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Remarkable advancements in high-throughput gene sequencing technologies have led to an 
exponential growth in the number of sequenced genomes. However, unavailability of highly parallel 
and scalable de novo assembly algorithms have hindered biologists attempting to swiftly assemble 
high-quality complex genomes. popular de Bruijn graph assemblers, such as iDBA-UD, generate high-
quality assemblies by iterating over a set of k-values used in the construction of de Bruijn graphs (DBG). 
However, this process of sequentially iterating from small to large k-values slows down the process 
of assembly. in this paper, we propose ScalaDBG, which metamorphoses this sequential process, 
building DBGs for each distinct k-value in parallel. We develop an innovative mechanism to “patch” 
a higher k-valued graph with contigs generated from a lower k-valued graph. Moreover, ScalaDBG 
leverages multi-level parallelism, by both scaling up on all cores of a node, and scaling out to multiple 
nodes simultaneously. We demonstrate that ScalaDBG completes assembling the genome faster than 
IDBA-UD, but with similar accuracy on a variety of datasets (6.8X faster for one of the most complex 
genome in our dataset).

A principal component of computational genomics is sequence assembly, constructing the original genome 
sequence by combining reads, or fragments thereof, obtained from sequencing machines. De novo assembly is a 
sequence assembly technique that does not use a reference genome during reconstruction, and hence can facili-
tate the biological understanding of new or uncharacterized species. The process of mapping the sequenced reads 
for de novo assembly is complicated because of the lack of a reference sequence to which the sequenced reads can 
be aligned. Factors such as massive read sets, distinct error profiles introduced by sequencing machines, repeats 
in the original genome, and uneven sampling of the reference genome make this process computationally inten-
sive. These exacting factors are exacerbated in metagenomics and single-cell sequencing datasets in tandem with 
the explosive growth in genomics data—240 exabytes by 2025, just by taking into account human genomes1. This 
“genomical” data race has created an urgent need to speed up de novo assembly algorithms.

Popular assemblers such as Velvet2, ABySS3, and ALLPATHS-LG4 use a de Bruijn Graph (DBG)5 to perform de 
novo assembly. A DBG is a directed graph whose vertices are k-mers, or length-k substrings of the reads. An edge 
exists between two vertices if they are consecutive k-mers in a read and they share an overlap of a (k − 1)-mer6. To 
obtain contigs, or long contiguous genomic sequences, the DBG is traversed to identify maximal paths i.e., paths 
in which all vertices have an in-degree and out-degree equal to 1, except for the terminal vertices. These contigs 
are further assembled into longer regions or scaffolds based on their relative order and orientation.

The k-value chosen for DBG construction influences its structure. A small k-value cannot distinguish repeats 
or duplication due to erroneous reads (of length greater than k), and connects k-mers with other (false-positive) 
k-mers. This results in a branched DBG, with vertices having out-degree higher than 1, and terminating maximal 
paths, resulting in smaller-sized contigs. A large k-value, on the other hand, can differentiate among smaller 
repeats (of length less than k), and hence, reduces the number of branches. However, due to low or non-uniform 
sampling, some k-mers that introduce vertices and edges in the DBG are missed, resulting in a fragmented DBG 
with dead-end paths. This occurs if reads covering consecutive k-mers are missing, with increasing k-values exac-
erbating the fragmentation problem. Thus, selecting the correct value for the k parameter in DBG algorithms is 
crucial. Striking the correct balance between the branching and fragmentation problems is key to high assembly 
performance.
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Based on this insight, several assemblers such as IDBA (Iterative DBG Assembler)6, IDBA-UD7, 
SOAPdenovo28 and SPAdes9 use several different k-values during assembly. Intuitively, contigs from a smaller 
k-valued graph can be used to “patch up” gaps in the larger k-valued graph, while contigs from the larger k-valued 
graph can be used to resolve “branches” or conflicts in the smaller k-valued graph. SPAdes follows an iterative 
graph construction process using multiple k-values to construct a multi-sized DBG. IDBA iterates from small to 
large values of k, maintaining an accumulated DBG to carry useful information forward as it moves on to higher 
k-values. These iterative approaches establish that DBGs built with multiple k-values generate finer-quality assem-
blies than a DBG built with a single (be it large or small) k-value6–9. IDBA-UD is an improved version of IDBA, 
and in the rest of the paper, we only refer to IDBA-UD for our experiments.

Motivation for ScalaDBG
While leveraging multiple k-values during the assembly improves its quality, the time taken to perform the assem-
bly process also increases significantly. As described in Table 1 of our previous work10, the total time taken by 
IDBA-UD to assemble a medium-complexity CAMI metagenomics dataset increases linearly in proportion to the 
number of k-values used. Furthermore, among the different stages in IDBA-UD assembly, reading the sequence 
file (Stage 1), processing with multiple k-values (first, building the graph, and then iterating over the graph with 
several different k-values (Stage 2)), and finally scaffolding (Stage 3) to get the final assembly, the iterative graph 
construction process contributes to 96.1% of the total execution time, as shown in Fig. 1 of our previous work10. 
Notably, the graph-construction step (Stage 2), consisting of building an accumulated DBG by iterating over 
several different k-values, is the bottleneck in the assembly workflow.

our ScalaDBG System
To address this concern, we propose ScalaDBG, a new parallel assembly algorithm that parallelizes Stage 2 of 
the assembly workflow, the iterative DBG construction process with multiple k-values. The key insight behind 
ScalaDBG is that the graphs for multiple k-values need not be constructed serially. Instead, each graph con-
struction can be done independently and in parallel. Accumulating the graph for the higher k-value, such as in 
IDBA-UD, introduces an apparent dependency on the graph with lower k-values. We remove this dependency, 
by introducing a patching technique, which can patch the higher k-valued graph (k2) with contigs from the lower 
k-valued graph (k1). Crucially, the first stage of graph construction of the k1 and k2 graphs can proceed in parallel 
and the relatively shorter stage of patching the k2 graph with the contigs from the smaller k-valued, k1 graph, hap-
pens subsequently. Thus, the more fragmented, higher k-valued graphs are cemented from the contigs of the lower 
k-valued graphs, with the branches of the lower k-valued graph being simultaneously removed.

