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Revisiting the identification of 
tumor sub-volumes predictive 
of residual uptake after (chemo)
radiotherapy: influence of 
segmentation methods on 18F-FDG 
PET/CT images
Mathieu Hatt1*, Florent Tixier1,2, Marie-Charlotte Desseroit1,2, Bogdan Badic  1, 
Baptiste Laurent1, Dimitris Visvikis1,3 & Catherine Cheze Le Rest  1,2,3

Our aim was to evaluate the impact of the accuracy of image segmentation techniques on establishing 
an overlap between pre-treatment and post-treatment functional tumour volumes in 18FDG-PET/CT 
imaging. Simulated images and a clinical cohort were considered. Three different configurations (large, 
small or non-existent overlap) of a single simulated example was used to elucidate the behaviour 
of each approach. Fifty-four oesophageal and head and neck (H&N) cancer patients treated with 
radiochemotherapy with both pre- and post-treatment PET/CT scans were retrospectively analysed. 
Images were registered and volumes were determined using combinations of thresholds and the fuzzy 
locally adaptive Bayesian (FLAB) algorithm. Four overlap metrics were calculated. The simulations 
showed that thresholds lead to biased overlap estimation and that accurate metrics are obtained 
despite spatially inaccurate volumes. In the clinical dataset, only 17 patients exhibited residual uptake 
smaller than the pre-treatment volume. Overlaps obtained with FLAB were consistently moderate for 
esophageal and low for H&N cases across all metrics. Overlaps obtained using threshold combinations 
varied greatly depending on thresholds and metrics. In both cases overlaps were variable across 
patients. Our findings do not support optimisation of radiotherapy planning based on pre-treatment 
18FDG-PET/CT image definition of high-uptake sub-volumes. Combinations of thresholds may have led 
to overestimation of overlaps in previous studies.

Multi-modality 18FDG-PET/CT is the most used imaging method in the diagnosis and outcome monitoring 
for head and neck (H&N) and esophageal cancer patients. Despite the interest for the use other PET tracers1,2, 
these 18FDG images are being predominantly exploited for radiotherapy treatment planning purposes and for 
assessment of response to treatment. Previous studies have investigated the possibility of exploiting pre-treatment 
18FDG PET/CT images to predict the spatial location and size of residual or relapsed lesions3–11. The main hypoth-
esis behind these studies is that residual/relapse uptake volumes (as seen on post-treatment PET/CT images) 
mainly correspond with tumour higher uptake sub-volumes identified on pre-treatment PET/CT images. If con-
firmed, this could support a radiotherapy planning optimisation strategy based on increasing the dose to these 
identified tumour sub-volumes on pre-treatment images12. Within this context, proof-of-concept studies in lung 
cancer patients suggested that a 50% SUVmax threshold-based sub-volume on pre-treatment PET image corre-
sponded well with the residual uptake (defined with a 70% SUVmax threshold), according to the metric overlap 
fraction (OF)3,4. Subsequently, two other studies showed similar results in lung cancer5,7. Similar findings were 
also obtained in 24 rectal cancer patients6 using the same approach, although the use of deformable image reg-
istration to align the pre- and post-treatment PET/CT images, is likely to have biased the overlap analysis by 
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deforming overall tumour volumes. Finally, more recently, four other studies have exploited several combinations 
of threshold values and additional overlap metrics in 17 non-small-cell lung cancer (NSCLC)8, 32 esophageal9, 
and 1910 or 38 H&N11 cancer patients, with variable results. The obtained overlaps in oesophageal and NSCLC 
patients were estimated to be sufficiently high to justify radiotherapy planning optimisation, whereas in H&N 
cancer patients the overlaps were lower, which was attributed to registration and positioning/lack of contention 
issues10,11.

Most of these previous studies exploited arbitrary values of %SUVmax image thresholds, despite the 
well-established limited accuracy and robustness of such methodology for the segmentation of PET image based 
functional volumes13–16. Indeed, optimal threshold values greatly depend on lesion size and contrast17, in addi-
tion to being very challenging to determine in case of high intratumor uptake heterogeneity where relationship 
between maximum intensity and overall contrast can be quite different than for homogeneous lesions. A recent 
MICCAI challenge further highlighted these limitations, as both implemented fixed thresholds (40 and 50% of 
the maximum) were amongst the worst ranked methods18. Additionally, an “optimal” deterministic threshold may 
never be found for specific cases, for example with limited signal-to-noise ratio, for which only additional criteria 
(e.g., spatial relationships between voxels) have the potential to provide a satisfactory segmentation result. It is 
thus difficult to evaluate whether positive or negative results are due to the choice of inappropriate and arbitrary 
threshold values and/or inappropriate overlap metrics, or the result of actual imperfect biological overlap between 
pre- and post-treatment activity distributions. Based on accuracy results shown by previous studies using these 
thresholding approaches for functional volume segmentation, one can assume that their use may lead to inaccu-
rate volume segmentations and associated biases in the overlap estimates, especially when the true underlying 
overlap is small or non-existent. An alternative approach would be the use of more accurate and robust segmenta-
tion algorithms for the definition of both the pre- and post-treatment PET image tumour volumes, in an attempt 
to extract more reliable overlap estimates and provide a more robust and accurate answer to the initial hypothesis. 
The main objective of this study was therefore to compare previously considered image threshold combinations 
with one, amongst others, accurate and robust automatic method able to define simultaneously a pre-treatment 
high uptake sub-volume (denoted from here onwards as V1 from PET1) and a post-treatment residual uptake 
(denoted from here onwards as V2 from PET2). We used both a realistic simulated tumour example with known 
ground truth in order to better elucidate the behaviour of each of the approaches considered, while a cohort of 
both oesophageal and H&N cancer patients was used to provide a clinically relevant assessment.

