can easily extend the 
approach to model all 6 developmental stages. For simplicity, we neglect the hatching time and consider 

=R v const( )  and consider that the reproduction time of adults is fixed τ τ− = =T const3 2 0 .
The reproduction coefficient b(v) expressing the number of eggs produced by a female per day is given by

∫ ε
α

α
=




 +

− −





.b v
W

P h t
P h t

S t m h t M h t S t dt( ) 1 ( ( ))
1 ( ( ))

( ) ( ( )) ( ( )) ( )
(8)

A
A A

A
A Ab A A A A

0 0

1
1

Here W0 is the egg carbon weight. The first term in the integrand stands for the energy gain (measured in 
carbon units) that zooplankton obtain from feeding on phytoplankton with the density P. This feeding rate is 
multiplied by an indicator function S t( )A , which is equal to 1, when zooplankton actively feed on phytoplankton 
and is zero otherwise (e.g. during migration or when staying in deep waters). We assume that grazing obeys a 
Holling type II law with αA and α being coefficients with the well-known ecological meaning39. The coefficient εA 
is the food consumption efficiency.

We use the following parametrisation of the vertical distribution of phytoplankton P in the water column 
based on a logistic curve

σ= − − +P h P h h( ) (tanh( ( )) 1)/2, (9)p0

where P0 gives the maximum of the phytoplankton density (we divide P0 by 2 for normalisation); the parameter 
hp is the depth at which P is half its maximum. By increasing or decreasing hp we can explore the influence of food 
distribution on the strength of vertical migrations. Figure 2E shows that the approximation (9) can be used up 
to the warm surface waters, i.e. until the depths of 10–15 m. We consider that grazing by zooplankton has only a 
small impact on the phytoplankton and does not change its profile.

The term m h t( ( ))Ab A  describes losses due to basal metabolism (in carbon units). The metabolic rates for the 
considered calanoids grazers largely depend on the oxygen concentration which decreases with h and it sharply 
drops as an individual approaches the level of sigma-theta close to 15.731. We use the following parametrisation

σ= − − + .m h m h h( ) (tanh( ( )) 1)/2Ab A m m

Here hm is a characteristic depth where mAb the depth at which the metabolic rate is half its maximum, σm 
describes the sharpness of the transitional layer, and mA denotes the maximal basal metabolic cost. M h t S t( ( )) ( )A A A1  
denotes the metabolic cost spent on active movements in the water when feeding and moving upwards during 
vertical migration (ascending phase). The indicator S t( )A1  is equal to 1 during the feeding and ascending phases of 
migration, otherwise it is zero. For the descending phase of DVM, we suggest that the organism only spends 
energy on basal metabolism. The dependence of M h t( ( ))A A  on depth is similar to that of mAb with a different max-
imal value denoted by MA0.

For each stage, the mortality rate within the day is parameterised by

a v h t h t A h t dt( ) ( (tanh( ( ( ) )) 1)( cos 2 1)/4 ( ( )) ) , (10)i i i p i i i
0

1
0∫ γ σ π γ= − − + − + + +

where =i Y J A, , . Here the first term is the mortality due to visual predators and it varies with the light intensity 
throughout the day described by tcos(2 ) 1π− + . The coefficient γi is the product of the constant predator density 
and its attack rate which is calculated at the highest light intensity (we divide γi by 4 for normalisation). Following 
previous studies, we consider that the density of visual predators is fixed and the risk of predation shows a sigmoi-
dal decrease with depth due to light attenuation15. However this assumption is not crucial for the our key findings. 
The second term stands for extra mortality near the surface and the bottom. It is parameterised as

δ σ δ σ= − − + + − +A h t h t h h t h( ( )) (tanh( ( ( ) )) 1) (tanh( ( ( ) )) 1),i i u u i u d d i d

where hu,d are the boundaries of the unfavorable zones and the coefficients σu,d describe the thickness of the tran-
sition layers; δu,d characterise of extra mortality when entering an unfavorable zones. Finally, γi0 is the natural (i.e. 
non-predation related) mortality.

