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Computational Analysis of Insulin-
Glucagon Signalling Network: 
Implications of Bistability to 
Metabolic Homeostasis and  
Disease states
Pramod R. Somvanshi1,2, Manu Tomar   1 & Venkatesh Kareenhalli   1*

Insulin and glucagon control plasma macronutrient homeostasis through their signalling network 
composed of multiple feedback and crosstalk interactions. To understand how these interactions 
contribute to metabolic homeostasis and disease states, we analysed the steady state response 
of metabolic regulation (catabolic or anabolic) with respect to structural and input perturbations 
in the integrated signalling network, for varying levels of plasma glucose. Structural perturbations 
revealed: the positive feedback of AKT on IRS is responsible for the bistability in anabolic zone (glucose 
>5.5 mmol); the positive feedback of calcium on cAMP is responsible for ensuring ultrasensitive 
response in catabolic zone (glucose <4.5 mmol); the crosstalk between AKT and PDE3 is responsible 
for efficient catabolic response under low glucose condition; the crosstalk between DAG and PKC 
regulates the span of anabolic bistable region with respect to plasma glucose levels. The macronutrient 
perturbations revealed: varying plasma amino acids and fatty acids from normal to high levels 
gradually shifted the bistable response towards higher glucose range, eventually making the response 
catabolic or unresponsive to increasing glucose levels. The analysis reveals that certain macronutrient 
composition may be more conducive to homeostasis than others. The network perturbations that may 
contribute to disease states such as diabetes, obesity and cancer are discussed.

Living systems deploy bio-molecular networks comprising of multiple feedback loops to facilitate an optimal 
response to an environmental stimulus. The network structure and its kinetics define steady state and dynamical 
properties of the output response1. One such property is homeostasis, wherein the levels of physiological vari-
ables are held in a narrow range despite any external perturbation to the system2. One of the optimal strategy 
to obtain homeostasis is to have bistable control in the regulatory circuit3. Bistability is a property in which the 
threshold for activation and deactivation of the response differs (hysteresis) leading to two stable states for a 
given stimulus, depending upon the history of the stimulus4. Several biological systems exhibit bistability such 
as cell cycle5, MAPK cascade and JNK signalling6,7, immune response8, insulin signalling pathway9 and neuro-
logical states10. Bistable circuits are known to impart switch like response, robustness to noise, memory of the 
stimulus, and irreversibility in response11–13. Disturbances in the operation of bistable response is implicated in 
dysregulation of homeostasis and subsequent disease states such as diabetes, obesity and cancer14,15. Bistability 
with respect to PKC response in insulin signalling network could explain selective hepatic insulin resistance16. 
Bistability in AKT response with respect to insulin levels is also reported through simulations of insulin/AKT 
and MAPK/ERK signalling pathways17–19. Furthermore, for the physiological range of plasma glucose levels, the 
flux through glycolysis exhibits multiple steady state responses in HeLa cells20 indicating the interplay between 
the regulatory feedback loops and their effector hormonal signals. It is known that these pathways are regulated 
by insulin and glucagon, motivating further analysis on underlying complexity of hormonal regulation of metab-
olism21. Therefore, in this study we focus on analysing the effects of perturbations in the network structure and 
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multiple-input stimulus on the response of insulin-glucagon signalling network and its relation to metabolic 
homeostasis and disease states.

While insulin is an anabolic hormone, glucagon is a catabolic hormone. Both modulate each other to maintain 
the level of key metabolites like glucose, fatty acids and amino acids in plasma22,23 under different physiological 
conditions (resting, postprandial and exercise). These hormones act antagonistically towards each other at the 
stages of their secretion and signalling (See supplementary file Appendix I). Insulin not only stimulates glucose 
uptake and lipid synthesis but also inhibits lipolysis, proteolysis, glycogenolysis, gluconeogenesis and ketogenesis 
in tissues like liver, muscle & adipose24,25. Glucagon, on the other hand, mediates catabolic pathways and renders 
elevation in levels of plasma metabolites like fatty acid, glucose and amino acids in order to supply body’s phys-
iological needs26 under relevant conditions. Further, plasma macronutrient are known to regulate the secretion 
and signalling of insulin and glucagon. Glucose is known to induce insulin secretion and inhibit glucagon secre-
tion27,28. Amino acids induce both insulin and glucagon secretion in a threshold dependent manner29,30. While 
amino acids activate insulin signalling through AKTp31, it inhibits IRS through S6kp activation32. Fatty acids can 
induce insulin secretion and inhibit insulin signalling at higher plasma levels33,34. These varied interaction (See 
Fig. 1) of the macronutrients with the hormonal regulatory mechanisms results in a highly nonlinear regulatory 
response for different combinations of these macronutrients in the plasma. Therefore, it is interesting to study 
how the bistability in the insulin-glucagon network and resultant metabolic state varies with different macronu-
trient compositions.