Materials and Methods
One example case consisting of simulated PET images with known ground-truth was initially used to eluci-
date the behaviour of the combinations of threshold values most often previously considered in the literature, 
with respect to three different known overlap configurations. In addition, we retrospectively collected pre- and 
post-treatment 18FDG-PET/CT scans of patients with oesophageal and H&N cancer treated by (chemo)radio-
therapy. We identified those presenting residual uptake in PET2 and co-registered PET1 and PET2 images using 
rigid transformations to avoid any deformation and intensity biases associated with non-rigid deformations. The 
pre-treatment tumour volume and V1, as well as V2 were subsequently delineated using either combinations of 
threshold values, or the advanced method. The determined spatial overlap between V1 and V2 was quantified 
using four metrics also used in most previous studies.

Simulated images. PET images of the simulated example were obtained according to a previously described 
workflow using the Geant4 Application for Tomographic Emission (GATE) version 6.019,20. For the attenuation 
map, the tumour in the simulations were considered as soft tissue and the background as lung. Two minutes 
acquisitions simulated in a model of the Siemens Biograph-6 were reconstructed with OSEM (3 iterations, 21 
subsets) using the CASToR software (Customisable and Advanced Software for Tomographic Reconstruction, 
http://www.castor-project.org)21 and post-filtered with a 5 mm 3D Gaussian. Voxel size of both the ground-truth 
map and the corresponding reconstructed images was 4 × 4 × 4 mm3. Parameters were chosen to be similar as 
the clinical data used in the present work (although acquired in a more recent scanner). Additional details can 
be found in20,21.

In PET1, the tumour was simulated with heterogeneous uptake using a measured contrast between the entire 
tumour and background of 3:1, whereas V1 included approximately 20% of the entire tumour and was set at a 
contrast of 2:1 with the rest of the tumour (resulting in a contrast of 6:1 relative to the background). In order 
to simulate reduced uptake for the residual in PET2, V2 was simulated as a more homogeneous, but smaller 
(about the same size as V1) and with lower contrast (2:1) with respect to the background. Three configurations 
were simulated by translating the V2 ground-truth within PET2: the first with a substantial although imperfect 
overlap (i.e., not exactly the same location/size/shape, all four overlap metrics of approximately 0.77), the second 
with a small overlap (all metrics of approximately 0.35), and the last with non-existent overlap (all metrics at 0) 
(Fig. 1a). These variable overlaps could arise from imperfect (or lack of) biological correlates, registration issues, 
or a combination of both. Note that for each overlap configuration, all 4 metrics provide very close and consistent 
values (Table 1).

Patients PET/CT datasets. Fifty-four patients treated in the University Hospital of Poitiers, France, were 
retrospectively included. All patients had locally advanced disease treated by combined radiochemotherapy and 
provided signed permission for the use of their clinical data for scientific purposes and informed consent for 
the anonymous publication of data. The “comité de protection des personnes (CPP Ouest III)” (ethics commit-
tee) from the University Hospital of Poitiers approved this study. Each patient underwent both a pre-treatment 
and a post-treatment 18FDG-PET/CT scan 3 months after the end of treatment, in the same PET/CT scanner 
(Biograph mCT 40 ToF with axial field of view of 21.6 cm, Siemens, Erlangen, Germany) using a routine clinical 
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protocol. PET/CT acquisition began after 6 hours of fasting and 60 ± 5 min after injection of 2.5 MBq/kg of 
18F-FDG (421 ± 98 MBq, range 220–695 MBq). Non-contrast enhanced, non-respiratory gated (free breath-
ing) CT images were acquired (120 kVp, Care Dose® current modulation system) with an in-plane resolution of 
0.853 × 0.853 mm2 and a 5 mm slice thickness. PET data were acquired using 3.5 minutes per bed position and 
images were reconstructed using a CT-based attenuation correction and the OSEM-TrueX-TOF algorithm (with 
time-of-flight and spatial resolution modelling, 3 iterations and 21 subsets, 5 mm 3D Gaussian post-filtering, 
voxel size 4 × 4 × 4 mm3).

