- #1

- 11

- 0

[tex]f(x,y,z)=\frac{max(0, (x-y) )}{z}[/tex]

i.e. Eliminate the max() function and write it using proper math.

EDIT: max(a,b) simply chooses the largest value of the two variables.

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter Barking_Mad
- Start date

- #1

- 11

- 0

[tex]f(x,y,z)=\frac{max(0, (x-y) )}{z}[/tex]

i.e. Eliminate the max() function and write it using proper math.

EDIT: max(a,b) simply chooses the largest value of the two variables.

- #2

- 355

- 3

Also, note that z cannot be 0 (the first line is just declaring the domain and codomain of f)

[tex]

f: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \backslash \{0\} \to \mathbb{R}[/tex]

[tex]

f(x,y,z) = \left\{

\begin{array} {l l}

\displaystyle{\frac{x-y}{z}} & \text{if} \ x > y \\

0 & \text{else}

\right.

[/tex]

- #3

- 11

- 0

Im looking for an algebraic expresion of that function, as a fraction or something similar, without the need to use

- #4

- 1,074

- 1

How about

[tex]\frac{|x-y|+(x-y)}{2z}[/tex]

[tex]\frac{|x-y|+(x-y)}{2z}[/tex]

- #5

- 11

- 0

- #6

- 695

- 2

Share: