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Radiomics nomogram Analyses 
for Differentiating Pneumonia and 
Acute Paraquat Lung Injury
Wang Yanling1,3, Gao Duo1,3, Geng Zuojun1*, Shi Zhongqiang2, Wu Yankai1, Lu Shan1 & 
Cui Hongying1

Paraquat poisoning has become a serious public health problem in some Asian countries because of 
misuse or suicide. We sought to develop and validate a radiomics nomogram incorporating radiomics 
signature and laboratory bio-markers, for differentiating bacterial pneumonia and acute paraquat lung 
injury. 180 patients with pneumonia and acute paraquat who underwent CT examinations between 
December 2014 and October 2017 were retrospectively evaluated for testing and validation. Clinical 
information including demographic data, clinical symptoms and laboratory test were also recorded. A 
prediction model was built by using backward logistic regression and presented on a nomogram. The 
radiomics-based features yielded areas under the receiver operating characteristic curve of 0.870 (95% 
CI 0.757–0.894), sensitivity of 0.857, specificity of 0.804, positive predictive value of 83.3%, negative 
predictive value of 0.818 in the primary cohort, while in the validation cohort the model showed similar 
results (0.865 (95% CI 0.686–0.907), 0.833, 0.792, 81.5%, respectively). The individualized nomogram 
included radiomics signature, body temperature, nausea and vomiting, and aspartate transaminase. 
We have developed a radiomics nomogram that combination of the radiomics features and clinical risk 
factors to differentiate paraquat lung injury and pneumonia for patients with an unclear medical history 
of exposure to paraquat poisoning, providing appropriate therapy decision support.

Since the 1980s, the risks posed by pesticides have become increasingly concerned in international communities, 
especially in China. Paraquat is one of the most acute toxic herbicides with the high lethality. Paraquat poisoning 
has become a serious public health problem in some Asian countries because of misuse or suicide1–5. It is esti-
mated that there were 2,000 cases of paraquat poisoning occurred each year. Studies showed that the patient’s 
survival period was prolonged if fast and effective thearpy was treated. Therefore, early accurate diagnosis of 
paraquat poisoning is essential for the patients who intentionally concealed or the medical history was unclear6.

Common clinical symptoms of paraquat poisoning include shortness of breath, chest discomfort, and occa-
sional symptoms of cough and sputum. When the medical history was unclear or the patients intentionally con-
cealed, clinicians often tended to look for alternative diagnoses that might explain the patient’s symptoms, of 
which misdiagnosed as pneumonia were most common. The CT images of pneumonia manifested as increasing 
internal bubble transparency, inflated bronchogram, pulmonary consolidation, local pleural thickening, pleural 
constriction, adjacent GGO foci, concurrent bronchial wall thickening, interlobular septal thickening, central 
lobe nodules and pleural effusion7. However, The early lung injury of paraquat poisoning was mainly an inflam-
matory reaction with interstitial and alveolar pulmonary edema; the CT images could also show thickening of 
lung texture, density of ground glass, and interstitial changes. The two have a great overlap in CT images and are 
difficult to be distinguished by eyes (Fig. 1).

Radiomics is an extension of computer-aided diagnosis which was presented by Lambin in 2012. It involves 
extracting image features and combining them with other patient data, as available, to increase the power of 
decision support models. Radiomics has been successfully used in the identification, staging and evaluation of 
lung cancer. Therefore, radiomics have the potential to identify paraquat-induced lung injury and pneumonia.

Thus, we aims to build and verify a radiomics nomogram that incorporates the radiomics features and clinical 
risk factors to identify paraquat poisoning lung injury and pneumonia.
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Materials and Methods
This study was approved by ethics committee of the second hospital of HeBei medical university. Due to the ret-
rospective nature of this study, informed consent was waived.

Patients. We collected patients with pneumonia diagnosed from November 2014 to October 2017, and acute 
paraquat poisoning patients who were admitted to the emergency department during the same time. Clinical 
information including demographic data, clinical symptoms and laboratory test results were also recorded. Data 
Supplement listed the inclusion and exclusion criteria and the study flow for patient enrolment8.

Baseline epidemiologic and clinical characteristics, including age, gender; clinical symptoms of body tempera-
ture, cough, sputum, nausea and vomiting; laboratory tests as white blood cell (WBC), creatine kinase isoenzyme 
(CK-MB), lactate dehydrogenase (LDH), albumin (ALB), alanine aminotransferase (ALT), aspartate transami-
nase (AST), Urea, creatinine (Cr), were obtained from medical records. Clinical symptoms were symptoms at 
the time of admission, and laboratory examinations were carried out by blood test within 3 days after admission.

Finally, 180 patients were included in the study, of which 80 were confirmed with paraquat poisoning. All 180 
patients were randomly divided into two cohorts in a ratio of 7:3 using computer-generated random numbers, 
with 126 cases in the primary dataset and 54 cases in the validation dataset.

CT image acquisition. Chest CT images were obtained with a GE Lightspeed/16-slice scanner. The scan-
ning parameters were as follows: 120 kV; 100 mAs; pitch was 1.2 mm. rotation time: 0.5 s; matrix size: 512 × 512, 
thickness: 5.0 mm.

Image processing. All CT images were analyzed by a free and open source ITK-SNAP software (www.itk-
snap.org) for semi-automatic image segmentation. Firstly, we used region growing method to sketch the whole 
lung as ROI, which was then manually modified by two radiologists with more than five years of experience. Data 
Supplement presents the ROI drawing methods and modification criteria.