Thirty-seven patients (17 with oesophageal, either adenocarcinoma (25%) or squamous cell carcinoma stage 
(75%), and 20 with H&N squamous cell carcinoma stage IV tumours) out of 54 (69%) had a residual uptake in 
PET2 and were thus further analysed (registration and overlap determination).

Figure 1. (a) Simulated images for the toy example. On the left images, red contours are ground-truth. On the 
overlap maps (right), red and orange contours are V1 and V2 respectively. The black area identifies the true 
overlap between V1 and V2. (b) Analysis workflow illustrated on the toy example. PET1 and PET2 are co-
registered. In PET1 the thresholds between 30% and 90% of SUVmax are applied, as well as the FLAB algorithm 
with 3 classes (blue and green contours). In PET2, two thresholds (40% and 90% of SUVmax) and the FLAB 
algorithm with two classes (green contour) are used.
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PET1 and PET2 for these 37 patients were automatically registered with a rigid body transformation deter-
mined on the CT datasets, using the 3D SlicerTM Expert Automated Registration module22 optimised with the 
Mattes mutual information metric23. In order to simplify the registration, only the body region containing the 
tumour was used. The transformation was initialised with a registration of the two centres of mass of the images. 
The obtained transformation was then applied to the corresponding PET.

V1 and V2 determination. For the automatic approach, we chose the Fuzzy Locally Adaptive Bayesian 
(FLAB) algorithm because of its capability to automatically determine both the entire volume and the high uptake 
sub-volume in the pre-treatment image24. In contrast to threshold-based segmentation, FLAB relies on an esti-
mation of the contrast and properties of statistical distributions, as well as on spatial correlation between voxels to 
classify each voxel24,25. Regarding the combination of thresholds, we replicated the configurations of the majority 
of the most recent studies8–11.

Therefore on PET1, eight different V1 were determined using 30%, 40%, 50%, 60%, 70%, 80% and 90% of 
SUVmax

3,4,8–11 and FLAB (Fig. 1b). In order to define V2 in PET2, 3 different volumes were obtained with thresh-
olds at 40% and 90%8,9,11 or FLAB (Fig. 1b). FLAB was applied in PET1 using 3 classes (one for background and 
two for tumour) to define an overall tumour volume and V1 (the high-uptake sub-volume)24. In PET2, FLAB was 
applied with 2 classes25 in order to define V2.

We emphasise that when V2 is measured as larger than V1, carrying out the overlap analysis is irrelevant. In 
these cases, the “residual” volume would likely encompass a large part of the (or even the entire) pre-treatment 
volume and very likely the entire high uptake sub-volume, leading to biased overlap metrics. It would also be 
meaningless to use such candidate sub-volume in PET for dose boosting, since it would mean either boosting 
the entire pre-treatment volume or a sub-volume of it that would not cover the entire residual volume (V2). The 
overlap analysis was thus carried out only for the cases with V2 < V1 according to the a priori more accurate 
delineation approach (i.e., FLAB).

Overlap analysis. The overlap between V1 and V2 was quantified with 4 metrics8–11 (see Fig. 1b). These 
included Dice coefficient, overlap fraction (OF), and intersection of V1 and V2 volumes divided by either V1 (X) 
or V2 (Y). Jaccard coefficients were not used as they provide redundant ranking with Dice.

GT FLAB 3040 4040 5040 6040 7040 8040 9040 3090 4090 5090 6090 7090 8090 9090

High  
true 
overlap

Dice 0.770 0.788 
(+2%)

0.488 
(−37%)

0.562 
(−27%)

0.668 
(−13%)

0.763 
(−1%)

0.763 
(−1%)

0.677 
(−12%)

0.415 
(−46%)

0.073 
(−91%)

0.092 
(−88%)

0.129 
(−83%)

0.191 
(−75%)

0.260 
(−66%)

0.355 
(−54%)

0.587 
(−24%)

OF 0.772 0.869 
(+13%)

0.979 
(−27%)

0.948 
(+22%)

0.886 
(+15%)

0.793 
(+3%)

0.882 
(+14%)

0.980 
(+27%)

1.000 
(+30%)

1.000 
(+30%)

1.000 
(+30%)

1.000 
(+30%)

1.000 
(+30%)

1.000 
(+30%)

1.000 
(+30%)

0.970 
(+26%)

X 0.767 0.720 
(+6%)

0.325 
(−58%)

0.400 
(−48%)

0.537 
(−30%)

0.735 
(−4%)

0.882 
(+15%)

0.980 
(+28%)

1.000 
(+30%)

0.038 
(−95%)

0.048 
(−94%)

0.069 
(−91%)

0.105 
(−86%)

0.149 
(−81%)

0.216 
(−72%)

0.421 
(−45%)

Y 0.772 0.869 
(+13%)

0.979 
(+27%)

0.948 
(+23%)

0.886 
(+15%)