The growth rates r v( )i  ( =i Y J, ) are described by the following equation similar to (8)

∫
ε α

α
=




 +

− −





r W v W P h t
P h t

S t m h t W M h t W S t dt( , ) ( ) ( ( ))
1 ( ( ))

( ) ( ( ), ) ( ( ), ) ( ) ,
(11)

i
i i i

i
i ib A i i i

0

1
1

where the model coefficients have similar meaning as in b(v). Note that unlike the adult stage, where the body 
weight is assumed to be constant, we include variation of W during the developmental stage from the minimal to 

https://doi.org/10.1038/s41598-019-51310-w


8Scientific Reports |         (2019) 9:15020  | https://doi.org/10.1038/s41598-019-51310-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

maximal possible weights. The dependence of αi, mib and Mi on W is given the allometric expression (12) dis-
cussed below; εi is the food consumption efficiency for stages =i Y J, . The indicator functions Si and Si1 for stage 
i has the same meaning as those in (8).

The change in the body weight is given by Eq. (4) and maturation times τ v( )i  ( =i Y J, ) can be computed by 
integrating this equation. As such, the maturation time for the young juveniles τ v( )Y  will correspond to the mini-
mal carbon weight of juveniles WJ, whereas the overall maturation time τ v( )J  (i.e. reaching the adult stage) will 
correspond to the weight of an adult WA.

Note that we also need to formally set the functions S t( )i  and S t( )i1 . Using the available empirical evidence we 
can consider that θ= − | | −S t x t c( ) 1 ( ( ) )i 0 , where θ is the Heaviside step function, c0 is a critical vertical velocity 
of swimming. In other words, vertically moving grazers at a speed higher than c0 do not consume food. 

θ= S t x t( ) ( ( ))i1  (here we consider that θ =(0) 1); thus this function is zero at the ascending phase and it is 
switched on at the other phases of DVM.

One can formally search for the exact solution h t( )i  the optimal control problem. However, it is technically 
much easier to construct the optimal solution using a piecewise approximation of DVM. Interestingly, this sim-
plification has its important biological rationale since it conforms to empirically observed cases of DVM, indicat-
ing that both the descending and the ascending velocities are fairly constant throughout DVM40,41. Moreover, our 
empirical data indicate that zooplankton remain nearly at the same depth when grazing at nighttime and while 
staying in deep waters. The DVM trajectories can be parameterised as follows =i Y J A, ,

=











≤ <
− + ≤ <

≤ <
− − + ≤ <

≤ < ≤ .

h t

H t t
c t t H t t t
H t t t

c t t H t t t
H t t t

( )

0 ,
( ) , ,
, ,
( ) , ,
, 1

i

i i

i i i i i

i i i

i i i i i

i i

0 0

0 0 0 0 1

1 1 2

1 2 1 2 3

0 3

Here Hi0 and Hi1 are the shallowest and the deepest depths, respectively; ci0 and ci1 the ascending and descend-
ing speeds; times tij indicate the end of each phase of movement. By due continuity we have 

− = −t t H H c( )/i i i i i1 0 1 0 0 and − = −t t H H c( )/i i i i i3 2 1 0 1. For the indicator functions ( >c ci0 0 and >c ci1 0) we 
have =S t( ) 1i  with ≤ <t t ti i1 2 and =S t( ) 0i  for other t; =S t( ) 1i1  with ≤ <t t ti i1 3 and =S t( ) 0i1  otherwise.

The integral expressions for b v r v a v( ), ( ), ( )i i  become algebraic ones and the equations for the optimal param-
eters can be obtained analytically by differentiation of fitness (7) (see SM4 for detail). One can prove that in the 
case where =c ci i0 1, the optimal DVM will be symmetrical with respect to = .t 0 5. This allows us to reduce the 
number of parameters: each stage is now characterised by only 3 independent parameters.

The parameters for b v r v a v( ), ( ), ( )i i  are taken from literature or estimated using our empirical data. They are 
summarized in Table 1.

The velocity of migration ci0 and ci1 is estimated as 30–50 m/h for all stages using acoustic scattering across 
the water column40,41. From the existing data, we can assume that the magnitudes of upwards and downwards 
migration velocities are close to each other.