Several mathematical model of insulin signalling pathways are already documented35–37. Moreover, subsystem 
models of insulin receptor binding, receptor recycling & GLUT4 translocation leading to glucose uptake is also 
included in the overall insulin signalling model38. Mathematical models explaining signal transduction by G pro-
tein and downstream calcium signalling have been proposed in literature39–41. These models explain the dynamics 
of G-protein activation and receptor desensitisation based on ligand binding and subsequent events involving 
calcium and PLC42–44. Several mathematical models have been reported demonstrating bistable response in AKT 
activation. Giri et.al have reported bistability in insulin stimulated GLUT4 response18. Another dynamic model 
and analysis of the crosstalk between insulin/AKT and MAPK/ERK signalling pathways have reported bistability 
in AKT activation with respect to insulin input19. Similarly, the tumor suppressor protein p53, and oncoprotein 
AKT have been shown to be involved in a crosstalk that exhibits bistable response which is crucial for the cell 
control machinery for switching between survival and death45. Hence, it can be inferred through these modelling 

Figure 1.  Integrated insulin-glucagon signalling network. Bold lines represent positive feedbacks (→), 
negative feedbacks (—|) and crosstalks (---›) in the network. There are three modules in the network, 
namely - insulin signalling, glucagon signalling and blood. Glucose, amino acids & fatty acids are the input 
macronutrients present in plasma. Based on the amount of these macronutrients in different physiological 
situations, pancreas secrete different amounts insulin and glucagon in plasma. These hormones then trigger 
corresponding signalling pathways in tissues like liver, fat and muscle. Insulin and glucagon signalling modules 
act antagonistically to each other with the help of crosstalks (AKTp activating PDE3 which promotes cAMP 
degradation in glucagon signalling; and DAG activates PKC which inhibits IRS in insulin signalling) and 
feedbacks. When insulin signalling fluxes are greater than glucagon signalling fluxes, net metabolic state is 
anabolic; and when glucagon signalling fluxes are greater than insulin signalling fluxes, net metabolic state is 
catabolic.
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strategies that, although a clear bistable response has not been experimentally demonstrated in a tissue, such an 
occurrence is highly probable.

Although several models look separately at insulin and glucagon signalling and its regulation of metabolism, 
there is scarcity of models that consider the mutually antagonistic effect of insulin and glucagon signalling and the 
effect of macronutrients on the interplay of these pathways. Therefore, we have developed and analysed an inte-
grated model of insulin-glucagon signalling to obtain insights on the metabolic response with respect to different 
levels of glucose, amino-acid and fatty acid in the plasma. In the current study, we analyse the effect of varying 
levels of plasma macronutrients and knock-out of feedback loops and crosstalk mechanisms on phosphorylation 
state elicited by the integrated network. The bistable response in the network over certain range of physiological 
conditions and its disruption indicating disease state is also reported.

Results
The mathematical model for insulin-glucagon integrated network (Fig. 1) was simulated to obtain the steady state 
profiles of activated AKT and PKA; which are the endpoints of the insulin and glucagon signalling pathways, 
respectively. The model was quantitatively validated using experimental data of IRS and Akt activation in adipo-
cytes46 and is shown in Figure S1 (see Supplementary information, Appendix III Section A). The model was able 
to capture the highly ultrasensitive switching ON of IRS and AKT activation. Experiments involving switching 
OFF of the pathway has not been reported in the study, which is essential to validate the existence of bistability. 
Moreover there is scarcity of experimental data due to limitations to perform such experiments to record bistable 
behaviour in-vivo. In our simulations, the steady state profiles were obtained for both switching ON (i.e., increas-
ing glucose levels) and switching OFF (i.e., decreasing glucose levels). The phosphorylated AKT (AKTp) profile 
show a typical bi-stable response, with the activation of AKTp occurring at 1.6 fold of physiological glucose levels 
(5 mM) and deactivation at about 1.2 fold (Fig. 2(i)). In contrast, the activation of PKA is monostable, with a 
highly sensitive response (Hill coefficient = 5.8, Fig. 2(ii)).