0.793 
(+3%)

0.672 
(−13%)

0.517 
(−33%)

0.262 
(−66%)

1.000 
(+30%)

1.000 
(+30%)

1.000 
(+30%)

1.000 
(+30%)

1.000 
(+30%)

1.000 
(+30%)

0.970 
(+26%)

Acc N/A 0.960 0.715 0.722 0.737 0.765 0.813 0.877 0.811 0.635 0.635 0.635 0.635 0.635 0.635 0.631

Low  
true 
overlap

Dice 0.347 0.385 
(+11%)

0.519 
(+50%)

0.594 
(+71%)

0.690 
(+99%)

0.562 
(+62%)

0.516 
(+49%)

0.440 
(+27%)

0.309 
(−11%)

0.079 
(−77%)

0.099 
(−71%)

0.140 
(−60%)

0.178 
(−49%)

0.156 
(−55%)

0.355 
(−54%)

0.036 
(−90%)

OF 0.348 0.422 
(+21%)

1.000 
(+187%)

0.964 
(+177%)

0.886 
(+154%)

0.569 
(+63%)

0.615 
(+77%)

0.660 
(+90%)

0.776 
(+123%)

1.000 
(+187%)

1.000 
(+187%)

1.000 
(+187%)

0.861 
(+147%)

0.556 
(+60%)

0.222 
(−36%)

0.056 
(−84%)

X 0.346 0.354 
(+2%)

0.351 
(+1%)

0.429 
(+24%)

0.566 
(+64%)

0.556 
(+61%)

0.615 
(+78%)

0.660 
(+91%)

0.776 
(+124%)

0.041 
(−88%)

0.052 
(−84%)

0.075 
(−78%)

0.099 
(−71%)

0.090 
(−74%)

0.216 
(−72%)

0.026 
(−92%)

Y 0.348 0.422 
(+21%)

1.000 
(+187%)

0.964 
(+177%)

0.886 
(+154%)

0.569 
(+63%)

0.444 
(+28%)

0.330 
(−5%)

0.193 
(−45%)

1.000 
(+187%)

1.000 
(+187%)

1.000 
(+187%)

0.861 
(+147%)

0.556 
(+60%)

0.222 
(−36%)

0.056 
(−84%)

Acc N/A 0.858 0.59 0.593 0.601 0.658 0.702 0.772 0.545 0.184 0.184 0.184 0.202 0.273 0.573 0.518

No  
true 
overlap

Dice 0 0 0.445 0.470 0.363 0.141 0.087 0.028 0 0.075 0.094 0.101 0 0 0 0

OF 0 0 0.911 0.809 0.489 0.149 0.1 0.039 0 1 1 0.765 0 0 0 0

X 0 0 0.294 0.331 0.288 0.134 0.1 0.039 0 0.039 0.049 0.054 0 0 0 0

Y 0 0 0.911 0.809 0.489 0.149 0.078 0.021 0 1 1 0.765 0 0 0 0

Table 1. Results of the simulation study.
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Dice coefficients are sensitive to the differences in the size of the two compared volumes, whereas OF leads to 
higher values due to the use of the smallest volume in the denominator. In other words it is possible to achieve 
“correct” values for these metrics even if the compared volumes are not accurate and their overlap is not spatially 
(in terms of absolute volume or location/shape) correct. In the clinical data where no ground-truth is available, 
only these metrics were calculated. For the simulated cases on the other hand, they were complemented with an 
accuracy estimation of the overlap determined through the segmentation methods quantified by the mean of 
positive predictive value (PPV) and sensitivity (SE)13.

All combinations of threshold values (between 30% and 90% for V1, combined with either 40% or 90% for 
V2) were analysed and will be denoted in the following as xxyy, were xx is 30, 40, 50, 60, 70, 80 or 90 (V1) and 
yy is 40 or 90 (V2). For FLAB, the overlap was quantified between the high-uptake sub-volume in PET1 and the 
residual/relapse uptake in PET2 (Fig. 1b). Statistical comparison between the metrics distributions were carried 
out using rank Mann-Whitney tests. P < 0.01 was considered significant. Statistics are reported in the text as 
mean ± standard deviation (median).

Approval, accordance and informed consent. The “comité de protection des personnes (CPP Ouest 
III)” (ethics committee) from the University Hospital of Poitiers approved this study. All procedures performed 
in studies involving human participants were in accordance with the ethical standards of the institutional and/
or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable 
ethical standards. Informed consent was obtained from all individual participants included in the study.