ScalaDBG first performs graph construction in parallel for each k-value. Next, for each pair of graphs, the 
higher k-valued graph is patched using the lower k-valued graph to generate a single graph. Note that there 
are several independent patch processes, for a long chain of k-values, and they execute in parallel. This pro-
cess is performed recurrently, until there is only a single graph, similar to a parallel tree-reduction model. Thus 
ScalaDBG breaks a sequentially executed chain of k-values, executing both construction and patching in parallel, 
with higher parallelism for a longer chain of k-values. ScalaDBG is the first assembler to parallelize multi-k-valued 
DBG construction. We show in our evaluation that there is no statistical difference in the assembly quality of 
ScalaDBG and IDBA-UD.

Removing the Assembly Kernel’s time-complexity Bottleneck in Genome Analyses 
pipelines Using ScalaDBG
Genome analysis pipelines have several repetitive “kernels” or algorithmic modules as we have seen in the pro-
cess of building our own domain-specific language (DSL) for genomics11. In a typical genome analysis pipe-
line, generation of genomics reads from sequencing machines is followed by the kernel(s) of genome assembly, 
and subsequently, analysis of the assembled sequences using a repertoire of metrics. Tremendous improvements 
in sequencing machines have made the genome assembly kernel the bottleneck in the process of extracting 
meaningful insights from raw genomics datasets. A high-latency genome assembly kernel negatively affects the 
subsequent analysis kernels and overall pipeline performance, especially in high-use genomics pipelines, such 
as MG-RAST12,13, reducing the throughput of production-scale high-performance computing pipelines14,15. 
ScalaDBG can be deployed on modest hardware e.g., multiple nodes in a supercomputer or commercially avail-
able cloud infrastructure (e.g., AWS Amazon cloud, Google cloud) to speed up assembly for a much lower cost. 
In contrast, the scalability of IDBA-UD is severely limited by the memory and compute capacity of server nodes, 
which are expensive to upgrade.

Name Read Set Type
Read 
Length # of Reads Characteristics

RM1 Real, Metagenomic 150 bp 33140480 PE, Insert size:5 kbp

RM2 Real, Metagenomic 150 bp 33128228 PE, Insert size:5 kbp

SC-E. coli Real, Single Cell 100 bp 23,818,596 PE, Insert size:266 bp

SC-S. aureus Real, Single Cell 100 bp 66,997,488 PE, Insert size:214 bp

SC-SAR324 Real, Single Cell 100 bp 55,733,218 PE, Insert size:180 bp

Table 1. Read Sets used in the Experiments. PE denotes Paired-end reads.
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Multi-Grained parallelism of ScalaDBG
ScalaDBG leverages parallelism at two levels—first: constructing several different k-valued graphs in paral-
lel, and second: parallelizing processes such as k-mer counting, indexing, and lookup that occur within each 
graph-construction step. This strategy of ScalaDBG enables us to leverage the hybrid MPI-Open MP parallel 
programming model. While each MPI process can independently perform graph construction on different nodes 
in a cluster, Open-MP threads can exploit all cores on a single node. Thus, ScalaDBG utilizes both vertical scaling 
or scaleup in a powerful server node with a higher core-count, and horizontal scaling or scale-out in a cluster with 
multiple nodes. ScalaDBG completes the assembly of a SAR metagenomic dataset with a set of k-values in the 
range of 20–50, with a step size of 2, 6.8X faster than IDBA-UD, reducing the execution time from ~2 hours to 
17 minutes.

We make the following technical contributions in this paper:

 1. We break the dependency in DBG creation for multiple k-values—from a purely serial process to one 
where the most time-consuming part (the DBG creation for individual k-values) is parallelized. This inno-
vation can be applied out-of-the-box to most DBG-based assemblers.

 2. We develop a divide-and-conquer strategy for handling a long sequential chain of k-values, which im-
proves the quality of assembly

 3. We develop a software package called ScalaDBG that uses Open MP for the scale-up operation within 
one server and MPI for the scale-out process across multiple servers. The software package is available at 
https://github.com/purdue-dcsl/Scaladbg.

Related Work
Several effective de-novo assembly applications have been put forward to deal with the deluge in genomic sequ
ences2–4,6–9,16–21. However, these applications are restricted to scaling up on a multi-core machine, or do not use 
several k-values during assembly. To the best of our knowledge, there has been no prior work on distributed and 
parallelized DBG construction for multiple k-values.

In previous work, Ray16, ABySS3, PASHA17, and HipMer18 can distribute the task of DBG construction to 
different nodes in a cluster. Metagenomics assemblers, such as Meta-velvet19 also do not apply multiple k-values. 
However, this approach performs poorly for datasets with uneven sequencing depths, such as in metagenomics 
and single-cell datasets. ScalaDBG employs multiple k-values to deal with such datasets. On the other hand, 
SGA21, Velvet2, SOAPdenovo8, ALLPATHS-LG4 are limited to scaling up on a multi-core node. Additionally, 
while IDBA, IDBA-UD, and SPAdes can operate on several k-values, their scaling is restricted to multiple cores 
on a single node. In contrast, ScalaDBG is a distributed and parallelized assembler operating on multiple k-values.

iDBA-UD as our algorithm for benchmarking. IDBA-UD is a an iterative k-value DBG-based assembler 
that runs through a range of k values from =k kmin to =k kmax, with a step-wise increment of s. It maintains an 
accumulated DBG Hk at each step. In the first step, a DBG Gkmin

 is generated from the input reads. For =k kmin, 
Hk is equivalent to Gkmin

. After DBG construction, contigs for graph Hk are generated by considering all maximal 