The maximal mortality rate γi due to visual predation during day is highly variable since it is a product 
between the predator attack rate and the predator density. In this paper, we consider it to vary as 0.6–1.0 day1/ 14,15. 
The natural mortality rate is assumed to be high for early stages (CI-CIII) (γ = . day0 11/Y 0 ) and negligibly small 
for later stages (CIV-CVI), γ ≈ 0i0 . The thickness of transition layers σu,d in the profiles of the temperature and the 
sigma-theta curve can be estimated from our data which gives, respectively, σu = 0.05–0.21/m and σd = 0.05–
0.41/m (see SM3 for detail). The maximal values of mortality rates (given by 2δd,u) are hard to assess. For example, 
in the absence of oxygen, a copepod individual dies within less than 1 hour, which makes δd extremely high. Here, 
for the sake of efficiency of numerical procedure, we consider some smaller values as δ = day21/d : increasing δd 
does not affect the modelling results since the optimal trajectory of DVM does not enter the dangerous hypoxic 
zone. We also set day0 51/uδ = .  for the upper unfavorable zone with high temperature. This value is within the 
reported ranges42. Using our observation, we explore the following ranges hd = 50–150 m and hu = 0–30 m.

The parameters describing phytoplankton distribution (9) in the water column are estimated from our data 
averaged across all years (see Fig. 2E). This gives = . ± .P mgChla m0 6 0 2 /0

3 which roughly corresponds to 15–30 
μg C l/ , = ±h m40 8p  and σ = . ± . m0 1 0 04 1/ . The assimilation efficiency εi varies from 0.6–0.8; for simplicity, 
we consider it to be the same for all developmental stages43. The coefficients αi and α describing the functional 
response of grazers can be estimated as α μ. < < . l gC day0 02 0 3 / /i  and α. < < .0 005 0 05 μgC l/ 44. To describe 
consumption rate per individual, we need to multiply αi by the average carbon weight of an individual at a given 
stage. For C. euxinus we suggest that the carbon weight of an adult female (stage CVI) is approximately WA = 100–
150 μgC32; this allows us to consider the following range of αA = 1.0–2.1 l/day. The values of αi, mi and Mi0 for 
other stages are calculated using the following allometric scaling law45

α = = =. . .W C W m W C W M W C W( ) , ( ) , ( ) , (12)i i i1
0 8

2
0 8

0 3
0 8

where W the carbon weight of an individual, Cj are constant usually depending on the temperature. For C. euxi-
nus we consider that the minimal carbon weight of the older juveniles (stage CIV) is WJ = 20–30 μgC, whereas for 
the young juveniles (stages CI-III) the minimal weight is approximately equal to μ= .W gC1 2Y

23,32. Here we do 
not explicitly model the nauplii stages resulting in growth from an egg to the start of stage CI.
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The maximal basal metabolic cost and the maximal overall metabolic costs for actively swimming adults can 
be estimated, respectively as mA = 0.05–0.07 μgC ind−1 h−1 and MA0 = 0.12–0.20 μgC ind−1 h−1 31, see also SM3. The 
metabolic costs mi and Mi0 for the other developmental stages were calculated using (12). The characteristic depth 
hm, where the overall metabolic cost becomes close to basal cost, is assumed to be δ= −h h hm d , where 
δh = 15–20 m (see SM3); the thickness σm of the layers where metabolic costs approach zero can be estimated 
from data of this study (see SM3) and other works31, which gives σ = . − . m0 04 0 065 1/m M, . The maximal possi-
ble reproductive period of adults can be estimated as T0 = 30–60 days46.

To model DVM of the other zooplankton species P. elongatus, we used the parameters as in Table 1 and apply 
the same allometric relation for the following body and egg weights: μ= .W gC0 25Y , μ= .W gC0 8J  and 

μ= .W gC3 0A  and the egg weight μ= .W gC0 120
47. The maximal possible reproductive period of P. elongatus was 

estimated as T0 = 30–60 days.

Optimal trajectories of DVM.  Numerical optimization of fitness J was done using the MATLAB function ‘fmin-
search’ which implements the Nelder-Mead simplex algorithm of optimisation. The eigenvalues in (7) were com-
puted numerically using the MATLAB function ‘fzero’ (we also found that the dominant eigenvalue is always 
real). To make sure that we find the global maximum, we consider different starting points for optimisation. We 
also checked the correctness of the optimisation results by numerically solving the equations expressing the first 
derivatives of fitness which should vanish at a point of maximum (see SM4 for detail).

