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propagation and Scattering of 
Lamb Waves at conical points in 
plates
David M. Stobbe1,3, Clemens M. Grünsteidl1,2,3 & todd W. Murray1*

Lamb waves exhibit conical dispersion at zero wave number when an accidental degeneracy occurs 
between thickness mode longitudinal and shear resonances of the same symmetry. Here we investigate 
the propagation of Lamb waves generated at the conical point frequency and the interaction of these 
waves with defects and interfaces. the group velocity and mode shapes of Lamb waves at the conical 
point are found, and it is shown that as the wavenumber gets close to zero, considerable group velocity 
is seen only for material properties supporting a degeneracy or near-degeneracy. the unusual wave 
propagation and mode conversion of Lamb waves generated at the conical point are elucidated through 
numerical simulations. experimental measurements of near conical point Lamb wave interaction with 
holes in a plate demonstrate that these waves flow around defects while maintaining a constant phase 
of oscillation across that plate surface.

Lamb waves are guided waves that propagate through plates and are the result of reflection, refraction, and mode 
conversion of bulk waves from the plate surfaces. The theory of Lamb wave propagation is well established and 
Lamb waves have been used for a multitude of applications including nondestructive evaluation (NDE) of plates, 
structural health monitoring, and sensing systems1–3. Lamb waves follow a complex dispersion relation described 
by the Rayleigh-Lamb equation, and the specific shape of the dispersion curves in a homogeneous, isotropic plate 
is dictated by the Poisson’s ratio4. For a given application, it is often advantageous to access specific Lamb wave 
modes with favorable propagation characteristics. For long-range inspection applications, for instance, Lamb 
waves with small group velocity dispersion are used in order to minimize wave packet spreading with propagation 
distance. For local measurements, one can excite Lamb waves at particular points on the dispersion curve where 
the group velocity goes to zero while the phase velocity remains finite. At such zero group velocity (ZGV) points, 
a strong and localized resonance can be excited and used, for example, to determine elastic properties, monitor 
adhesion, or track fatigue damage5–16.

ZGV points are common to both acoustic and optical waveguides and are the result of a repulsion between 
two modes near a wave vector (k) of zero that leads to backward wave propagation, or a wave propagation with 
counter-directed phase and group velocities, in one of the modes17,18. The ZGV point is located at the transi-
tion between backward and forward wave propagation. The repulsion between modes is the strongest when an 
accidental degeneracy occurs19. In the case of Lamb waves, this means that there is a coincidence between the 
frequencies of longitudinal and shear resonances of the same symmetry20. A salient feature associated with acci-
dental degeneracy is that the dispersion curve passes linearly through k = 0, allowing for a peculiar type of wave 
which propagates with an infinite wavelength but retains a finite group velocity. This wave propagates away from 
a source without a phase advance, producing a temporal oscillation of the plate that is uniform across the surface. 
Such behavior, evident in homogeneous elastic and optical waveguides, has also seen widespread attention in 
acoustic and optical “zero index” or “near zero index” metamaterials where linear dispersion, or conical dis-
persion in a three-dimensional sense, is achieved through a combination of materials structure and induced 
degeneracy21–27.

Recently, it was recognized and experimentally demonstrated that a simple, homogenous, aluminum plate 
shows linear dispersion through k = 0 at a particular Poisson’s ratio where accidental degeneracy occurs28,29. 
Degeneracy was induced by adjusting the elastic properties of the plate over a small range through temperature 
change. It was also shown that waves excited in a plate near k = 0, referred to as conical point waves, exhibited 
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angle independent mode conversion upon encountering a plate edge. Here, we derive the group velocity of conical 
point Lamb waves through implicit differentiation of the Rayleigh-Lamb equations, and provide the mode shapes 
as k approaches zero. We track the group velocity of modes at low k values and show that long wavelength Lamb 
waves can propagate with non-negligible group velocity only if the mechanical properties are such that degen-
eracy or near-degeneracy on a given mode occurs. We provide a computational and experimental study of near 
conical point Lamb wave interaction with holes and other discontinuities in a plate and find that the near conical 
point waves flow around defects while maintaining a constant phase of oscillation across that plate surface. Mode 
conversion at a hole interface is nearly spatially isotropic, regardless of the position of the excitation source. We 
propose that conical point and near-conical point Lamb waves provide a facile means of investigating the physics 
of “zero index” wave propagation. In addition, for specific materials that exhibit near-degeneracy of modes with 
like symmetry, they could find application in the nondestructive characterization of elastic waveguides.