Figure 1. Original Genome Sequence: AATGCCGTACGTACGAA, Input Reads: AATGC, ATGCC, GCCGT, 
TGCCG, CGTAC, TACGT, ACGTA, TACGA, ACGAA. Figure shows the effect of using a small k ( =k 3) and a 
larger k ( =k 4) during DBG construction. Sub-figure (a) shows the graph constructed from read set with =k 3. 
The vertices are 3-mers of the read set. They are connected to each other if they have a 2-mer overlap and if they 
are consecutive 3-mers in a read. This graph has branching at vertex ACG due to a repeating region in the 
genome ACGT and ACGA. The contig set generated by identifying maximal paths in the graph is {AATGCCGT, 
ACGAA, ACGT, CGTACG}. As the value of k is increased to 4 (sub-figure (b)), the branch disappears as the 
higher k-value can now distinguish between the repeat region in ACGT and ACGA. However, some reads such 
as CCGTA and GTACG are not sampled from a contiguous genome sequence and so vertices and edges in the 
graph are missed. For e.g., GTAC and TACG cannot be connected. While they do share a 3-mer overlap, they are 
not part of the same read. If the read GTACG would have been part of the read set, we could have connected 
them. The final graph (sub-figure (c)) can be created by filling in some of the gaps in the =k 4 graph with 
contigs from the =k 3 graph. The vertices for which new edge is added (sub-figure (a)) are circled. The final 
contig set corresponds to contigs in this graph.
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paths in graph Hk. All vertices in any maximal path have an in-degree and out-degree equal to 1, except the verti-
ces at the start and end of the path. Subsequently, reads from the input set that are substrings of these contigs are 
removed. This generally reduces the size of the input read set. Note that, a read of length r generates − +r k 1 
vertices. Thus, as k is increased, each read introduces fewer vertices. This reduction in size of the input read set, 
coupled with the fact that there are fewer vertices for larger k-values, makes subsequent graph-construction steps 
less time consuming. For the next iteration, where = +k k smin , the graph Hk, the remaining reads, and the con-
tigs from Hk are fed as inputs. Every s-length path in Hk is upgraded to a vertex. A + +k s( 1)-mer in either the 
remaining reads or the contigs of Hk is used to connect vertices in Hk. The next set of iterations continue this 
process until =k kmax is reached. Observe that in this algorithm, at iteration i, graph + ⁎Hk i smin

 depends on graph 
+ − ⁎Hk i s( 1)min

, the reduced read set, and the contigs obtained at the previous iteration (i − 1). This dependency 
compels IDBA-UD to work sequentially on the chain of k-values, irrespective of the length of the chain. This is the 
essence of the problem that we tackle in ScalaDBG.

Methods - Design of ScalaDBG
Our technique, ScalaDBG, consists of two phases—the build phase (building a DBG) and the patch phase 
(patching a partial DBG with contigs from a lower k-valued DBG). In addition, it employs an efficient scheduler 
to fully exploit all nodes in a cluster.

Build phase. We unravel ScalaDBG, by describing our protocol for only two distinct k-values first, k1 and k2, 
and without loss of generality, we assume <k k1 2. Figure 2 shows the workflow of ScalaDBG in this scenario.

First, DBGs Gk1 and Gk2 are built for each k-value in parallel. k1-mers and k2-mers of read set I correspond to 
vertices in Gk1 and Gk2 respectively. |Gk1| and |Gk2| represent the number of vertices in Gk1 and Gk2 respectively. 
Since <k k1 2, Graph Gk1 will typically be larger in size, in terms of vertices and edges, i.e., | | > | |G Gk k1 2 . DBG 
construction consumes the maximum amount of time in the entire workflow, with the construction of Gk1 being 
the dominant part. Notably, ScalaDBG creates DBGs for the two different k-values in parallel, unlike in all prior 
approaches. Observe that branching in Gk1 will be greater than Gk2, while the number of gaps or holes will be 
higher in Gk2, relative to Gk1. ScalaDBG produces contigs Ck1 from Gk1 by detecting maximal paths similar to 
IDBA’s algorithm, but does not yet create Ck2 from Gk2.

patch phase. Graph Gk2 has gaps relative to graph Gk1, ans hence our fundamental strategy is to patch graph 
Gk2, i.e., fill the gaps in Gk2 using the contigs Ck1, since they would have the required information. ScalaDBG 
generates k2-mers from Ck1, and inserts them as vertices back into Gk2. These freshly added vertices could lead 
to additional edges, if there exists an overlap of a (k2 − 1)-mer in the contig set Ck1 or the read set. The result-
ing graph obtained by filling gaps of Gk2 using Ck1 is represented as Gk1−k2, and is used for the final contig set 
generation.

Example for ScalaDBG. Consider an example to illustrate the build and patch phases of ScalaDBG with k-values 
of 3 and 4. The graphs G3 and G4 are obtained by =k 31 , and =k 42 , and are shown in Fig. 1(a,b). In ScalaDBG, 
during the build phase, G3 and G4 are constructed in parallel. Contig set C3 obtained from graph G3 is 

Figure 2. High Level Architecture Diagram of ScalaDBG. This shows the graph construction with only two 
different k values, k1 and k2 with <k k1 2. The graph Gk2 is “patched” with contigs from Gk1 to generate the 
combined graph Gk1–k2, which gives the final set of contigs. Different modules in ScalaDBG are highlighted by 
different colors.
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{AATGCCGT, ACGAA, ACGT, CGTACG}. In the patch phase of ScalaDBG, graph G4 is patched with contigs in 
C3. 4-mers obtained from C3 are {AATG, ATGC, TGCC, GCCG, CCGT, ACGA, CGAA, ACGT, CGTA, GTAC, 
TACG}. Of these 4-mers, if two consecutive 4-mers are substrings of a sequence in the contig set, they are inserted 
as vertices in G4 and are connected by an edge. Vertices GTAC and TACG are connected by an edge in G4 to get 
G3–4. G3–4 is shown in Fig. 1(c). Final contig set C3–4 generated from G3–4 is TACGTACG TACGAA AATGCCGT{ , , }.