Figure 3A represents the model environment which zooplankton grazers would potentially experience in a 
typical summer (with =h m140d  and =h m20u ): this includes profiles of their food, chlorophyll a, their day-
time predation risk, the temperature and sigma-theta curves as well as variation of basal metabolic costs. Patterns 
of optimal DVM for the environment in Fig. 3A are shown in Fig. 3B calculated for C. euxinus. The graphs of 
DVM for P. elongatus are rather similar and we do not show them for brevity. One can see that early stages 
(CI-CIII, i = Y) do not migrate and stay in shallow waters throughout the day ( = ≈H H m35Y Y1 0 ). Unlike pre-
vious explanation in the literature, which suggested that zooplankton of early stages do not have enough energy 
to perform vertical migration, we found that they do not undergo DVM due to a high predator-independent 
mortality for the given stages. Our model predicts that it becomes more optimal for very early developmental 
stages to stay and feed in shallow waters to maximise their growth rate to be able to reach the next stages as soon 
as possible: stages CIV-VI generally have a lower natural mortality rate. On the contrary, the older developmental 
stages (CIV-VI, =i J A, ) perform night feeding in upper layers and stay in deeper waters during the day time. The 
obtained pattern is close to the one observed empirically (cf. Fig. 1A,B). Interestingly, stages CIV-CV and adult 
females (CVI) show very close DVM trajectories both in terms of migration times and migration depths. The 
DVM predicted by the model are triggered by daily variation of the predation load: they disappear when zoo-
plankton mortality rate becomes constant. The choice of the optimal depths of migration is a more complicated 
issue and is addressed in detail below.

Symbol Meaning Unit Range Default value

ci0 or ci1 Velocity of DVM while ascending or descending, =i Y J A, , m/h 30–50 45

εi Food consumption efficiency, =i Y J A, , — 0.6–0.8 0.7

WA Average carbon weight of adults μg C 100–150 110

WJ Minimal carbon weight of juveniles μg g C 20–30 25

Wo Egg carbon weight μg C 0.2–0.3 0.25

mA Maximal basal metabolic cost (adults) μg C ind−1 h−1 0.04–0.06 0.05

MA0 Maximal overall metabolic costs while actively swimming (adults) μg C ind−1 h−1 0.12–0.20 0.13

hm Depth, where metabolic cost becomes close to basal m 10–20 12

α Inverse half-saturation density of feeding rate (all stages) l/μg C 0.005–0.1 0.05

αA Zooplankton grazing rate (per individual) for adults l/day 0.05–1.5 1.1

P0 Maximal phytoplankton density μg C/l 25–50 30

σ Steepness of decrease of chlorophyll spatial density 1 /m 0.06–0.140 0.125

hp Half-maximum chlorophyll depth m 30–50 40

T0 Reproductive period of adults day 30–60 40

γi Maximal mortality rate due to visual predation, =i Y J A, , 1/day 0.4–1.0 0.8

hd The boundary of the lower unfavourable zone m 50–150 —

hu The boundary of the upper unfavourable zone m 0–30 —

δd Increase in mortality in the lower unfavourable zone 1/day — 2

δu Increase in mortality in the upper unfavourable zone 1/day — 0.5

σu,d Steepness of decrease of mortality while entering unfavourable zones 1 /m 0.05–0.4 0.2

σm,M Steepness of decrease of metabolic rates with depth 1 /m 0.04–0.065 0.65

Table 1.  Parameters used in the zooplakton DVM Model along with their units and ranges. For details about 
origins of parameters see the main text.
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Our simulation shows that the maximal depth of optimal DVM for the older stages is determined by the spa-
tial gradient of metabolic costs rather than predation. Indeed, the depths at which zooplankton stay during the 
daytime are characterised by low basal metabolic rates due to low oxygen concentration ( ≈h m120 ), (cf. 
Fig. 3A). On the other hand, the consumption rate of zooplankton by visual predators becomes extremely small 
starting at much shallower depths ( ≈h m55 ) due to light attenuation and has no further effect on the maximal 
DVM depth. To explore the relative roles of predation and metabolism on DVM, we completed simulations using 
the same model parameters but assuming a depth-independent metabolic cost. We found that DVM is still 
observed in this case, but the migration depths during the day time become shallower. The DVM for 

= =m m constib i  ( =i Y J A, , ) is shown in Fig. 3C demonstrating much shallower depths of migration as com-
pared to depth-dependent metabolic cost in Fig. 3A.