Figure 2.  The steady state response for AKTp, PKA and Ps (Phosphorylation state) with varying levels of 
glucose in plasma. (i) AKTp vs Glucose response is bistable and ultrasensitive. Response increases suddenly at 
glucose = 1.6 folds while switching ON (increasing levels of glucose, denoted by the arrow pointed upwards) 
and decreases to almost zero level at glucose = 1fold while switching OFF (decreasing levels of glucose, denoted 
by the arrow pointing downwards). (ii) PKA vs Glucose response is monostable and ultrasensitive. PKA 
level drops sharply to almost zero for glucose levels beyond 1fold. There no difference in switching ON and 
switching OFF paths. (iii) Ps vs Glucose response. Here bistability in AKTp response is getting translated in 
Ps (a combination of AKTp and PKA response, see Eq. 1) response. Ps levels are greater than 0.51 for glucose 
levels less than 1fold, tending towards catabolic response. Ps levels remain in the homeostatic range for glucose 
ranging between 1 to 1.6 folds and then turn anabolic beyond glucose levels of 1.7 folds (while switching 
ON). While switching OFF, Ps levels remain anabolic up to 1.1 folds and then turn homeostatic and catabolic 
at lesser levels of glucose. Note that Ps levels greater than 0.55 indicates catabolic response, between 0.45 
and 0.55 indicates homeostatic response and less than 0.45 indicates anabolic response. Points A, B, C & D 
denote different steady state conditions. A – Glucose = 1 fold, Ps = 0.51 (homeostasis). B - Glucose = 1.5 folds 
(switching ON), Ps = 0.4 (mildly anabolic). C – Glucose = 1.5 folds (switching OFF), Ps = 0.05 (highly anabolic). 
D – Glucose = 0.8 fold, Ps = 0.86 (highly catabolic).
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In order of quantify the overall metabolic state, phosphorylation state (Ps) an index was defined as a function 
of activated AKT and PKA (refer methodology section, Eq. 1). Ps value of 0.5 indicates homeostatic state when 
both insulin and glucagon signalling components are equally active; Ps value of 1 indicates catabolic state when 
glucagon signalling in fully active; Ps value of 0 indicates anabolic state when insulin signalling is fully active. The 
steady state values of the same are determined at various glucose levels and is plotted in Fig. 2(iii). It demonstrates 
a bistable response, however only in the lower half of the phosphorylation state representing the anabolic zone 
due to AKT phosphorylation. Under resting state, at a glucose concentration of 5 mM, phosphorylation state 
value is equal to 0.51 showing slightly catabolic conditions under fasting condition. Under conditions of increased 
glucose consumption (such as during physical activity, stress etc.) with decrease in levels of plasma glucose, Ps 
becomes greater than 0.5 indicating a catabolic state without any bistability (also reflected by the absence of bista-
bility in the PKA vs glucose response (Fig. 2(ii)).

On increasing glucose concentration from the fasting state, the Ps transits through a mildly anabolic phase, 
with a dedicated fully operational anabolism occurring at higher glucose concentration (1.7 fold change). This 
implies that for glucose perturbation of less than 1.7 fold, Ps remains only mildly anabolic. On perturbing glucose 
levels greater than 1.7 fold, Ps is highly anabolic and remains in this state even after lowering of glucose upto 1.1 
fold of the resting state. This indicates that the anabolic fluxes such as glycogenesis and lipogenesis, if increased 
beyond certain threshold, might get locked even after lowering the glucose concentration, due to the bistability 
in Ps with respect to glucose.

It is interesting to note that a buffering zone exists for the anabolic response, while such a bistable response is 
absent in the catabolic zone. Glucose concentration lower than the physiological levels switches Ps value closer 
to one indicating mainly catabolism. Thus, the bistability offers a buffering zone between 1 to 1.7 fold change of 
glucose, in which both mainly anabolic and a balance between anabolic and catabolic process can be observed 
for a given glucose concentration, depending on the ON and OFF path. This indicates that for a given glucose 
concentration two distinct metabolic states can be achieved depending on the steady state points on the two 
different paths.

In order to elaborate on the operating strengths of feedbacks and crosstalk conditions in different steady 
states (shown by alphabets A-D in Fig. 2(iii), we have shown feedback strengths operating in the network (see 
Figures S2 – S5). Under fasting conditions (represented by point ‘A’ in Fig. 2(iii)), Figure S2 shows that the dom-
inant feedback is PDE3 degradation of cAMP thereby inhibiting the catabolic module. Hence the positive feed-
backs of Ca on DAG & cAMP along with cAMP on PKA are almost inactive. Further, anabolic module is also 
minimally active due to low levels of insulin secretion under these conditions leading to minimal activation of the 
positive feedback loop involving IRS-PI3K-AKT. When glucose levels increase to 1.5 folds (shown as point ‘B’ in 
Fig. 2(iii)), insulin secretion goes up thereby activating the anabolic module (Figure S3). In this case, increased 
degradation of cAMP by AKT (via PDE3 crosstalk) leads to complete shut off of the catabolic regime. In insulin 
signalling module, AKT positive feedback on IRS increases slightly due to increased insulin secretion, but is not 
enough to make Ps heavily anabolic. Note that the feedbacks and crosstalk like DAG inhibiting IRS via PKC and 
amino acids inhibiting IRS via mTOR-S6K signalling are almost inactive under these conditions.

On the other hand, under switching OFF conditions (shown as point ‘C’ in Fig. 2(iii)), the positive feedback of 
AKT on IRS increases along with the PKC and mTOR inhibitions of IRS (Figure S4). But the overall effect is dom-
inated by the positive feedback loop between IRS-PI3K-AKTp, thereby locking the state in highly anabolic region. 
Further, PDE3 degradation of cAMP is highly active causing the complete inactivation of glucagon signalling (just 
like state ‘B’). Whereas under low glucose conditions (shown as point ‘D’ in Fig. 2(iii)), anabolic module becomes 
inactive due to low levels of insulin secretion from pancreas leading to reduced degradation of cAMP due to AKT 
via PDE3 creating a highly catabolic state (Figure S5). Further, increased PKA activates DAG which inhibits IRS 
through crosstalk with PKC leading to inactivation of anabolic signalling pathways.