patching multiple k-values in parallel. ScalaDBG provides two options in the patch phase when the total 
number of k-values used in the DBG creation is greater than 3. Figure 3 shows the serial patching process, and 
Fig. 4 shows the parallel patching process when there are four different k-values: k1, k2, k3, k4, and 

< < <k k k k1 2 3 4. As explained earlier, individual DBGs corresponding to each of the k-values are constructed 
in parallel. In serial patching, contigs are first generated for the lowest k-valued (k = k1) graph Gk1. They are used 
to patch the graph corresponding to the next higher k-value (k2). In this manner, sequentially and repeatedly, 
contigs generated from a lower k-valued patched graph are used to patch the next higher k-valued graph. The 
ultimate set of contigs are obtained from the final patched graph. To summarize, in the serial variant, ScalaDBG 
performs graph building for individual k-values in parallel, but patching and contig generation processes are 
serial. While this simple approach is easier to implement, unfortunately it reduces the benefits of parallelism since 
the number of serially executed patch operations grow linearly with number of k-values. The total serial patch 
time is a significant portion of the total execution time of ScalaDBG for a long chain of k-values. To overcome this 
problem, ScalaDBG intelligently selects multiple patch operations to be executed in parallel. Rather than adopting 
an ad-hoc approach to patch graph-pairs, ScalaDBG uses a disciplined policy to patch pairs of adjacent graphs to 
generate a single graph, since average distance in k-values for each DBG is the lowest in this configuration. Prior 
work has shown that smaller jumps in k-values results in better quality aggregated DBGs6. Thus, multiple patch 
operations are performed in parallel akin to a reduction tree model. ScalaDBG’s parallel patching is demonstrated 
in Fig. 4, where graphs Gk2 patched from contigs Ck1 of graph Gk1, and Gk4 patched from contigs Ck3 of graph Gk3 
are processed in parallel. In this manner, ScalaDBG accomplishes both graph building and patching in parallel, 
and reduces the growth of serialized patching steps to only a logarithmic factor of the number of different k-values. 
ScalaDBG achieves higher scope for parallelism when higher number of k-values are applied in graph construc-
tion. In the remaining paper, we denote ScalaDBG employing serial patching as ScalaDBG-SP (serial-patch 
ScalaDBG) and ScalaDBG performing parallel patching as ScalaDBG-PP (parallel-patch ScalaDBG). Since 
ScalaDBG-SP and ScalaDBG-PP merge different pairs of graphs together in the intermediate steps, the final con-
tigs generated by the two methods may differ.

More concretely, here is an example to show why the contigs from serial and parallel patch can vary. Say, we 
are using 8 k-values namely 10, 12, 14, 16, 18, 20, 22, 24, with a step size of 2. In ScalaDBG-SP, the graphs will be 
patched in order, in this manner: G10–12, followed by G10–14, G10–16 … G10–24. In other words, the difference between 
k-values associated with adjacent graphs, or step size remains 2, and the contigs generated by the previous graph 
have lengths close to the next graph. On the other hand, in ScalaDBG-PP, graphs created in stage 1 will be G10–12, 
G14–16, G18–20, and G22–24, step size is 2. In stage 2, graphs created will be G10–16, G18–24, step size is 4. In stage 3, 
graph created will be G10–24, step size is 8. Peng et al.6 show that a longer contig in the graph obtained with step size 
s, is not present in the graph obtained with step size s′, where s < s′. Since maximum step size in ScalaDBG-PP is 
higher than in ScalaDBG-SP, (8 > 2), some contigs in ScalaDBG-SP might be absent in ScalaDBG-PP, and the 

Figure 3. Workflow of ScalaDBG using serial patching, called ScalaDBG-SP for 4 k-values, with < <k k1 2
<k k3 4.
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final contig quality in ScalaDBG-PP might drop. Intuitively, the reason that contigs of graphs with close k-values 
should be patched, is that contigs generated from previous k-values might not be long enough to connect any 
nodes in the next graph, when step is large. Say, we are using 4 k-values, k1, k2, k3, k4 where < < <k k k k1 2 3 4 
and the minimum distance between any two k-values is >=2. In the sequential version, we first build Gk1 and get 
contigs. Gk1 could have contigs of length k2 + 1, and they could be used to patch Gk2. However, they cannot be 
used to patch graph Gk3 since they would not be long enough to connect vertices in graph Gk3. In addition, bubble 
merging and dead-end removal phases prune incorrect vertices and edges in the graphs based on their multiplic-
ity information which could be different in ScalaDBG-SP and ScalaDBG-PP. With deeper trees, the difference in 
quality of the PP and SP variants is possibly going to be larger and there is a tradeoff between compute efficiency 
and quality. Empirically we find that the difference is not statistically significant, as shown in Section 6.

Efficient scheduling of multiple k-values. ScalaDBG’scheduler adopts a greedy strategy to perform 
assembly for a given number of k-values and set of compute nodes, such that utilization of nodes in the clus-
ter is maximized. We discuss the operation of the scheduler for the tree reduction pattern of ScalaDBG-PP 
(ScalaDBG-SP has a simpler form of a scheduler and is omitted here for space). The generated schedule consists 
of a set of rounds as shown in Fig. 5. Each round is the assignment of a task to a node, where a task means the 

Figure 5. Schedule created by the ScalaDBG Scheduler for 8 k-values and 4 nodes. Different computational 
nodes in the cluster execute different tasks in each round of the workflow.

Figure 4. Workflow of ScalaDBG using parallel patching, called ScalaDBG-PP for 4 k-values, with < <k k1 2
<k k3 4.
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node builds a graph or patches an existing graph with contigs from another graph, or the node is idle. The rounds 
continue until the final graph is obtained.