We further investigated the influence of the locations of the upper and lower unfavorable zones characterised 
by hd and hu on the depths of DVM denoted by H H,A A0 1. The results are presented in Fig. 4. In this figure, the 
dependence of hu on HA0 is denoted by squares 1, whereas the influence of hd on HA1 is denoted either by circles 2 
(constructed for spatially variable metabolic costs) or by triangles 2′ (constructed for a hypothetic regime with 
spatially constant metabolic costs). As one can see, for spatially variable metabolic costs, an increase of hd starting 
from ( ≈h m60 ) will result in a pronounced increase of the migration depth. However, such an increase does not 
occur for the scenario with spatially constant metabolic costs. On the other hand, when the depth hu of the unfa-
vorable zone approaches the surface, this only has a partial effect on the upper depth HA0 of DVM. This is 
explained by the fact that a high trophic pressure by visual predators near the surface does not allow grazers to 
feed in shallow waters even if the temperature regime becomes comfortable. Interestingly, these model predic-
tions correlate well with our empirical observation shown in Fig. 2B,C.

We also investigated the dependence of DVM on other key model parameters. Varying the predation pressure 
on zooplankton, we found that an increase in γi results in larger time spent by grazers in deep waters (Fig. 5A) 
without significantly affecting the depths of migration. At low predator pressure (e.g. γ = . day0 1 1/i ) migration 
ceases completely. An increase in the available food as described by P0 reduces the time spent by grazers in deep 
waters which is shown in Fig. 5B. The model predicts that migration should cease at high phytoplankton density 
( μ>P g C l45 /0 ). The model predicts that variation of the reproductive period T0 within the realistic parameter 
range does not largely affect DVM.

Finally, we found that for both considered zooplankton species their daily food consumption and their mat-
uration times τi correspond well to estimates from the literature31–33,48. This provides extra credits to support our 
model findings.

Discussion
Fitness has always been a fundamental concept both in empirical and theoretical evolutionary biology following 
the seminal idea of Sewall Wright about a hypothetical adaptive fitness landscape49. The metaphor of climbing 
uphill in an evolutionary landscape to reach a local peak is so popular in the literature because it is compelling 
and easily graspable. However, the initial idea has been criticized because the shape of the fitness landscape in 
real biological systems is often non-stationary and constantly varies in the course of evolution due to a permanent 
dynamical feedback between individuals and their environment50. Here we revise the concept of evolutionary fit-
ness using the original idea of S. Wright but allowing for dynamical feedbacks. As a result, the theory still predicts 
that long-term selection for a best strategy or strategies should maximise some function or functional which we 
understand as the fitness. The revised definition of fitness takes into account dynamical feedbacks from individ-
uals of the same population and the environment consisting of other species and abiotic factors, and is based 
on introducing a ranking order of strategies, defined as the long-term ratio of generalised densities (1) of some 
measure in an arbitrary function space. Such densities may not have the same meaning as population densities, 
because they can generally be functions of the ‘true’ population densities (cf. SM1(ii)). We argue that the mathe-
matical formalism proposed here is generic and can be equally applied to modelling the processes of selection and 
evolution in chemistry, turbulence theory, chemical kinetics, cultural evolution or economics.

The population fitness J introduced in this paper allows us to formulate the variational principle of evolu-
tionary modelling: the strategies remaining in the system after long-term selection should correspond to the 
maximum of the fitness functional across the strategies initially present. An example of derivation of the varia-
tional equations providing optimal parameters is shown for the DVM model in SM4. Note that the framework 
allows us to consider both scalar- and function-valued strategies v: in the latter case, the variational equations 
will be optimal control theory equations. Establishing variational principles in modelling biological evolution has 
a long history with various approaches proposed6,8,51,52. For example, optimisation principles in evolution have 
been earlier suggested in the adaptive dynamics framework, where it was found that evolution will optimise the 
invasion fitness (the per-capita rate of growth of a rare mutant introduced into a resident population) in the case 
where the environment affects fitness in an effectively monotone one-dimensional manner52. However, generic 
classes of models where this property holds are still poorly understood53. The concept of evolutionary optimiza-
tion used here is different from that used in the adaptive dynamics framework; in particular, it does not consider 
an invasion-replacement paradigm52,53. Overall, unlike the situation in mechanics, thermodynamics or optics, a 
unified variational principle for modelling selection in biological systems is still in its mathematical infancy and 
we believe that this paper makes a further step in this direction.