Sensitivity analysis of model parameters.  In order to evaluate the robustness of the model, sensitivity 
analysis with respect to Ps is performed at homeostatic resting conditions (where it’s value is equal to 0.51). The 
extent of the parameter change required to induce a step-change in the Ps were noted to compute sensitivities. 
Sensitivity indices of ten most sensitive parameters and initial conditions (out of a total of 137) are tabulated and 
shown in supplementary file (refer supplementary table in Appendix IV). Parameter ‘kc2’ was found to be the 
most sensitive that represents the rate constant for cAMP degradation by PDE3 with a sensitivity index of -0.172. 
This implies that on 0.1% decrease in kc2, the Ps value increases by 1.02 fold. Overall, it was found that signalling 
events related to cAMP, IRS, PI3K & AKT are most sensitive in the network. Among feedbacks & cross talks, 
positive feedback of AKT on IRS was most sensitive.

Effect of varying plasma amino acid levels.  In order to assess the effect of macronutrients on Ps with 
respect to glucose, the level of fatty acids (FA) and amino acids (AA) in plasma were varied. When AA level was 
increased upto 3 folds (while keeping FA constant at 1 fold), the span of bistable response increased in the ana-
bolic region (Fig. 3(i)). The Ps response now turns anabolic at glucose = 1.8 folds, (vis-a-vis at glucose = 1.7 folds 
when AA = 1 fold) while switching ON and turned homeostatic (from anabolic) at glucose = 0.9 fold (vis-a-vis 
glucose = 1 fold when amino acid = 1 fold) while switching OFF. Corresponding network map (Figure S6, rep-
resenting point ‘E’ in Fig. 3(i)) shows high activation of insulin signalling module due to dominance of AKTp 
positive feedback on IRS under such conditions. It also leads to increased cAMP degradation by PDE3 and thus 
supresses the effect of glucagon signalling module. This is why overall metabolic state is heavily anabolic in spite 
of glucagon signalling module also being activated due to increased glucagon secretion under high levels of AA.

On further increasing AA to 5 folds, Ps response turns catabolic and monostable even at high glucose levels 
upto 2 folds. Ps remains above 0.9 in this case (Fig. 3(ii)). Here active AKT levels are always low with sub-sensitive 
and higher levels of active PKA response with respect to glucose, resulting in a broad catabolic state. This indicates 
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an abnormal physiological state wherein the anabolic pathways are not activated even at high levels of plasma 
glucose. Corresponding network map (Figure S7 representing point ‘F’ in Fig. 3(ii)) shows high levels of mTOR 
activation by AA ultimately leading to increased inhibition of IRS by S6K1p47. This inactivation of insulin signal-
ling leads to reduced inhibition of PDE3 by cAMP. Further, high AA levels also increase glucagon secretion from 
pancreas48 creating a highly catabolic state in the network.

Effect of varying plasma fatty acid levels.  Similarly, on increasing FA levels upto 3 folds, while keeping 
AA constant at 1fold, we again observe an increase in the span of bistable response (Fig. 3(iii)). The response now 
turns anabolic at glucose = 1.8 folds (vis-a-vis at glucose = 1.7 folds when FA = 1 fold) while switching ON, and 
the response turns homeostatic (from anabolic) at glucose = 0.8 folds (vis-a-vis at glucose = 1 fold when FA = 1 
fold) while switching OFF. Corresponding flux map (Figure S8, representing point ‘G’ in Fig. 3(iii)) depicts high 
levels of IRS activation mainly due to the positive feedback of AKT which is keeping the overall metabolic state 
as anabolic in spite of inhibition by increased FA levels (via PKC). Moreover high levels of activation of PDE3 
degradation of cAMP is also shutting off the catabolic signalling module under these conditions.

On further increasing FA levels to 5 folds, Ps response becomes monostable and does not turn anabolic even 
at glucose levels up to 2 folds (Fig. 3(iv)). Here AKTp levels are very low and PKA response is hyper sensitive and 
becomes close to zero as glucose levels go above 1 fold leading to overall homeostatic response at higher glucose 
levels in this case. Corresponding flux map (Figure S9, representing point ‘H’ in Fig. 3(iv)) shows that insulin 
signalling is inhibited by higher FA levels (via PKC activation)49 even at high glucose levels. Moreover, glucagon 
signalling is inactivated due to inhibition of glucagon secretion by glucose and significant level of cAMP degra-
dation by PDE3.