The scheduler uses the following observation in creating the schedule: building graph for k1 will take longer 
than building graph for k2, where <k k1 2 because | | > | |G Gk k1 2 . Hence the node processing k2 will get done 
earlier, and asynchronously send graph Gk2 to the node building graph Gk1, thus hiding the latency of the commu-
nication. This node is then free to take up the next task, either creating a new graph or patching an existing graph. 
The scheduler consistently overlaps computation with communication in this manner. Similarly, nodes patching 
higher k-valued graphs will finish their tasks earlier than nodes patching lower k-valued graphs. Hence these 
nodes will asynchronously send the patched graphs, and start building the graph for the next k-value. The tasks 
are assigned such that the number of idle nodes in any round is reduced. The amount of work done in each round 
is not necessarily the same across the nodes, e.g., in round 1, node 4 does less work than node 3, which does less 
work than node 2, which does less work that node 1. We use the following example to explain the ScalaDBG 
scheduler. In this example, there are four available nodes (n1, n2, n3, n4) and 8 input k-values, k1–k8, with 

< < … < <k k k k1 2 7 8. We explain the processing done at each node during each round with the representa-
tion shown in Fig. 5. In round 1, all nodes build new graphs from the k-values, k1–k4. Once done with the graph 
construction, node n2 sends graph Gk2 to node n1 and node n4 sends graph Gk4 to node n3. In round 2, node n1 
does the patching to generate graph Gk1–k2 and similarly node n3 does a patching while nodes n2 and n4 build new 
graphs. This way the different rounds continue till the final graph −Gk k1 8 is assembled in node n1. Note that in the 
later rounds, some of the nodes become idle as there are no more tasks to schedule. In this manner, arbitrary 
number of k-values are scheduled to run on a set of nodes by ScalaDBG’s scheduler.

Methods - implementation of ScalaDBG
Algorithms 1 and 2 provides the pseduo code listing for ScalaDBG-SP and ScalaDBG-PP respectively.

n denotes the total number of k-mers used for assembly, mink denotes minimum k-mer size, maxk denotes the 
maximum k-mer size, and step represents the increment between each k-mer graph built. Each process computes 
the DBG corresponding to its designated kmer_size by reading the input read files. In ScalaDBG-SP (Algorithm 
1), N MPI processes are used to construct the DBGs in parallel, and they then send them to a single process (the 
Master process) which receives the constructed DBGs. The Master process patches the graphs in sequential order 
(similar to Fig. 3), to create the final graph. In ScalaDBG-PP (Algorithm 2), after constructing the individual 
DBGs, the process are divided into two roles - either send a DBG or recieve a DBG. This role division is done in 
an equitable fashion. The receiving process then completes the patching of the DBG. This process is then used 
further for contig generation. For the subsequent stages, this process of role division and contig generation is 
repeated, until only one process receives the final graph. MPI implementation is done in such a way, that this 
process is always the Master process, and it applies the final patching and generates the ultimate contigs.

Discussion: correctness, implications, and Generality of ScalaDBG
In this Section, we first establish the equivalence of graphs obtained by the build and serial patching processes of 
ScalaDBG and the iterative build process of IDBA-UD. We then discuss the implications of the parallel patching 
and the graph-simplification procedures on the output of ScalaDBG.

Figure 6. General assembler used in conjunction with ScalaDBG’s technique. Contigs Ck1, Ck2, Ck3, and 
Ck4 are obtained using a general assembler.
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correctness of the ScalaDBG Methodology (essentially showing the equivalence between the 
final graphs of ScalaDBG-SP and iterative IDBA-UD). For a fixed iteration set of k-values, starting 
from k = kmin to k = kmax, the final graphs obtained by ScalaDBG-SP and IDBA-UD are identical. We request 
the reader to refer to the proof of Theorem 4.1 in our previous work10. The proof uses Mathematical Induction 
to establish the equivalence between the final graphs using the two methods, namely: ScalaDBG-SP and iterative 
IDBA-UD.

Algorithm 1. ScalaDBG with serial patching. N MPI processes have ranks (identifiers) from 0 to N − 1. MPI 
process with rank 0 is referred to as the Master process.

Algorithm 2. ScalaDBG with parallel patching. N MPI processes have ranks (identifiers) from 0 to N − 1. MPI 
process with rank 0 is referred to as the Master process.

implications of ScalaDBG’s methods. While the build and patch processes for iterative IDBA-UD and 
ScalaDBG are the same, the assembly metrics for the two variants of ScalaDBG and IDBA-UD are different. This 
can be attributed to two processes:

•	 Out-of-order patching process for ScalaDBG –PP
•	 Graph simplification processes in IDBA-UD, such as dead-end removal (to prune incorrect vertices and edges 

based on their multiplicity information and path length) and bubble merging (merging paths of similar length 
with the same start and end vertex). In IDBA-UD, the graph simplification process is applied to each graph 
during the build and after traversal, while in ScalaDBG, it is only applied after each patching.
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ScalaDBG-PP builds graphs in a different order (than ScalaDBG-SP and IDBA-UD) when the number of 
k-values is greater than 3. IDBA-UD sequentially builds graphs where the k-value used in the next iteration differs 
from the k-value used in the previous iteration by step-size. ScalaDBG-PP performs a pair-wise reduction to patch 

Figure 7. Execution Time comparison for IDBA-UD, ScalaDBG-SP, ScalaDBG-PP on RM1 dataset. ScalaDBG 
runs on a cluster with the number of nodes being equal to the number of k-values.

Figure 8. Execution Time comparison for IDBA-UD, ScalaDBG-SP, ScalaDBG-PP on RM2 dataset.

Figure 9. Execution Time comparison for IDBA-UD, ScalaDBG-SP, ScalaDBG-PP on the SC-E. coli dataset. 
Speed up w.r.t. IDBA-UD running on the same k value configuration is shown.

Figure 10. Execution Time comparison for IDBA-UD, ScalaDBG-SP, ScalaDBG-PP on the SC-S. aureus 
dataset.
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graphs at every level. Lower-depths in the parallel reduction tree have graphs with k-value difference greater than 
step-size. Hence, the order of patching graphs is different in ScalaDBG-PP and IDBA-UD.

In addition, for the graphs built by ScalaDBG and IDBA-UD, vertices and edges have different multiplicity 
information. Hence, the graph-simplification procedures generate different contig sets with different assembly 
metrics for ScalaDBG-SP, ScalaDBG-PP and IDBA-UD. However, in our evaluation section, we will show that the 
difference is not statistically significant.

Generality of ScalaDBG’s methods. We demonstrate how we can leverage an out-of-the-box DBG-based 
assembler and parallelize DBG construction for a chain of k-values. ScalaDBG modularizes different stages in 
assembly such as building the graph, patching the graph with contig sets, and the generation of contigs. Hence, 
these modules can be reused to combine the contigs of a single k-value assembler, such as Velvet. We use an exam-
ple to explain this application, as shown in Fig. 6. There are four different k-values, in increasing order: k1, k2, k3, 
and k4. Initially, a single k-value assembler is run for each of these k-values in parallel to generate the contig sets. 
The obtained contig sets are used to patch the graph associated with the contig set of the next higher k-value (k2). 
Graphs Gk2 and Gk4 are built from the contig sets Ck2 and Ck4, respectively, according to the definition of DBG, 

Figure 11. Execution Time comparison for IDBA-UD, ScalaDBG-SP, ScalaDBG-PP on the SC-SAR324 dataset.

Figure 12. Execution Time comparison for IDBA-UD, ScalaDBG-SP, ScalaDBG-PP on the SC-SAR324 dataset 
for range (20–50).

Assembler # Contigs N50 (bp)
Max Contig 
Length # Contigs

N50 
(bp)

Max Contig 
Length

RM1 k = 40–124,4 RM2 k = 40–124,4

IDBA-UD 96291 8255 641885 123807 2251 572031

ScalaDBG-SP 94958 8104 641902 122427 2281 571953

ScalaDBG-PP 95519 7629 497722 123037 2249 444176

RM1 k = 40–124,8 RM2 k = 40–124,8

IDBA-UD 95633 10729 772713 121911 2457 563546

ScalaDBG-SP 96849 10183 772927 121955 2582 573903

ScalaDBG-PP 98018 7962 497730 121772 2408 444517

RM1 k = 40–124,15 RM2 k = 40–124,15

IDBA-UD 95640 11453 772928 121720 2504 563546

ScalaDBG-SP 99857 10182 641918 119814 2679 573903

ScalaDBG-PP 99951 7906 641988 121568 2472 444518

Table 2. Accuracy Comparison for Assembler Performance for datasets RM1 and RM2., for specified set of 
k-values and step size configurations.
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Assembler # Contigs
N50 
(bp)

Max Contig 
Length Coverage

NGA50 
(bp) # misassemblies

SC-E. coli k = 40–124,4

IDBA-UD 504 41996 133040 93.004 41009 4

ScalaDBG-SP 506 43834 133040 93.086 41309 4

ScalaDBG-PP 333 46016 140917 93.072 41996 3

SC-E. coli k = 40–124,8

IDBA-UD 503 42834 140971 93.045 41309 4

ScalaDBG-SP 504 43834 133040 93.064 41996 3

ScalaDBG-PP 333 46016 140917 93.086 42289 4

SC-E. coli k = 40–124,15

IDBA-UD 507 42289 133040 93.101 41009 6

ScalaDBG-SP 512 46016 140971 93.093 42289 6

ScalaDBG-PP 333 46016 140917 93.078 42289 4

SC-S. aureus k = 40–124,4

IDBA-UD 400 24855 126604 98.121 26379 3

ScalaDBG-SP 377 24855 126604 98.189 26379 3

ScalaDBG-PP 370 24855 126604 98.201 26379 3

SC-S. aureus k = 40–124,8

IDBA-UD 412 24855 126604 98.081 26379 3

ScalaDBG-SP 384 24855 126604 98.176 26379 3

ScalaDBG-PP 373 24855 126604 98.205 26379 3

SC-S. aureus k = 40–124,15

IDBA-UD 413 24855 126604 98.068 26379 3

ScalaDBG-SP 393 24855 126604 98.167 26379 3

ScalaDBG-PP 374 24855 126604 98.205 26379 3

Table 3. Accuracy Comparison for Assembler Performance for SC-E. coli and SC-S. aureus datasets., for 
specified set of k-values and step size configurations.

Assembler # Contigs
N50 
(bp)

Max Contig 
Length Coverage

NGA50 
(bp) # misassemblies

SC-SAR324 k = 29–71,4

IDBA-UD 733 61419 202281 NA NA NA

ScalaDBG-SP 709 64747 202281 NA NA NA

ScalaDBG-PP 705 62374 202281 NA NA NA

SC-SAR324 k = 29–71,8

IDBA-UD 742 60700 202281 NA NA NA

ScalaDBG-SP 710 64747 202281 NA NA NA

ScalaDBG-PP 703 63904 202281 NA NA NA

SC-SAR324 k = 29–71,15

IDBA-UD 747 60700 202281 NA NA NA

ScalaDBG-SP 723 64747 202281 NA NA NA

ScalaDBG-PP 712 64795 202281 NA NA NA

SC-SAR324 k = 20–50,4

IDBA-UD 1082 32119 131087 NA NA NA

ScalaDBG-SP 1085 38257 131546 NA NA NA

ScalaDBG-PP 1080 38257 131546 NA NA NA

SC-SAR324 k = 20–50,7

IDBA-UD 1088 33192 131087 NA NA NA

ScalaDBG-SP 1087 38257 131546 NA NA NA

ScalaDBG-PP 1078 38257 131546 NA NA NA

SC-SAR324 k = 20–50,16

IDBA-UD 7740 22977 131087 NA NA NA

ScalaDBG-SP 8342 24254 131041 NA NA NA

ScalaDBG-PP 8118 24254 131041 NA NA NA

Table 4. Accuracy Comparison for Performance Tests on SC-SAR 324 datasets, for specified set of k-values and 
step size configurations.
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considering the contig set as the input read set. Then, the graphs Gk2 and Gk4 are patched using contig sets Ck1 and 
Ck3, respectively. After this stage, the method follows the standard parallel-patch workflow of ScalaDBG. Note 
that we can also employ serial patching to get the final contig set. (i.e., ScalaDBG-SP).