The proposed theoretical approach allows us to more easily define evolutionary fitness for population models 
with structuring (including systems with delay) which can be a challenge in other modelling frameworks. As an 
important practical example, we derived the expression for evolutionary fitness J for the population model of von 
Foerster type with age- or size-structuring with an arbitrary mortality term. This type of equation is widely used 
in the modelling literature and possible applications of the theory can go well beyond the considered example of 
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zooplankton DVM. The derived fitness may include as many developmental stages as possible (see SM1(ii)), or 
we can refine the behavior or life-history within a given developmental stage by introducing sub-stages. Using a 
similar approach one can obtain evolutionary fitness for a structured population model with n stages under some 
other modelling settings: for example, by considering a system of ODEs in which each stage is described via a 
separate differential equation16.

We apply our theoretical findings to modelling optimal diel vertical migration (DVM) of zooplankton. DVM 
is the largest synchronised animal movement on Earth and has tremendous consequences for marine dynamics, 
fisheries and the ocean carbon pump19,20. The need for creating new models of DVM is dictated by the fact that 
in previous models, patterns of optimal behaviour of zooplankton were obtained by a direct maximization of 
some criterion such as venturous revenue, reproductive value or predation pressure7–10,12,14,15, and in each case the 
choice of criterion was based on conventional wisdom or the personal preference of the researcher. Here are we 
not claiming, however, that all previous models of DVM are necessarily wrong, but trying to point out the main 
problem of setting some initially prescribed common sense criterion of optimality. Such a criterion often does 
not demonstrate a straightforward connection between the maximization or minimization of some factor and 
the long-term population growth, especially in the presence of various nonlinear feedbacks and trade-offs. On 
the contrary, according to the introduced definition of fitness, the resultant patterns of optimal DVM would be a 
product of long-term selection of the subpopulation employing the given strategy. As such the optimal DVM is 
only determined by the underlying population model and the parameterisation of the model coefficients.

Figure 3.  (A) The abiotic and biotic components across the water column which constitute the environment for 
zooplankton grazers in summer ( =h 140d m, =h 20u m). The scaling in the vertical direction for each curve 
can be obtained considering the maximal values provided in Table 1. (B) Typical pattern of optimal DVM in the 
model for C. euxinus in the environment shown in panel (A). The other parameters are given in Table 1. (C) 
Optimal DVM of C. euxinus constructed for the hypothetical modelling scenario with a depth-independent 
basal metabolic cost. In (B,C) blue and red lines denote, respectively, females (stage IV) and juveniles 
(CVI-CV).
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The DVM model was validated using long-term observation of the migration of herbivorous zooplankton in 
the north-eastern Black Sea (2007–2014). The model may provide solutions to several long-term open questions 
about the nature of DVM in this ecosystem, which is characterized by unique hydrological and biochemical 
regimes, in particular by the existence of a permanent anoxia zone and the low depth of light penetration54. Firstly, 

Figure 4.  Connection between the upper and lower unfavorable zones (hd and hu) in the water column and the 
upper and the lower depths (H H,A A0 1) of females in the model obtained for C. euxinus. The impact of variation 
of hu (for a constant =h 140d m) on HA0 is shown via empty squares (curve 1). The impact of hd ( =h 20u m) on 
HA1 is denoted by circles 2 (constructed for spatially variable metabolic costs) or by triangles 2′ (constructed for 
spatially constant metabolic costs). The other parameters are taken from Table 1.

Figure 5.  (A) Influence of predation pressure on the optimal DVM of females (CVI) of C. euxinus in the model. 
Trajectories (1–5) correspond to γ = . . . . .0 44; 0 60; 0 80; 1 0; 1 2A  1/day, respectively. (B) Influence of the 
available food on the optimal DVM of females (CVI) of C. euxinus in the model. Trajectories (1–5) correspond 
to =P 36; 30; 25; 20; 160  μg C/l, respectively. Here =h 140d m, =h 20u m, the other parameters are as in 
Table 1.
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our model confirms that the intense variation of visual predation due to the periodic change in light intensity is 
the main trigger of DVM, a fact which was reported in earlier DVM models. Interestingly, however, the predation 
pressure should be supercritical: sufficiently low pressure results in cessation of DVM. Secondly, our model pre-
dicts that predation does not entirely determine the amplitude of DVM. Namely, we find that other components 
of the environment such as oxygen concentration and the temperature may play a crucial role, almost tripling the 
amplitude of DVM compared to the case with depth-independent metabolic costs (cf. Fig. 3B,C).