Background and theory
conical dispersion: group velocity and mode shape. A dispersion curve for a homogeneous, isotropic 
plate found using the Rayleigh-Lamb equations is shown in Fig. 1(a). Here, the longitudinal wave velocity 
c1 = 6276 m/s, the shear wave velocity c2 = 3138 m/s, and the plate thickness is taken as 1.54 mm. The plot shows 
both the antisymmetric (Ai) and symmetric (Si) modes where the subscript represents the mode number. The 
modes are numbered with respect to the order which they occur with increasing temporal frequency on the k = 0 
axis. Dispersion curves are generally parabolic at low wavenumber (k) values, and at the limit of k = 0 energy is 
trapped in the plate in the form of simple thickness resonances. Each resonance corresponds to a fundamental 
mode (longitudinal or shear) reflecting normally between the top and bottom faces of the plate. Such resonances 
occur at distinct frequencies determined by the plate thickness and longitudinal or shear wave velocity. In the 
special case of a plate in which the ratio of the longitudinal wave velocity (c1) and shear wave velocity (c2) is the 
ratio of two positive integers of different parity, then a longitudinal and a shear resonance of the same symmetry 
can occur at coincident frequencies. The interaction between the two bulk mode thickness resonances causes the 
otherwise stationary resonances to propagate at a finite group velocity, and results in linear dispersion at k = 0. For 
the dispersion curve in Fig. 1(a), for example, = 2c

c
1

2
 and degeneracies between modes of the same symmetry 

occur at 2.04 MHz and 6.12 MHz. Linear dispersion at k = 0 is also referred to as conical dispersion due to the fact 
that the dispersion surface in three dimensions forms the shape of a cone as shown in the inset of Fig. 1(a) for the 
lowest frequency degeneracy. At the conical point waves are produced which have an infinite wavelength (k = 0) 
and spread over the plate surface with a spatially uniform surface oscillation.

The group velocity ( ωd
dk

) at the conical point was calculated by Mindlin by linearizing the Rayleigh-Lamb disper-
sion equations for small values of k20. Here we take an alternate, but essentially equivalent, approach to find the conical 
point group velocity. Considering symmetric modes only, the Rayleigh-Lamb frequency equation (ΩS) is given by:
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, h is half the plate thickness, and ω is the angular frequency. Given that 
Ω ω =d s k( , ) 0, the group velocity can be expressed as30–32:
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We find the group velocity at a particular conical point by taking the limit of Eq. 2 for →k 0. Here we con-
sider, for example, the conical point that occurs at a frequency of ω π= c h/2  when =c c21 2. Taking the limit and 
applying L’Hôpital’s rule we find:
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At k = 0, we find that Ω ω∂ ∂ ∂ =k/ 0S
2 . Plugging this in and solving for the group velocity we obtain:
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Here we assume the limit is unique regardless of the direction of the derivative. An identical result has been 
obtained by Delph et al. using a Taylor expansion of the characteristic equation33.

We now consider the mode shapes of plate oscillations at the conical point. Taking the case of plane strain 
where the waves propagate in the x direction and the y direction is perpendicular to the plate surface, the dis-
placement fields associated with symmetric waves are given by34:
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where A and B are amplitude coefficients. The amplitude ratio can be found by applying traction free boundary 
conditions on the plate surfaces:
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−
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We again consider the case of =c c21 2 with linear dispersion near the conical point of the form 
ω π π= ±k c h c k( ) / 2 /2 2 . Substituting this into Eq. 5 and taking the limit as k approaches zero we find an ampli-
tude ratio of = ± 2A

B
 and considering the real part of the displacement mode shapes in Eq. 4, the displacements 

near the conical point are:
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Figure 1. (a) Dispersion curve for an aluminum plate with a thickness of 1.54 mm, Poisson’s ratio of 1/3, and a 
longitudinal wave velocity of 627676 m/s. The inset shows a three-dimensional representation of the dispersion 
curve at the first conical point at 2.05 MHz, (b) the group velocity as a function of k(2 h) and Poisson’s ratio for 
the S2/S2B mode and (c) a zoom in of the plot near the Poisson’s ratio that induces a degeneracy. (d) Similar plot 
obtained when tracking the group velocity of the S5/S5B modes as a function of wave number and Poisson’s ratio.
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The mode shape as k approaches the conical point is therefore the sum of two simple thickness resonances that 
oscillate out of phase and, interestingly, have equal amplitudes.