evaluation and Results
evaluation setup and datasets. We used an Intel Xeon Infiniband cluster for our experiments, with each 
node having Intel Xeon E5-2670, 2.6 GHz, with 16 cores per node and 32 GB of memory and the nodes connected 
with QDR Infiniband. We used the latest version of IDBA-UD (1.1.1)7. The datasets are enlisted in Table 1. The 
S. aureus and SAR 324 single-cell datasets are obtained from22 and the CAMI benchmark datasets comprise 
our metagenomics datasets23. For ScalaDBG, the number of nodes were equal to the number of k-values while 
IDBA-UD can only run on a single node. Existing scaffolding techniques can be applied to output contigs that are 
obtained from ScalaDBG to get the final assembly. We only focus on the outputs at the contig generation stage 
rather than after the scaffolding process because ScalaDBG’s novelty in this implementation is restricted to the 
contig generation process.

Relevance of datasets. A single cell is the ultimate denomination in a multicellular organism. For example, 
the human body consists of roughly 37.2 trillion cells living in harmony. However, in cancer, this harmonious 
equilibrium is lost and this is where even one single cell can wreak havoc by evolving into a malignant tumor mass, 
wherein the lineages diverge and form distinct populations giving rise to what is known as clonal diversity. While 
in the past, technological limitations required micrograms of input tissue mass resulting in an average signal 
being emanated from a complex mass of heterogeneous cell types, single-cell sequencing (SCS) methods can now 
revolutionize the understanding of cancer biology, affording insights into the role of rare cells in the evolution of 
cancer. In the case of metagenomic and single cell sequencing datasets, sequencing depths of different regions of 
a genome, or genomes from different organisms are exceedingly uneven. Hence multiple k-values are required for 
accurately assembling the datasets. So we evaluate ScalaDBG and IDBA-UD using these relevant datasets.

Figure 13. Execution time breakdown of ScalaDBG-SP for SAR 324 dataset, k-value range{20–50}, step size 2.

Figure 14. Execution time breakdown of ScalaDBG-PP for SAR 324 dataset, k-value range {20–50}, step size 2.
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performance tests. Figures 7, 8, 9, 10, 11 and 12 compare the execution time of IDBA, ScalaDBG-SP, and 
ScalaDBG-PP to generate contigs for the read sets mentioned in Table 1. We generated different k-value config-
urations by varying the number, range and step sizes. For the metagenomics dataset, distinct step sizes of 28, 12, 
and 6 in the 40–124 range generated 3 different configurations. Similarly, step sizes of 14, 6, and 3 for the 29–71 
range generated 3 different configurations for the single-cell sequencing datasets. The single-cell datasets have a 
narrower range because of the shorter length of the sequenced reads. To vary the number of k-values, we used 
step sizes of 10, 5, and 2 in the range of 20–50 for the SAR324 dataset to obtain 4, 7, and 16 k-values, respectively.

These different k-value configurations are meant to evaluate the effect on quality and execution time of assem-
bly for ScalaDBG and IDBA-UD. ScalaDBG is deployed on a cluster with number of nodes equal to the number of 
distinct k-values in an experiment, while IDBA-UD can run only a single node. Speedup over IDBA and assembly 
quality of ScalaDBG increases with increase in k-values for all the read datasets. In fact, speedup of ScalaDBG 
completely depends on the corresponding value of k. For example, for the SAR324 dataset, with the k-value range 
between 20 and 50 and a step size of 2, speedup of ScalaDBG-PP is 6.8X while the speedup of ScalaDBG-SP is 
3.1X relative to IDBA-UD. Of all the remaining read sets and configurations, ScalaDBG-PP achieves a maximum 
speedup of 3.3X for the SC-SAR324 readset in the {29–71}, with a step size of 3. ScalaDBG-SP achieves a max-
imum speedup of 1.6X for RM1, RM2, SC-S. aureus, and SC-SAR324 readsets in the configurations processing 
15k values. For all the datasets and configurations, ScalaDBG is faster than IDBA-UD. Further, speedup is higher 
for the larger read datasets of RM1, RM2, SAR 324, and S. aureus. Finally, as would be expected ScalaDBG-PP is 
always faster than the serial version.

Accuracy. Tables 2, 3 and 4 show the quality metrics for assembling the datasets in Table 1 using ScalaDBG. 
We used the QUAST tool24 to compare the assemblies obtained using ScalaDBG-SP, ScalaDBG-PP, and IDBA-UD. 
For the metagenomic datasets, Table 2 reports number of contigs, N50, and max contig length, since the reference 
assemblies contained multiple genomes instead of a single genome. For SAR324, we did not have access to the 
reference genome, so Table 4 denotes the coverage, NGA50, and number of misassemblies as NA. Table 3 reports 
both N50 and NGA50 since we had a single reference genome for the datasets. The most common metric to assess 
assembly quality is N50. N50 is defined as the length of the smallest contig above which 50% of an assembly would 
be represented (or smallest scaffold if it is applied after scaffold construction), a higher N50 indicating improved 
assembly. In presence of the reference genome, NGA50 provides more insights into the assembly quality. NGA50 
is defined as the contig length such that using equal or longer length contigs that have been aligned to the refer-
ence produces 50% of the length of the reference genome; again, a higher NGA50 indicates an improved assembly.