The main model-based explanation of unexpectedly large amplitudes DVM in the Black Sea in summer is 
that staying in deep waters with low metabolic costs is beneficial for grazers since this allow them to substantially 
reduce their energy losses (see Fig. 3A). As a result, the deepest migration depth throughout the day can be as 
high as 120–130 m whereas the light intensity is reduced up to 1–2% already at depths of 50–60 m54. The model 
therefore provides a theoretical basis to explain the large amplitude DVM observed in the Black Sea, which was 
previously a matter of discussion in the literature. Note that the key role of metabolic costs on the amplitude of 
DMV has previously been suggested by direct laboratory measurements of the metabolic rates of grazers under 
different oxygen conditions31. We argue, however, that the conclusion made based on the laboratory studies31 that 
staying in deep waters with low basal metabolic costs during the daytime should always be beneficial for grazers is 
not quite as straightforward as it seems. The model-based computation shows that fitness is maximized by staying 
at the low oxygen boundary only if (i) the cost of migration is not high and (ii) the drop in metabolic costs at the 
edge of the anoxic zone should be supercritical, otherwise large amplitude DVM becomes counterproductive. On 
the other hand, predation rate, natural mortality and food availability are crucial factors affecting the amplitude 
of DVM (see Fig. 5). These conclusions could not be made solely through empirical observation and laboratory 
experiments.

Another counter-intuitive conclusion from the DVM model concerns the reason that early copepodite stages 
(CI-CIII) do not migrate. In some previous studies7, this absence of migration was postulated, and has been con-
firmed in a large number of study cases23. A widespread opinion in the literature is that the main reason for the 
absence of DVM in early stages is the lack of sufficiently large amounts of energy-per-biomass in stages CI-CIII to 
be able to perform DVM. However, in our model this behaviour is an emergent property (see also Fig. 1), and we 
found that it is the high mortality rates rather than a lack of energy that keeps the earlier stages in shallow waters. 
For example, we found that reducing the natural mortality in the model results in emergence of DVM for CI-CIII 
even if we increase the costs of migration (we do not show this result for brevity).

Finally, we would like to give a general warning about the interpretation of the influence of several factors on 
DVM predicted by the model, for example, the alteration and even disappearance of DVM when the food supply 
in shallow waters is high enough or when predation is sufficiently low (Fig. 5). We argue that we should interpret 
these theoretical predictions as the optimal responses of grazers to some long-term trends rather than to fast 
change in the environmental conditions. Our data show that the vertical profile of chlorophyll in the considered 
ecosystem is highly variable from year to year, even within a single season (the data are not shown), and the same 
concerns the predation pressure by visual predators. A number of studies of empirical observation of DVM in the 
given ecosystem, however, demonstrate a constant pattern of regular migration across both days and seasons. This 
supports the idea that the DVM pattern of grazers observed in the model is only optimal on average and can be 
suboptimal on a daily basis. On the other hand, one should also consider the presence of other species dynami-
cally. Including dynamical predators, for example, with abundance depending on that of zooplankton herbivores, 
may result in DVM being beneficial in ecosystems with abundant food for zooplankton16. In the current model 
settings with a single population model, this can be modeled via a trade-off between predation rates and food 
density, for example.

Among future perspectives for modelling selection processes based on the proposed framework we can cite 
the following. It would be straightforward, wherever possible, to establish classes of models where the existence 
of evolutionary fitness can be demonstrated. We predict that some complications may occur in the case where 
fitness depends on initial conditions and where the ranking order can not be properly defined. Moreover, in the 
case where it is not possible to analytically derive the expression for evolutionary fitness, such as in multi-species 
models, proper computational methods should be developed. Finally, regarding the particular ecological study 
case of DVM, it would be interesting to extend the considered model of zooplankton migrations to some more 
realistic settings by explicitly describing each of the 6 developmental stages as well as including variation in phys-
iological conditions in each stage such as lipid reserves, moulting and starvation, as was done in some previous 
studies7. We are planning to address the above issues in our future works.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Material).
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