Long wavelength Lamb waves. The existence of conical point dispersion in plates leads to a unique type 
of wave propagation. At k = 0 this is particularly evident; waves with infinite wavelength propagate through the 
plate with finite group velocity. A source exciting waves at the conical point thus produces a spatially uniform 
oscillation that spreads or flows over the plate surface and is insensitive to wavelength dependent wave phenom-
ena such as diffraction and scattering. The connection between the temporal and spatial aspects of the wave field 
essentially breaks down. Here we examine the group velocity of long wavelength Lamb waves as a function of 
Poisson’s ratio (ν). The mode that originates at the longitudinal resonance frequency of πc

h2
1 , corresponding to the 

S2 mode for ν > 1
3
 and the S2B mode for ν < 1

3
, is first considered. At each value of Poisson’s ratio, Eqs 1 and 2 are 

solved to calculate the group velocity for < < .k h0 (2 ) 0 02. The resulting plot is shown in Fig. 1(b), where the 
color scale gives the magnitude of the group velocity normalized to the conical point group velocity. A 
non-negligible group velocity is only observed in the vicinity of ν = 1

3
 where the S2/S2B mode accidental degener-

acy leads to conical dispersion. The velocity is near the conical point velocity =
π( )cg
c2 2  for the degenerate case 

over this narrow range of k values due to the linear dispersion. Figure 1(c) shows a zoomed in region of the plot 
near ν = 1

3
. Even in the case of near-degeneracy where the group velocity is zero at k = 0, exceptionally long wave-

length Lamb waves with appreciable group velocity exist. From a practical standpoint, this gives some flexibility 
in materials selection in the experimental study of conical dispersion.

Figure 1(d) shows a similar plot for the mode that originates at the longitudinal resonance frequency of πc
h

3
2

1 , 
corresponding to the S5/S5B modes shown in Fig. 1(a). Here the degeneracy between the 3rd longitudinal symmet-
ric resonance and the 6th transverse symmetric resonance occurs at ν = 1

3
 and the conical point group velocity is 

=
π

cg
c2

3
2 . Again, long wavelength Lamb waves with non-negligible group velocity are observed only near the 

degeneracy. Comparing the result with Fig. 1(c), the range of Poisson’s ratio over which the group velocity is 
enhanced is significantly narrower. This trend continues for higher order degeneracies.

experimental Set-Up
A schematic of the experimental setup is shown in Fig. 2. Lamb waves were generated using a contact piezoelec-
tric transducer (Olympus v109) with a diameter of 25.4 mm coupled to the plate surface using a thin layer of oil. 
The transducer was driven by a sinusoidal voltage from a function generator coupled to a power amplifier. The 
displacement of the plate surface was measured on the opposite side of the plate from the excitation source using 
a photorefractive crystal based interferometer35 incorporating a single-longitudinal mode frequency doubled 

Figure 2. Experimental configuration for the generation and detection of conical point Lamb waves. A contact 
longitudinal mode transducer is coupled to the sample and driven with a continuous sine wave. The normal 
displacement is measured on the bottom surface of the sample using a photorefractive interferometer. Sample 1 
has a thickness (d1) of 1.54 mm and Sample 2 has thicknesses of (d1) 1.54 mm and (d2) 1.45 mm.

https://doi.org/10.1038/s41598-019-51187-9


5Scientific RepoRtS |         (2019) 9:15216  | https://doi.org/10.1038/s41598-019-51187-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Nd:YAG laser (λ= 532 nm) with an output power of 200 mW. The magnitude and phase of the plate displacement 
response at the excitation frequency were measured using an RF lock-in amplifier. The reference signal for lock-in 
detection was derived from the function generator driving the piezoelectric transducer. The lock-in time constant 
was 300 ms with a 12 dB per octave roll off. The detection point was scanned over the plate surface using a 2-axis 
computer controlled translation stage.