Knockout of positive feedback of AKT on IRS.  In order to evaluate the effect of feedbacks on the Ps 
response, the positive feedback from AKTp on IRS was negated. This resulted in a monostable response without 
the activation of anabolic response i.e., AKT was not activated (Fig. 4(i)). Thus, the model suggests that this 

Figure 3.  Effect of changing macronutrients on bistability. Dashed graphs show normal responses whereas 
solid graphs show responses at higher levels of macronutrients (amino acid and fatty acid) levels in plasma. (i) 
AA = 3 folds. Here bistability span is increasing in the anabolic zone with response turning anabolic at 1.8 folds 
(compared to 1.7 folds for AA = 1 fold) while switching ON, and response turning catabolic from anabolic at 
0.9 fold (compared to 1 fold for AA = 1 fold, where Ps turns homeostatic from anabolic) while switching OFF. At 
point ‘E’ glucose = 1 fold, Ps = 0.15 and corresponding anabolic conditions are depicted in Figure S5. (ii) AA = 5 
folds. Here response remains catabolic even at glucose levels up to 2 folds. At point ‘F’, glucose = 1.5 folds with 
Ps = 0.86, corresponding network diagram is shown in Figure S6. (iii) FA = 3 folds. Here again the span of 
bistable response is increasing in the anabolic space with Ps value turning anabolic at 1.8 folds (as compared to 
1.7 folds for FA = 1 fold) while switching ON, and response turning catabolic from anabolic at glucose = 0.8 fold 
(as compared to glucose = 1 fold for FA = 1 fold, where Ps turns homeostatic from anabolic) while switching 
OFF. At point ‘G’, glucose = 1 fold and Ps = 0.08; corresponding network diagram is shown in Figure S7. (iv) 
FA = 5 folds. Here response remains monostable and non-anabolic even at high glucose levels up to 2 folds. Ps 
turns homeostatic (from catabolic) at subnormal glucose levels of 0.9 fold (as compared with normal glucose 
levels = 1 fold for FA = 1fold). At point ‘H’, glucose = 1.5 folds, Ps = 0.39; corresponding network representing 
mildly anabolic conditions are shown in Figure S8.
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positive feedback is a dominant mechanism responsible for the anabolic bistable response. The network diagram 
in the absence of this feedback with glucose levels = 1.5 folds (Figure S10, representing point ‘I’ in Fig. 4(i)), 
shows that insulin signalling module is only slightly activated (AKT contribution to Ps = 0.12) as compared to the 
corresponding conditions in the presence of this feedback during switching OFF conditions (Figure S4, where 
AKT contribution to Ps is 0.89), when the metabolic state is heavily anabolic. Here glucagon signalling module 
is almost shut off mainly due to highly active PDE3 degradation of cAMP and glucose inhibition on glucagon 
signalling. Hence due to the absence of this feedback overall metabolic response remains only slightly anabolic 
even at high glucose levels.

Knockout of calcium positive feedback on cAMP.  The positive feedback of calcium on cAMP was also 
negated to see the response in the catabolic module. It resulted in leftwards shift in the deactivation threshold of 
catabolic response with respect to glucose (Fig. 4(ii)). This implies that it activates cAMP, PKA and DAG at sub-
normal glucose levels. Corresponding network diagram under these conditions (Figure S11, representing point ‘J’ 
in Fig. 4(ii)) shows how cAMP activation of PKA and PKA's contribution to the overall metabolic state is reduced 
as compared to the case when this positive feedback is present (Figure S5). Thus keeping the overall response as 
homeostatic values observed at resting conditions even at subnormal glucose levels.

When both the above mentioned positive feedbacks are simultaneously knocked out, monostable and cat-
abolic response prevails at subnormal glucose levels and monostable and homeostatic response is observed at 
higher glucose levels (Figure not shown). This shows that the effect of both these feedbacks is mutually independ-
ent and can be observed in different range of glucose levels.

Knockout of crosstalk between AKT and PDE3.  Next, we knockout crosstalk between insulin and 
glucagon signalling pathways. Firstly, we delink the activation of PDE3 by AKT. This was done by setting the Hill 
function representing activation of PDE3 by AKTp equal to its maximum value of 1. This resulted in a suppressed 
levels of Ps indicating reduced activity in the catabolic zone at glucose levels less than 1 fold (Fig. 4(iii)). This is 
mainly due to enhanced degradation of cAMP by PDE3 which results in lowered PKA response. Thus, the cross-
talk helps in efficient catabolic response under low glucose conditions.

Knockout of crosstalk between DAG and PKC.  Likewise, on eliminating the crosstalk from DAG to 
PKC by setting the corresponding Hill function at its maximum value of 1, response turns monostable and home-
ostatic even at higher glucose levels up to 3 folds (Fig. 4(iv)).This implies that the activation of AKTp is reduced by 

Figure 4.  Effect of feedback and crosstalk perturbation in the network. (i) Knock out AKTp positive feedback 
on IRS. The response remains non-anabolic and monostable for glucose levels up to 2 folds. At point ‘I’ 
glucose = 1.5 folds and Ps = 0.44; corresponding network diagram is shown in Figure S9. (ii) Knock out of 
Calcium positive feedback on cAMP. Catabolic response is weakening slightly at subnormal glucose levels such 
that it becomes homeostatic at glucose = 0.9 fold (at ‘J’ where Ps = 0.48; corresponding network diagram is 
shown in Figure S10). (C) Decoupling of AKTp crosstalk PDE3. This leads to inactivation of glucagon signalling 
module at subnormal glucose levels. (D) Decoupling of DAG crosstalk with PKC. This leads to inhibition of 
insulin signalling module at high glucose levels up to 2 folds. This shows that the effects of both crosstalk are 
mutually independent, with AKTp-PDE3 crosstalk playing role at subnormal glucose levels and DAG-PKC 
crosstalk playing role at high glucose levels.
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inhibition of IRS by this crosstalk. At higher glucose concentration, when the glucagon signalling pathway is sup-
pressed, the DAG mediated insulin signalling suppression essentially happens due to fatty acids50. Therefore, the 
span of bistability under normal macronutrient conditions (FA = AA = 1fold) is set by the FA activation of DAG.