Results
Table 1 provides the analysis results of the simulated cases both qualitatively (visually) and quantitatively (Dice, 
OF, X, Y and the overlap accuracy). None of the threshold configurations provided satisfactory results across 
all situations. This was mostly due to inaccurate segmentations in PET2 (V2 too small for 90% and too large 
for 40%). In PET1, 60–80% thresholds provided segmentations close to the FLAB high-uptake sub-volume (as 
shown in Fig. 1b). 6040 and 7040 provided even better estimates of the overlap metrics (−1% to +3% for 6040, 
−1% to +15% for 7040) than FLAB in the case of substantial overlap. However, they did so through less accu-
rate overlap determination (accuracy of 0.765 and 0.813 respectively) and they led to large overestimation for 
small overlap cases (+50% to +80%). In addition, they detected an overlap (although small) for the case with 
non-existent overlap in the ground-truth. Overall, all threshold combinations were found to either strongly over- 
or under-estimate the true overlap metrics, as well as the true overlap spatial location and size (mean accuracy of 
0.706 ± 0.084 and 0.470 ± 0.215 for high and low overlap respectively). In particular, there was a trend in overes-
timating the overlap in cases where it is actually small or non-existent. In contrast, FLAB provided estimates of 
the overlap metrics between +2 and +21% for the high and small overlap cases and was also capable of accurately 
detecting the lack of overlap. More importantly, it provided more accurate estimation of the true overlap spatial 
extent and localisation (accuracy of 0.960 and 0.858 for the high and the small overlap cases respectively, vs. 0.877 
and 0.772 obtained for the best threshold combination of 8040).

In the clinical cases, histology and stage had no significant impact on SUV measurements. Registration was 
easier to perform and led to more visually accurate results for oesophageal cancer cases compared to H&N, 
mostly as a result of the large differences in the position of the patients’ heads between PET1 and PET2, due to the 
lack of using immobilisation devices or positioning standardisation protocols (see Fig. 2).

In the absence of ground-truth and based on previous results and those of the simulated example in this study, 
FLAB was assumed to provide more accurate and robust volumes compared to fixed thresholds18. According to 
FLAB, the entire tumour volumes in PET1 were 23.4 ± 47.8 (7.3) cm3 for oesophageal tumours and 14.7 ± 15.8 
(7.7) cm3 for H&N tumours, with significantly smaller (p < 0.01) high-uptake sub-volumes (V1) of 13.9 ± 37.8 
(2.6) and 9.1 ± 11.2 (2.9) for oesophageal and H&N respectively. By comparison, V2 in PET2 were measured 
as 7.3 ± 5.3 (8.3) cm3 (oesophageal) and 12.5 ± 13.8 (9.3) cm3 (H&N) (Table 1, Fig. 3). Overall, reduction of 
uptake volume in oesophageal tumours (−58 ± 32%) was observed for only 9/17 patients, with volume increase 
(+148 ± 150%) for the other 8. For H&N, a reduction was similarly observed only in 10 patients (−47 ± 29%), 
whereas for the other half, an increase of volume was measured (+159 ± 281%).

As shown in Fig. 3, FLAB provided volumes that were significantly different than most threshold-based seg-
mentations. Compared to FLAB-defined V1 (Fig. 3a), those obtained with thresholds showed tighter spread 
and larger values with thresholds between 30% and 60% (p < 0.001 for 60%, p < 0.0001 for 30% to 50%), smaller 
values with 90% (p < 0.001), and values in a similar (not statistically different) range for 70% and 80% (p = 0.06 
and 0.54 respectively). Similarly, compared to FLAB, V2 defined with both 40% and 90% (Fig. 3b) were signifi-
cantly different (p < 0.0001). A 40% threshold led to larger V2 of 21.4 ± 10.7 (18.2) cm3 for oesophageal tumours 
and 36.4 ± 29.2 (25.1) cm3 for H&N tumours, whereas a 90% threshold led to smaller V2 of 0.7 ± 0.4 (0.6) cm3 
for oesophageal tumours and 0.6 ± 0.4 (0.5) cm3 for H&N tumours (Fig. 3b). It is worth noting that the use of 
threshold combinations led to variable numbers of patients with V2 < V1: for xx90 all V2 were smaller than V1 
except 8090 (n = 35) and 9090 (n = 21). For xx40, the number was much more variable, between 25 for 3040 to 0 
with 9040 (4040: n = 14, 5040 and 6040: n = 8, 7040: n = 4 and 8040: n = 1).

The subsequent overlap analysis was carried out for the 9 oesophageal and the 10 H&N cases for which 
V2 < V1 according to FLAB. Table 1 in the supplemental material provide statistics for each overlap metric 
and for each segmentation combinations whereas Fig. 4 provides graphs with raw data. Agreement between V1 
and V2 were consistently higher for oesophageal cases compared to H&N, across all metrics and for both the 
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Figure 2. Examples of (a,c) pre-treatment and (b,d) post-treatment PET/CT images in (a,b) esophageal and 
(c,d) H&N tumors.