Experimental measurements were taken on the two sample geometries shown in Fig. 2, each using 6061-O 
aluminum alloy plates. The room temperature Poisson’s ratio of this alloy was found to be 0.3349 ± 0.0006 using 
the method developed by Clorennec et al. based on ZGV frequency measurements8. Further details on our meas-
urement approach are available in the literature29. In sample 1, the transducer was placed 60 mm from a 6 mm 
diameter hole in a = .d 1 541  mm thick plate. The detection laser was scanned over a 40 × 40 mm grid surrounding 
the hole with a step size of 0.5 mm. In sample 2, a symmetric step change in plate thickness from = .d 1 541  mm to 

= .d 1 452  mm was created by masking the plate and immersing it in an acid bath. A 25.4 mm hole was machined 
in the thick side of the plate approximately 46 mm from the thickness step. The piezoelectric transducer was posi-
tioned 60 mm from the hole on the side opposite the step. The detection laser was scanned in a 130 × 80 mm  

Figure 3. Finite element time domain simulation of conical point Lamb wave scattering from a hole.  
(a) Normal displacement field around the hole at steady state. The incident conical point mode creates an offset 
to the whole field and the higher wave number S0 mode stems from mode conversion at the hole boundary. 
(b) Low pass spatial filtered (k = 0.5 mm−1) displacement field to isolate the conical point mode. (c) High pass 
spatial filtered (k = 3.0 mm−1) displacement field to isolate the S0 mode which arises from mode conversion of 
the conical point mode at the hole boundary. (d) Magnitude of the FFT of the scattered field shown in (c).
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(x, y) rectangular grid around the hole and across the thickness step using 0.5 mm steps. For both samples, thick 
adhesive tape was placed around the sample boundaries to help reduce the amplitude of edge reflections.

Results and Discussion
In order to investigate conical point Lamb wave scattering, we first simulated Lamb wave interaction with a hole 
in a plate using a commercial finite element time domain software package (On-Scale, PZ-Flex). For the simula-
tion, c1 = 6.00 mm/µs, c2 = 3.00 mm/µs ν =( ),1

3
 and the plate thickness was 1.5 mm. The plate was modeled on 

an orthogonal grid with element dimensions 50 × 25 × 50 µm3 (x, y, z) and a 6 mm diameter hole was positioned 
in the center of the plate. Absorbing boundary conditions were used on the plate edges. Lamb waves were excited 
using a normal forcing function line source with a Gaussian spatial distribution normal to the line and a full 
width at half maximum (FWHM) of 12 mm. The source was 35 mm from the hole and temporally modulated at a 
frequency of 2.0 MHz, which corresponds to the frequency of the S2/S2B conical point.

The displacement normal to the plate surface is shown in Fig. 3(a). The field is displayed at after steady state 
has been reached at a time of 38 μs. In the figure, the waves are incident on the hole from the left side (negative 
x). The result shows a nearly perfectly symmetric periodic wave field surrounding the hole. Furthermore, the 
displacement field is offset from zero. Figure 3(b) shows the displacement field after processing with a spatial 
low pass filter with a cutoff of k = 0.5 mm−1 in order to isolate the conical point S2 mode. Remarkably, the conical 

Figure 4. Measured normal displacement field of a conical point Lamb wave incident on a hole in the plate.  
(a) The measured displacement field is dominated by two modes, the incident conical point mode (DC 
component) and the scattered S0 mode (AC component). (b) Magnitude of spatial FFT of measured displacement 
field. The conical point mode appears as a bright spot near the origin and the scattered S0 mode appears as a 
circular ring of radius k = 4.0 mm−1. (c) Low pass filter (k = 0.8 mm−1) of measured displacement field to isolate 
the conical point mode. (d) Bandpass spatial filter (k = 3.8 mm−1 to k = 4.2 mm−1) to isolate the S0 mode.
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point wave produces a spatially uniform oscillation of the plate surface that shows little evidence of perturbation 
by the hole.