Overall, this shows that both the crosstalk from DAG to PKC and AKT to PDE3 are operational and relevant 
for normal catabolic to anabolic transitions. Further, the effect of simultaneous decoupling of both the crosstalk 
is algebraic summation of removal of the crosstalk one at a time. This demonstrates that the effect of both the 
crosstalk on the integrated network response is independent of each other.

Discussion
Structure and function underlying bistability in IG network.  The analysis of the network shows that 
mutually antagonistic modules of insulin & glucagon signalling increase the operational efficiencies of respective 
pathways for glucose as input stimulus3. The analysis reveals that the robustness of a homeostatic regulatory cir-
cuit is obtained by a combination of positive and negative feedback in the system51,52. While increasing the neg-
ative feedback reduces the effect of positive feedback thereby increasing the demand for a higher input stimulus; 
decreasing the negative feedback enhances the effect of positive feedback thereby inducing a bistable response in 
such a circuit53. Therefore, the span of the bistable response is determined by the relative strengths of the positive 
and negative feedbacks in the network.

The positive feedbacks of AKT on IRS and Ca on cAMP in the pathway ensures a proportionately higher out-
put response even for a smaller value of the input stimulus from insulin and glucagon secreted from the pancreas. 
On the other hand, negative feedbacks like PDE3 induced cAMP degradation, PKC & S6K inhibition on IRS are 
essential to reduce the effect of the input stimulus on the output response and serves as the crosstalk point for 
antagonistic pathways. Further, the DAG & AKT crosstalk on PKC & PDE3, respectively ensure and magnify the 
antagonistic effects of these pathways on each other.

Importance of feedback loops and its perturbation in disease state.  The positive feedback of AKTp 
on IRS and calcium on cAMP serves in attaining a bistable response in the regulatory elements of insulin and 
glucagon signalling pathways, respectively. Bistability helps in maintaining the output response in ON state even 
at the lower levels of input stimulus once activated. This facilitates to economise the requirements of the input 
stimulus by hormones (insulin and glucagon) rendering sustained output response for a short-lived input stim-
ulus. This kind of design probes to explain the pulsatile nature of insulin secretion after the glucose stimulus, 
wherein an initial pulse in insulin secretion may prime the signalling response to a persistent activation due to 
underlying structure that produces bistability. Such an importance of pulsatile insulin secretion and the underly-
ing bistability for efficient glucose homeostasis is also reported in the experimental observations16. Disturbances 
in first-phase insulin pulse are reported in diabetic patients, implicating the inability to switch ON the insulin 
signalling response leading to insulin resistance54. Therefore, loss of the AKT positive feedback can make the sys-
tem more prone to type II diabetes mellitus18. The model from Zhao et al. suggested that a typical protein kinase 
C undergoes a bistable switch-ON and switch-OFF, under the non-linear control of insulin receptor substrate 2 
(IRS2) and its disturbances causing insulin resistance16. Likewise, Ca-cAMP-PKA feedforward loop separately 
plays an important role in the catabolic space with additional bistability showing up when Ca + positive feed-
back on cAMP is knocked off, indicating lack of catabolic efficiency. Such a state may render difficulty in calorie 
expenditure and energy availability under acute demand and may lead to hypoglycaemic conditions during phys-
iological stress.

Several cancer tumour cells exhibit constitutive activation of PI3K/AKT/mTOR pathway55. The over expres-
sion of this pathway is essential for biosynthesis and provides a fitness advantage for the highly proliferating cells, 
a hallmark of cancer cells56. It has been argued that the dysregulation in PI3K/AKT pathway operates between 
two extremes states leading to either diabetes or cancer, wherein the insulin activity is either reduced or increased, 
respectively3,17. Therefore, as observed from our analysis, in the case of higher levels of plasma fatty acid (2–3 
folds), the bistable response in phosphorylation state shows an anabolic response indicating higher insulin activ-
ity even at normal glucose levels. Such a scenario is conducive to the proliferative state increasing the probability 
of cancerous phenotype (Fig. 4C), and may also promote higher synthesis and storage of fuels in the form of 
adipose tissues, leading to obesity. Moreover, in case of a sensitive positive feedback of AKTp on IRS would result 
in the increased span of bistability (See Figure S12), rendering a person’s higher chances of becoming obese even 
after consuming lesser amount of calories due to sensitive and persistent anabolic response to glucose. Supporting 
these hypotheses, recently it has been shown that the suppression of IRS2/AKT signalling prevents hepatic ste-
atosis, non-alcoholic fatty liver disease (NAFLD) and liver cancer57 indicating the importance of balance in the 
anabolic and catabolic response. Hence, our analysis provides a plausible mechanism for the increased instances 
of cancer in obesity patients58.