Figure 3. Measurements of (a) pre-treatment volumes in PET1 and (b) relapse/residual uptakes (V2) in post-
treatment PET images, using FLAB and thresholds. In (a), for FLAB, ‘1’ denotes the entire uptake volume, 
whereas ‘2’ denotes the high-uptake sub-volumes (i.e., V1). Note the difference of scale in the y axis between 
(a,b).

https://doi.org/10.1038/s41598-019-51096-x


7Scientific RepoRtS |         (2019) 9:14925  | https://doi.org/10.1038/s41598-019-51096-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

threshold-based and FLAB comparisons, even though the differences were not statistically significant due to 
the very large standard deviation of all distributions (p > 0.1) (Fig. 4). Indeed, they were highly variable across 
patients, in both pathologies and whatever overlap metric was considered, or how V1 and V2 were defined, with 
values as low as 0, and some reaching 1. The most consistent results across metrics were obtained with FLAB, 
which identified low to moderate agreement ( < 0.7), independently of the overlap metric considered, in contrast 
to the various combinations of threshold that exhibited highly different behaviour depending on the chosen met-
ric and the combination of threshold used.

Dice index led to the lowest agreements, whereas OF led to the highest. X highlighted higher agreement when 
considering xx40 combinations compared to very low agreement when considering xx90 combinations, whereas 
it was the opposite for Y that led to higher overlaps for xx90 configurations compared to xx40 ones. By contrast, 
FLAB led to more similar (and moderate) results between X and Y. For most metrics and configurations, a large 
variability across patients was noted.

Discussion
The results using a simple simulated example with 3 different overlap configurations allowed to elucidate that 
none of the threshold combinations most often considered in recently published studies were able to provide 
satisfactory overlap determination and associated metrics measurements for all configurations, in contrast to an 
advanced method, such as FLAB considered in this study. Although, this behaviour was observed in a single and 
simple simulated example, it illustrates well the expected behaviour of the various threshold combinations. The 
main conclusions are that i) accurate estimation of overlap metrics (i.e., Dice, OF, X, Y) can arise from inaccurate 
segmentations and thus inaccurate determination of the spatial extent (location and size) of the true overlap; ii) 
these inaccurate threshold combinations can lead to large underestimation of overlaps, but also and perhaps more 
importantly to large overestimation, especially in cases where the true overlap is small or non-existent. One key 
point is the accurate determination of V2, for which both 40% (overestimation) and 90% (underestimation) failed 
in our simulated case. In contrast, a 70% threshold to determine V23,4 leads to a segmentation volume close to 
the one obtained with FLAB (between 14% and 4% difference across the three images, results not shown) in that 
specific simulated case. Therefore, the 7070 or 8070 configurations would provide results close to those obtained 
with FLAB. However, one needs to note that a different contrast and/or tumour size configuration for V2 would 
obviously require a different threshold value in order to get a result similar to FLAB, since a 70% threshold is not 
appropriate for all combinations of lesion sizes and contrast. Therefore, even if the 7070 or 8070 configurations 
would appear to be the best in our simulated tumour example, they would fail to provide consistent results in the 
clinical cases given their large variability in size and contrast in PET2, as manifested by the clinical cohort used 
in this study.

Figure 4. Overlap assessment using (a) Dice, (b) OF, (c) X and (d) Y.
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The results obtained using the clinical datasets (where no ground-truth is known) are similar to those obtained 
in the simulation study. In both pathologies considered in the patient cohort, V2 obtained using 40% and 90% 
threshold were significantly larger and smaller respectively than those obtained with FLAB (Fig. 3b) and V1 
obtained with 70–80% threshold were close to those obtained with FLAB (high-uptake sub-volume) (Fig. 3a). 
Similarly to the simulated case results, the threshold combinations led to high variability in the overlap metrics, 
and sometimes higher than those provided by FLAB (assumed to be more accurate). The three main conclusions 
of the analysis in the clinical datasets are: i) a residual uptake was visible in only 69% of the initial cohort of 
patients; ii) for about half of these patients with residual uptake, in both pathologies, this “residual” uptake was 
actually larger than the pre-treatment one, precluding an overlap analysis relevant for pre-treatment radiotherapy 
planning optimisation; iii) in the remaining half of the patients (35% of the initial cohort), the overlap between 
high-uptake sub-volume of PET1 and the residual uptake in PET2 was found to be highly variable between 
patients, and overall between low and moderate, irrespectively of the segmentation method used to define the 
functional volumes and the metric used to quantify these overlaps. Although some threshold combinations led 
to somewhat high overlap values in some cases, one may hypothesise based on the simulation study observations 
that they may largely be resulting from inaccurate segmentations. Finally, the results were generally better for 
oesophageal cancer patients due to less challenging registration conditions compared to the H&N cancer patients 
acquired without any specific positioning protocol, as reported by others before10,11.