Figure 3(c) shows the displacement field in Fig. 3(a) after a high pass spatial filter with a cutoff of k = 3.0 mm−1 
in order to isolate the higher spatial frequency mode. This corresponds to the So mode which has a wave number 
of k = 4.14 mm−1. Here the spatially broad line source couples primarily into the long wavelength conical point S2 
mode. At the free surface of the hole, the incident field is partially mode converted into the So mode in order to 
satisfy the traction free boundary conditions. Because the incident wave uniformly drives the mode conversion 
process around the hole, the So mode is emitted in phase around the hole producing the observed circular pattern. 
Figure 3(d) shows the magnitude of the two-dimensional Fourier transform of the displacement field in Fig. 3(c). 
The bright ring corresponding to the So mode ( = . −k 4 14 mm 1) shows no evidence of directional dependence. 
This further demonstrates that the conical point wave is immune to scattering, producing a mode converted field 
of equal magnitude and phase over all points on the hole surface. We note that this also implies that the displace-
ment field produced by the line source is independent of the position of the line with respect to the hole.

Experimental measurements taken on sample 1 are shown in Fig. 4. As the Poisson’s ratio of the plate is slightly 
above 1

3
, we have a near-degeneracy and very long wavelength Lamb waves with non-negligible group velocity can 

be accessed. We choose an excitation frequency of 2.047 MHz, very close to the S2/S2B (k = 0) cutoff frequencies. 
The magnitude and phase of the displacement field are measured at each location on the surface, and the resulting 
displacement field at an arbitrary phase is shown in Fig. 4(a). In agreement with the simulation, we observe the 
circular waves emitted from the hole boundary in phase due to mode conversion of the near conical point Lamb 
wave to the So mode. In addition, the near conical point mode causes an offset over the entire field of view. The 
interplay between the overall plate oscillation and the waves emitted by the hole is evident in Supplementary 
Movie 1. Figure 4(b) shows the magnitude of the spatial Fourier transform of the displacement field. The incident 
near conical point S2 mode appears as a bright spot near the origin and the S0 mode appears as a relatively uni-
form ring near = . −k 4 0 mm 1. Note that the contact transducer also generates an incident S1 mode that is 
observed over a limited angular range around = . −k 2 2 mm 1. This is due to the fact that the transducer does not 
act as a perfect Gaussian source and edge effects lead to some coupling into higher spatial frequency modes. The 
near conical point mode is observed in Fig. 4(c) by processing the measured displacement field with a low pass 
filter (k = 0.8 mm−1). The displacement is nearly uniform over the inspection area, and spatial variation can be 
attributed to both the finite wavelength of the mode and some change in detection sensitivity across the scan 

Figure 5. Numerical simulations of conical point Lamb waves interacting with a hole and a thickness step 
in a plate. (a) Displacement field prior to interaction with the hole. (b) Displacement field as the wave front 
begins impinging on the hole. (c) Displacement field after the wave-front has passed the hole. (d) Steady state 
displacement field. The mode converted S2B mode after the thickness step, which originates mainly from the 
incident conical point mode, has planar wave-fronts despite the presence of the hole.
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region. The S0 mode is isolated by processing the displacement field with a bandpass filter between k = 3.8 mm−1 
and k = 4.2 mm−1. The experimental result, shown in Fig. 4(d), compares favorably with simulation (Fig. 3(c)). 
The S0 mode is generated with uniform magnitude and phase over the boundary of the hole and there is no indi-
cation of diffraction or scattering of the near conical point mode.

As a further demonstration of the unique nature of conical point waves, we now consider wave propagation in 
sample 2 (see Fig. 2). Here, the hole size is increased to 25.4 mm and the hole is positioned near a thickness step 
in the plate. We first consider a numerical simulation, where the plate is excited by a normal force with a Gaussian 
profile (FWHM = 25.4 mm) positioned 30 mm from the hole. The spot diameter was selected to match the size 
of the transducer used in the experiments. The hole is between the source and a symmetric thickness step, where 
the thickness changes from h1 = 1.50 mm to h2 = 1.48 mm (see Fig. 2). The mechanical properties of the plate 
and element grid size are the same as in the previous simulation, and the plate is excited with a sinusoidal forc-
ing function at the conical point frequency of 2.0 MHz starting at t = 0. The evolution of the displacement field 
normal to the surface over time is shown in Fig. 5. At 6.8 μs, the conical point wave is spreading from the source 
and just begins to impinge upon the hole (Fig. 5(a)). The conical point mode then begins to envelop the hole, 
appearing to flow around the hole with uniform phase advance (Fig. 5(b)). There is little evidence of interaction 
of the conical point wave with the hole apart from mode conversion to the S0 mode at the interface. Figure 5(c) 
shows the displacement as the conical point mode is just incident on the step change in thickness at a time of 
38.2 μs. At the interface, the conical point mode is converted primarily to the S2B mode. Considering Snell’s law, 
the angle of refraction from a conical point mode at an interface would be zero degrees, regardless of the angle of 
incidence. This is evident in Fig. 5(d) where planar S2B wave fronts are seen after the step. Note the uniformity of 
the S2B mode and the absence of wave field perturbation by the hole. Higher order modes in the thin plate region 
produced by mode conversion of modes other than the conical point mode (such as the S0 mode) continue to 
diverge as expected.