The table entries reveal that ScalaDBG and IDBA have comparable accuracy metrics in all cases. While the 
actual numbers for ScalaDBG-SP, ScalaDBG-PP, and IDBA-UD differ due to out-of-order patching and graph 
simplification process, we confirmed using the t-test that these differences are not statistically significant.

time distribution for phases of ScalaDBG. ScalaDBG’s time is spent executing three major tasks: (1) the 
DBG construction (Build), (2) graph patching (Patch), and (3) contig generation (Contig). We profiled ScalaDBG 
to determine the contribution of each function to the total execution time of ScalaDBG. We present here the 
results of assembling the SAR 324 dataset for the k-value range of {20–50}, with a step size of 2. The experiment 
was run on a 16-node cluster. Figures 13 and 14 show the different sub-tasks within each task for ScalaDBG on 

Assembler
Execution Time 
(sec) N50 (bp)

Max Contig 
Length

Abyss 2240 37486 131365

ScalaDBG 892 38257 131546

Table 5. Accuracy and Performance comparison on SC-SAR 324 datasets for ScalaDBG-PP and 
ABySS. ScalaDBG-PP has higher accuracy and is significantly faster than ABySS.

Figure 15. Speedup for ScalaDBG assembling SAR 324 dataset k-value range {20–50}, step size 2, speedup 
shown w.r.t. ScalaDBG running on 1 node.
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the Y-axis while the X-axis shows the actual execution time in seconds. Note that in ScalaDBG-SP (Fig. 13), only 
the DBG construction executes in parallel, while in ScalaDBG-PP (Fig. 14), in addition to build, the patch and 
contig-generation phases execute in parallel as well. Patch tasks take less time compared to the contig-generation 
tasks.

As seen in Figs 13 and 14, ScalaDBG-PP overlaps the execution of certain graph-construction, patching, and 
contig-generation tasks, while in ScalaDBG-SP, all the patching and contig generation tasks are serialized. This 
detailed profile can be used to optimize ScalaDBG further.

Unlike IDBA-UD, ScalaDBG-SP and ScalaDBG-PP do not update the input read set at each iteration. Instead, 
each graph construction in ScalaDBG starts with the original read set. IDBA-UD updates the read set at each iter-
ation, scanning all reads in the read set, and removing the ones that are already contained in any of the contigs in 
the contig set. However, if the reduction in the input read set is not significant at each iteration, then the overhead 
of updating the read set for IDBA-UD starts to dominate. Especially for lower k-values, excessive branching can 
lead to less reduction in the read set, increasing the overhead for IDBA-UD. In addition, the patch and contig gen-
eration occurs only logarithmic number of times in ScalaDBG-PP as compared to IDBA-UD and ScalaDBG-SP.

If we serialize the execution time of the parallel processes in ScalaDBG-SP and ScalaDBG-PP, shown in 
Figs 13 and 14, the serial execution time for ScalaDBG-SP is 6455 seconds and for ScalaDBG-PP is 6457 seconds. 
The execution time for IDBA-UD is 6897 seconds. Out of this total time, 86% of the overall execution time can 
be parallelized. Hence, the maximum speedup for ScalaDBG-PP is 6.8X. ScalaDBG-SP performs the patch and 
contig generation serially, hence its speedup drops to 3.1X. For this dataset and k-value range configuration, the 
additional work done by ScalaDBG is offset by the work done by IDBA-UD in updating of the read set.

comparison with the distributed assembler ABySS. ABySS3 is a distributed assembler and it paral-
lelize the execution of DBG construction for a single k-value on multiple nodes using MPI. Hence, we compared 
distributed ScalaDBG and state-of-the-art distributed assembler ABySS. We measured the execution time and 
quality of ScalaDBG and ABySS for completing the assembly of SC-SAR-324 dataset.

Both, ScalaDBG and ABySS were deployed on a cluster of 4 nodes, and could utilize all cores on the nodes. 
ScalaDBG was input k-value range of 20–50, with a step size of 10, while ABySS was executed using a median 
value of k = 35 to present a fair quality comparison. As shown in Table 5, ScalaDBG is significantly faster (2.5X) 
and produces better quality assembly than ABySS. Since ScalaDBG uses multiple k-values, namely, 20, 30, 40, and 
50, as opposed to ABySS that just uses a single k-value of 35, ScalaDBG has higher N50 and maximum-contig 
length as compared to ABySS.

Scalability tests. To evaluate the scaling out for ScalaDBG, we used the SAR324 dataset. We varied 
ScalaDBG’s k-values, ranging from {20–50}, with a step size of 2, which translates to 16 k-values. The speedup 
is measured when scaling from 1 to 16 nodes, as shown in Fig. 15, resulting in a 6.8X speedup in relation to the 
baseline when running on a single node. ScalaDBG scales at nearly constant efficiency, as judged from the slope 
of the speedup curve. The speedup demonstrates that ScalaDBG can scale out efficiently on a multi-core and 
multi-node cluster.

conclusion
The rapid progress of sequencing instruments and algorithms have resulted in the need for faster and more effi-
cient assembly algorithms. Further, advances in single-cell sequencing and metagenomics domains for assessing 
cancer heterogeneity and the microbiome, respectively, are hindered by the time needed for genome assembly. 
Existing iterative DBG assemblers, such as IDBA-UD, generate longer contigs at the cost of significantly longer 
graph construction times due to the serial construction process for a set of k-values. In ScalaDBG, we break the 
serial graph construction process into multiple parallel processes. Further, our technique is also extensible in that 
it can be applied to other DBG-based assemblers.

Data Availability
The datasets analyzed during the current study are available at the following links: http://bix.ucsd.edu/projects/
singlecell/nbt_data.html https://data.cami-challenge.org (Critical assessment of metagenome interpretation–a 
benchmark of computational metagenomics software).
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