Our concurrent observations on the simulated and acquired patient datasets do not entirely support the initial 
hypothesis of identifying reliable sub-volumes in pre-treatment PET images that could constitute regions for 
radiotherapy planning optimisation strategies, such dose boosting sub-volumes. Although some substantial over-
laps were observed for a few patients, other patients showed very low or even null overlaps. Several studies have 
reported rather optimistic results in a number of pathologies regarding the ability of selecting intensity threshold 

Study Cancer type Total

Number of patients

Registration
Segmentation 
on PET1

Segmentation on 
PET2 Overlap metrics Agreement

PET2 
positive

Excluded

Overlap 
analysisV2 > V1

Other 
reasons

Abramyuk, 
et al.5 NSCLC 10 10 2 0 10 None

2 adaptive 
thresholds 
(TrueD® and 
ROVER®)

2 adaptive 
thresholds 
(TrueD® and 
ROVER®)

Visual/qualitative

Failures/
relapses 
located 
mainly at 
primary site 
with highest 
uptake

Aerts, et al.3 NSCLC 55 28 1 5 22 Rigid Thresholds 34, 
40, 50, 60, 70%

Thresholds 
Residual defined 
as SUV above 
aortic arc. Within 
residual: 70, 80, 
90%, >SUV 2.5 
and >SUV 5.0.

OF Good to 
excellent

Aerts, et al.4 NSCLC 12 8 0 1 7 Rigid Thresholds 34, 
40, 50, 60, 70%

Thresholds 
Residual defined 
as SUV above 
aortic arc. Within 
residual: 70, 80, 
90%

OF Good to 
excellent

van den 
Bogaard, et 
al.6

Rectal 28 24 Unknown 0 24
Rigid (global) 
followed by 
elastic (local)

Adaptive 
threshold 
(signal-to-
background 
ratio)

Adaptive 
threshold (signal-
to-background 
ratio)

Voxels of PET1 
and PET2 
arranged into 10-
bin histograms

Good to 
excellent

Shusharina, 
et al.7 NSCLC 61 19 Unknown 2 17 Threshold 50% Threshold 80% OF Good to 

excellent

Calais, et al.8 NSCLC 39 17 Unknown 0 17 Rigid Thresholds
30–90%

Thresholds
40 and 90%

Dice, Jaccard, OF, 
X, Y

Moderate 
to good, 
depending on 
metric and 
threshold

Calais, et al.9 Oesophageal 98 35 Unknown 3 32 Rigid Thresholds 
30–90%

Thresholds 40 and 
90%

Dice, Jaccard, OF, 
X, Y

Moderate 
to good, 
depending on 
metric and 
threshold

Chaput, et al.10 H&N 72 19 Unknown 0 19 Rigid Thresholds 
30–90%

Thresholds 40 and 
70%

Dice, Jaccard, OF, 
X, Y Low

Legot, et al.11 H&N 94 38 Unknown 0 19 Rigid Thresholds 
30–90%

Thresholds 40 and 
90%

Dice, Jaccard, OF, 
X, Y

Low to 
moderate

Present study
Oesophageal 28 17 8 0 9

Rigid
Thresholds 
30–90%, FLAB 
(3 classes)

Thresholds 40 
and 90%, FLAB (2 
classes)

Dice, OF, X, Y
Low to 
moderate

H&N 26 20 10 0 10 Low

Table 2. Summary of previous studies.
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values to identify reliable post-treatment residual uptakes from pre-treatment PET images (Table 2). Although 
our cohort was small, most previous investigations were carried out in similarly small groups (between 7 and 38) 
since only a fraction of patients usually exhibit relapse/residual disease. In addition, in our study we restricted the 
overlap analysis to patients for which residual uptake was smaller than the pre-treatment one, which resulted in 
including only half of the patients (19 out of 37) in the actual overlap analysis. In most previous studies, it appears 
that all patients with relapse/residual uptakes were included in the overlap analysis, but it was not explicitly stated 
whether they all had residual uptakes smaller than pre-treatment volumes or not. If post-treatment volumes 
larger than pre-treatment ones were included, it may have biased at least partly the reported overlaps towards 
“artificially” higher values. For example in our cohort, including all 37 patients led to OF for 7040 of 0.59 ± 0.35 
(median 0.61) compared to 0.49 ± 0.34 (median 0.47) when including only the 19 patients with residual uptakes 
smaller than pre-treatment ones. Note that although most of xx90 configurations led to V2 < V1, it is worth high-
lighting that xx40 configurations led to V2 > V1 in a larger part of the cohort (all of them with 9040, down to a 
minimum of 12 with 3040).

On the other hand, our conclusions are in line with the most recent studies on H&N cancer patients, where 
registration issues were similarly too important to allow for high volume overlaps10,11. In both studies rigid reg-
istration was used instead of elastic models. Such deformable models could potentially improve registration in 
such challenging cases but it may also lead to deformation of the tumour volumes and thus bias the spatial overlap 
analysis, as well as a modification of intensities, whose biological significance can be questionable. Prospective 
studies with acquisition protocols including immobilisation devices ensuring similar positioning of the patients 
in pre- and post-treatment PET/CT acquisitions should be carried out to provide a more conclusive response. 
However for oesophageal cancer cases, even if volume overlaps were consistently higher than for H&N patients, 
we were not able to confirm the optimistic results previously published9. Lesions in the oesophagus are obviously 
subject to motion and associated organ deformation, but they are assumed to be less affected compared to lung 
lesions, where promising results were obtained by other investigators, even in the absence of respiratory gat-
ing3–5,7. It should be noted however that most of the early promising results in lung lesions were obtained using 
the OF metric, which as shown in our study tends to provide the highest values. Other results previously reported 
in rectal cancer patients, where elastic registration was used, could also have led to overestimated overlaps due to 
deformation of tumour volumes when matching pre- and post-treatment datasets6.