The experimental measurements on sample 2 (see Fig. 2) are shown in Fig. 6. The plate was again excited near 
the S2/S2B cutoff frequencies (k = 0) at 2.047 MHz. Figure 6(a) shows the displacement field measured across the 
plate surface. In agreement with the simulations, we observe mode conversion from the near conical point mode 
to the S0 mode at the hole boundary and to the S2B mode at the interface (x = 45 mm). Figure 6(b) gives the filtered 

Figure 6. (a) Experimental result showing the steady state displacement field of the near conical point Lamb 
wave propagating past a hole to a thickness step in a plate. (b) Spatially filtered data to isolate the conical point 
mode at the left side of the interface (x < 45 mm) and the S2B mode in the right side of the plate. (c) Magnitude 
of the spatial FFT of the raw data shown in (a) on the left side of the interface showing a strong response near 
k = 0. (d) Magnitude of spatial FFT of the raw data shown in (a) on the right side of the interface showing the 
S2B mode over a very limited angular range.

https://doi.org/10.1038/s41598-019-51187-9


9Scientific RepoRtS |         (2019) 9:15216  | https://doi.org/10.1038/s41598-019-51187-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

displacement field where on the left side of the step (x < 45 mm) a spatial low pass filter at k = 0.1 mm−1 is used 
to isolate the near conical point mode. On the right side of the step, a band pass filter between k = 0.3 mm−1 and 
k = 0.6 mm−1 is used to isolate the S2B mode and only negative k values are retained to eliminate reflections from 
the plate edge. The spatial Fourier transforms of the unfiltered wave field before and after the step are given in 
Fig. 6(c,d), respectively. The near conical point mode (x < 45 mm) produces reasonably uniform oscillation of the 
plate close to k = 0. Beyond the interface, S2B mode has a spatially uniform and planar phase front corresponding 
to the single bright spot on the Fourier transform near k = −0.5 mm−1. In agreement with the simulation, the 
uniformity of the S2B mode is due to the absence of diffraction and scattering of the near conical point mode by 
the hole. Supplementary Movie 2 shows the propagation of the conical point mode and its conversion into plane 
S2B backward waves.

conclusion
In conclusion, we have studied the propagation of conical point and near-conical point Lamb waves in an isotropic 
plate and the interaction of these waves with plate boundaries and interfaces. By calculating the group velocity of 
long wavelength Lamb waves as a function of Poisson’s ratio, we show that Lamb waves with non-negligible group 
velocities close to k = 0 exist only near degeneracies between thickness mode longitudinal and shear resonances 
of the same symmetry. Numerical simulations and experimental results demonstrate that Lamb waves generated 
at the conical point frequency are immune to scattering and diffraction from holes in the plate. Conical point 
waves appear to flow around holes and, in the steady state, the conical point mode produces a surface oscillation 
with a uniform phase over the plate surface irrespective of the presence of holes. Mode conversion of conical 
point waves to shorter wavelength modes at the free surface of the hole leads to a spatially isotropic wave field 
emitted perpendicular to the hole surface. Similarly, mode conversion of the conical point mode at a thickness 
step in the plate leads to a spatially uniform mode converted field propagating perpendicular to the step. In both 
cases, conical point modes exhibit an unusual spatial invariance where the steady state wave field is insensitive to 
the source location. Conical point dispersion in isotropic plates provides access to exceptionally long wavelength 
Lamb waves with high group velocity that may find application in nondestructive testing and Lamb wave based 
sensing systems.
Received: 2 July 2019; Accepted: 26 September 2019;
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