On the other hand, when selective dysfunction in either AKT positive feedback or decoupling of DAG-PKC 
crosstalk in a tissue like liver is considered, the system exhibits insulin resistance for increasing glucose levels 
(Fig. 4A,D). Under such a condition, due to lack of hepatic glucose absorption, plasma glucose levels may increase 
leading to hyperinsulinemia. The sustained increased insulin levels, then may affect the other tissues (such as 
adipose tissue and muscle with normal insulin sensitivity) to become more anabolic and sensitize AKT/PI3K 
pathway increasing the probability of cellular proliferation and tendency towards obesity59–61. Hence our analysis 
provides insights on possible mechanisms by which differential tissue insulin resistance could be responsible for 
diabetes, obesity and cancer, simultaneously. Furthermore, our model predicts signalling abnormalities like pro-
gressive decrease in IRS and AKT activity along with increase in aPKC and mTOR activity with increase in body 
mass index (BMI) in human subjects (lean, obese & T2DM) and mouse, with diet induced obesity62. These obser-
vations can easily be explained by our model where increase in FA and AA levels (in obese and T2DM) lead to 
respective increase in PKC, mTOR-S6K1p and subsequent inhibition of IRS and downstream kinases like AKTp.

https://doi.org/10.1038/s41598-019-50889-4
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Modulation of bistablity in metabolic state by macronutrients.  Analysis of steady state profiles 
of signalling proteins shows that insulin and glucagon signalling modules act antagonistically to balance, dom-
inate or subdue each other to keep plasma glucose levels under homeostatic (balanced), mildly anabolic (post 
balanced diet conditions), highly anabolic (post high carbohydrate diet conditions) and highly catabolic (during 
exercise and prolonged fasting) states. The system keeps switching between these three steady state conditions 
as the level of macronutrients varies in the model. Our analysis shows that differences in the regulatory nature 
of macronutrients yield different patterns of metabolic responses for different combinations of these macronu-
trients in the plasma. For instance, at very high AA levels (>4 fold) response turns highly catabolic with fluxes 
in glucagon signalling module dominating over insulin signalling module fluxes. Such increased catabolic flux 
concomitant with higher amino acids may indicate increased ammonia production in liver. In such condition, 
patients may demonstrate impairments in urea synthesis that is proportional to the clinical severity of their liver 
disease63. At very high levels of circulating AA, the catabolic signalling is dominant and tissues may not be able 
to build protein mass. One example of such catabolic disorder is muscle sarcopenia, reported in branched-chain 
amino acids (BCAA) supplementation studies64. Moreover, in case of moderately-high protein diet, it is well 
established that plasma glucose levels acutely reduce as compared to low protein diet65, despite a dichotomous rise 
in circulating glucagon levels66. Our integrated model effectively explains this phenomena as at moderately high 
AA levels, positive feedback of AKTp on IRS is dominant (Fig. 4A & Figure S10) that not only stimulates anabolic 
pathways like protein synthesis, but also suppresses glucagon signalling and subsequent catabolic pathways like 
gluconeogenesis with little effect on plasma glucose concentration under these conditions.

The effect of decreasing AA and FA as input to the system is minimal on the network fluxes, as it seems that 
plasma glucose levels have higher control on these hormones at basal levels. Whereas on moderately increasing 
fatty acid levels up to 3 folds, an anabolic action would increase lipogenesis at normal glucose levels and an 
increase in gluconeogenesis at subnormal glucose levels during switching OFF conditions. On increasing FA 
levels further up to 4 folds, catabolic state is prevalent that could inhibit lipogenesis. At high AA levels up to 3 
folds and subnormal to normal glucose levels catabolic state is predominate (mimicking the starvation condition 
and indicative of gluconeogenesis from AA) whereas at higher glucose levels the response is anabolic conducive 
to protein synthesis under surplus AA levels67. At higher fatty acid (4 folds onwards) and glucose levels (2 fold 
onwards), glucagon signalling module is shut OFF and insulin signalling module is not sufficiently activated to 
turn the system completely anabolic. These analysis shows that the efficiency of the insulin signalling pathway is 
high at the moderate levels of all these macronutrients, but it is reduced with further increasing amino acid and 
fatty acid levels in plasma. It was also noted that the defects in the glucagon signalling can also lead to a diabetic 
response despite healthy insulin signalling. Therefore, the homeostatic response is the result of these two compet-
ing pathways functioning through the regulatory network.

The dietary effect on these pathways aid in modulating the strength of these feedbacks leading to alterations 
in the output response of the pathway. In case of high protein & fat diet, fatty acids and amino acids have inhib-
itory effect on the insulin signalling pathway by increasing the serine phosphorylation of IRS via the activation 
of PKC and S6K respectively50,68. This reduces the antagonistic effect of insulin on glucagon signalling pathway 
by further activation of cAMP and PKA. Since PKA is sensitive to suppression by insulin signalling and glucose, 
slightly lowering either of these can activate PKA to a higher value. Hence under higher fatty & amino acid con-
ditions the catabolic activation is prevalent, which may further lead to higher output and lower intake of glucose 
by tissues like liver and muscle leading to a diabetic state. Our analysis indicates that an optimal composition of 
macronutrients exists for which the metabolic response can be maximized as per the requirement of physiological 
conditions.