Within this context, our study is the first to compare the various combinations of threshold values most often 
used in the previous investigations in addition and in comparison to the use of a more robust and accurate seg-
mentation approach. The FLAB method was originally designed to automatically define the overall volume as well 
as a high-uptake sub-volume using a combination of three classes, based on the statistical properties and relative 
contrast of voxel distributions as well as their spatial relationship, which was validated using both simulated and 
clinical datasets24. Similarly and perhaps more importantly, the definition of the entire residual uptake in PET2 
using the standard 2-class FLAB method ensured a more robust and accurate determination of its spatial extent, 
given the demonstrated robustness of FLAB for smaller and lower contrast uptake lesions compared to fixed 
threshold approaches18,25,26. By contrast, it should be emphasised that most of the threshold combinations are 
arbitrary and do not rely on any rationale, hence potentially leading to artificially large (or low) overlap values, 
as illustrated in our simulated example. In particular, a 90% of SUVmax threshold can lead to very small volumes 
that mostly underestimate the true extent of the residual uptake, whereas a 40% threshold may not be appropriate 
either, leading to overestimation of the uptake, especially for smaller, low contrast uptakes13. Rigorous validation 
of the initial hypothesis thus clearly requires not only a feasible co-registration of pre- and post-treatment images, 
but also an accurate and robust definition of the residual uptake in the post-treatment PET images, in order to 
localise its corresponding sub-volume within the entire tumour volume in the pre-treatment image.

The validation of this hypothesis should therefore rely on reliable, accurate and robust volume definition of 
these post-treatment uptake regions across all patients included in a study. In that regard, a number of automatic 
algorithms for PET image segmentation have been developed over the last decade. All of them have the potential 
to provide more accurate results for V2 compared to fixed thresholds, and some have shown improved accuracy 
over FLAB which we used in this study, for the specific task of determining the entire tumour uptake18. On 
the other hand, the determination of V1 is more challenging, given that the goal is to determine a high-uptake 
sub-volume of the tumour and not the entire uptake. The advantage of FLAB for the present work is that it has 
been developed and rigorously validated specifically for this task24. Although other advanced methods18,27,28 could 
be also considered, for the majority of them similar additional parametrization or optimization would need to be 
carried out in order to determine simultaneously the high uptake sub-volume in addition to the entire tumour 
volume. For example, one could consider using a fuzzy C-Means29 or a Gaussian mixture model30 with 3 (or 
more) clusters/Gaussian distributions, which could likely lead to results close to those obtained in this work with 
FLAB.

Assuming that FLAB provided reliable residual uptakes measurements, thresholds at 40% and 90% led to 
significantly larger and smaller measurements respectively, which can be considered erroneous in most cases and 
would obviously lead to over and under-estimation of true overlaps respectively between pre- and post-treatment 
uptake distributions. Based on the results obtained for the simulated example and the observed differences in the 
clinical cohort used in this study, we can postulate that threshold combinations tend to overestimate the quanti-
tative overlaps between pre- and post-treatment functional tumour volumes, especially when the true overlap is 
small or non-existent. We therefore advocate that combinations of fixed thresholds should not be used to inves-
tigate the issue of overlaps between pre- and post-treatment PET volumes, as they seem to add important uncer-
tainties in addition to the underlying biological variability, as well as pre- and post-treatment image registration 
issues. In order to obtain more reliable estimates of these overlaps, we advocate the use of robust and accurate 
advanced PET segmentation methods combined with standardised pre- and post-treatment image acquisition 
protocols.
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Conclusions
The overlaps between pre-treatment high-uptake sub-volumes and residual disease after (chemo)radiotherapy 
were found to be moderate in oesophageal tumours and low in head and neck tumours. These overlaps were also 
highly variable amongst patients. Therefore our results do not support optimisation of radiotherapy planning 
based on pre-treatment PET/CT definition of a high-uptake sub-volume, even in oesophageal cases for which 
better results were observed. In addition, it should be emphasised that only a small fraction (35% the initial 
cohort) of patients could potentially benefit from such an optimisation. Considering the comparison between 
segmentation approaches, our results suggest that the use of combinations of arbitrary intensity thresholds led to 
the overoptimistic evaluation of overlaps reported in previous studies.

Data availability
PET/CT images and simulated images used in this study can be made available on request for specific research 
purposes.
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