Future direction.  Our model analysis would help in standardizing the dietary macronutrient composition 
under disease condition and also identifying the underlying mechanisms in certain metabolic diseases. Further, 
integration of this model with tissue metabolism models can help us identify strategies for disease mitigation 
using integrated model with metabolism. For example, exploring the potential strategies to counter obesity-linked 
disorders by reducing adipose tissue lipolysis to diminish the mobilisation of FAs and lower their plasma concen-
trations69. Moreover, it would be interesting to analyse the integration of multiple bistable loops arising at meta-
bolic20 and signalling levels that provide highly versatile metabolic regulatory landscape for energetics adaptation 
under different combinations of plasma macronutrient concentrations and its disturbances in disease states.

Method
Mathematical model development.  The current model integrates previously validated mechanistic mod-
els of signalling pathways relating to insulin18,70, G-protein signalling41, Ca-DAG40, cAMP-PKA71 with empirical 
models of insulin and glucagon secretion67,72 to generate an integrated model with 36 state variables. The inte-
grated model contains several feedbacks and crosstalks accounting for the antagonistic nature of insulin and 
glucagon signalling. The ODEs have been formulated based on kinetic rate law and mass balance of signalling pro-
teins. Hormone secretion kinetics has been quantified by accounting for the effects of plasma macronutrient levels 
(Supplementary material –Appendix II). Dynamic solution of these ODEs are obtained using ODE15s solver 
in MATLAB. The MATLAB codes are deposited in the github repository (https://github.com/pramodrajarams/
Insulin_glucagon-signalling-network-codes). The steady state profiles for signalling components are obtained and 
analysed for corresponding levels of glucose, fatty acids and amino acids in plasma.

There are three modules in the integrated insulin-glucagon signalling network (Fig. 1) that represent both 
the hormones and the macronutrients (glucose, amino acids and fatty acids) in blood. Plasma concentrations 
of macronutrients and hormones act as input to the insulin and glucagon signalling pathways. The governing 
equations capturing the interplay between these pathways are given in Appendix II (supplementary material). 
Hill functions are used to capture important feedbacks and crosstalk in the network. Positive feedbacks of AKT 

https://doi.org/10.1038/s41598-019-50889-4
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on IRS, Ca on cAMP, cAMP on PKA along with negative feedbacks of S6K1p & PKC on IRS are the significant 
ones. Moreover, PKA degradation of PDE3 and PDE3 degradation of cAMP form a double negative feedback loop 
on the glucagon signalling module. Mutually antagonistic actions of both the signalling modules is modelled by 
the two crosstalks - firstly, DAG activates PKC that inhibits IRS; and secondly, AKT activates PDE3 which pro-
motes cAMP degradation and reduces the levels of PKA in the network73. The model was qualitatively validated 
by matching the output simulation of the existing model with the simulations of the source models and the data 
from literature (Figure S1).

The model was used to study the steady state response of Insulin-glucogon signalling pathways. The time 
required to reach steady states varies for different signalling components. After changing the macronutrient levels 
(glucose, fatty acids and amino acids) by 2, it was observed that the signalling proteins took from 7 min to 500 min 
to attain steady state levels for the various state variables in the model. S6k1p took highest time of 500 minutes 
while PKA took 7 minutes to stabilise. AKTp took the second largest time of about 100 minutes while rest of 
the proteins took less than 100 minutes to stabilise. In fact, most of the proteins stabilised within 30 minutes 
(IRp, IRSp, GLUT4s; refer supplementary Figure S13). These simulations are in line with the experimental data 
reported by Nyman et al. for adipocytes46 wherein they report that it takes about 30 mins for Akt and IRS to reach 
steady state. Therefore, the time span of 1000 minutes was chosen to ensure that all the state variables reach steady 
state levels.

Phosphorylation state.  The outputs of signalling pathways characterising insulin and glucagon signalling 
modules are phosphorylated AKT and activated PKA, respectively. The activated levels of AKT and PKA indicate 
the anabolic and catabolic regulatory state of a cell, respectively. In order to obtain the overall metabolic state of 
a cell, we quantify phosphorylation state metric ‘Ps’ as a function of activated AKT and PKA levels74 as follows:

= .





+





 +
−

+












⁎P PKA

h PKA
AKT

h AKT
0 5 1

(1)
s

PKA

p

AKT p

where, hPKA and hAKT are the half saturation thresholds for the signalling components. Figure 2(iii) shows the 
phosphorylation state with respect to the varying glucose input to the system. Ps below 0.45 depicts the anabolic 
zone, Ps within 0.45 to 0.55 depicts the homeostatic zone and above 0.55 depicts the catabolic zone.

In order to visualise the relative operational strengths of the feedbacks and crosstalk under various physiolog-
ical conditions, the absolute values of the corresponding Hill functions were plotted in the network diagrams as 
reported in the supplementary information (Figs S2–S11).
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