Radiomics features extraction. Analysis-Kit software (GE Healthcare, Life Science, China) was utilized 
to extract the radiomics features. A total of 385 radiomics features, including 42 histogram features, 154 grey level 
co-occurrence matrix (GLCM) features, 180 run length matrix (RLM) features and 11 grey level zone size matrix 
(GLZSM) features were extracted from the ROI. Details of the radiomics feature extraction methodology and the 
individual parameters can be found in the Supplementary Data.

Feature extraction and radiomics signature building. In the primary cohort, we adopted the least 
absolute shrinkage and selection operator (LASSO) method for feature selection to filter out the effective features. 
Radiomics scores (Rad-scores) was calculated in each patient through a linear combination of the extracted fea-
tures with their respective coefficients for prediction model.

Validation of radiomics feature. We evaluated the ability of the radiomics feature for differentiation of 
pneumonia and acute paraquat lung injury in the training and validation cohort. The results were represented by 
the confusion matrix and the area under the curve (AUC) of the receiver operating characteristic curve (ROC).

Development of radiomics nomogram. Multivariable backward logistic regression analysis were 
adopted by combination of radiomics signature and clinical candidate factors: body temperature, sputum, nausea 
and vomiting, AST, ALB, WBC, CK-MB and Urea using Akaike’s information criterion as the stopping rule.

A radiomics nomogram involving radiomics signature and clinical factors was built based on multivariable 
logistic regression analysis in the training cohort for predicting individual probability of differentiating bacterial 
pneumonia and acute paraquat lung injury.

Figure 1. A paraquat poisoning patient (A) and a pneumonia patient (B) who were underwent CT scan.
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Diagnostic efficacy of the nomogram in the training cohort. The calibration curve of the nomogram 
mainly depends on the comparison between the actual observed forecasting ability and the standard forecasting 
ability. We used the AUC to evaluate the predictive power of the nomogram.

Independent validation. The radiomics nomogram in primary cohort was tested in the validation cohort. Each 
patient’s total score were calculated by the logistic regression formula. Then we performed logistic regression 
in the group by using the total score as a factor. Finally, calibration curve was derived based on the regression 
analysis.

Clinical application. Decision curve analysis was drawn for evaluating the net benefits for clinical applica-
tion of the radiomics nomogram at different probability threshold value in the validation cohort.

Statistical analysis. Parts statistical analyses were performed by using SPSS 21.0. Chi-square test was used 
for the comparison of count data. Measurement data were compared by using independent samples t test if the 
data satisfied the normal distribution, otherwise using Mann-Whitney U test. The inter-observer correlation 
coefficients (ICCs) was used to assess the agreement of radiomics features by two-level radiologists. The process 
of using packages in R in this study were reported in the Data Supplement. P < 0.05 was considered statistically 
significant.

Figure 2. Flow chart of study enrollment of pneumonia patients and flow chart of study enrollment of paraquat 
poisoning patients.
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Ethical approval and informed consent. The ethics committee of the second hospital of HeBei medical 
university approved the conducted research approved this study and the need to obtain written informed consent 
was waived due to its retrospective nature. The study was performed according to the principles of the declaration 
of Helsinki.

Result
Patients. Among the more than 1,000 patients with suspected pneumonia, we excluded a large proportion 
of cases according to exclusion criteria. Finally, 100 cases were remained in the study. Among the 506 patients 
of paraquat poisoning, 80 patients were included in the study according to the inclusion and exclusion criterion 
(Fig. 2).

Among the 180 patients in the study, we performed statistical test in demographic data, clinical features, and 
laboratory tests. The results are shown in Table 1. The results showed that body temperature, cough, sputum, 
nausea and vomiting, WBC, CK-MB, ALB, and AST were significantly different between the PQ poisoning and 
pneumonia.

Feature extraction and radiomics signature building. Of the radiomics characteristics, 34 potential 
predictors were screened out from 385 features based on 126 patients in the training cohort, with non-zero coeffi-
cients in the LASSO logistic regression model (Fig. 3). The inter-observer correlation coefficients (ICCs) between 
two radiologists’ agreement is 0.823 (0.762 to 0.971, 95% CI). These features were presented in the Rad-score cal-
culation formula. Each patient’s Rad-scores in training and validation cohorts were showed in the Supplementary 
Data.

Validation of radiomics feature. The Rad-score between pneumonia and acute paraquat lung injury 
patients existed remarkable difference in the training cohort (P < 0.001), which was verified in the validation 
cohort (P = 0.01). The radiomics signature showed AUC 0.870 (95% CI 0.757–0.894), sensitivity 85.7%, speci-
ficity 80.4%, positive predictive value 83.3% and negative predictive value 91.4% in the primary cohort, while 
the validation cohort showed similar results (0.865 (95% CI 0.686–0.907), 83.3%, 79.2%, and 81.5%, and 86.7%, 
respectively). The ROC curves were showed in Fig. 4.

Development of an individualized prediction model. We enrolled the radiomics signature, tempera-
ture, nausea and vomiting, and AST as predictors in a logistic regression analysis. The nomogram was developed 
by incorporating the above independent predictors (Fig. 5).

Apparent performance of the integration between the clinical markers and radiomics in the 
training cohort. The calibration curve of Radscore_Clinical (the integration between the clinical markers 
and radiomics) for the differentiation of bacterial pneumonia and acute paraquat lung injury proved good con-
sistency between prediction and observation in the training cohort (Fig. 6). The AUC in primary cohort was 
0.995, the sensitivity was 100%, and the specificity was 94.6%, with an accuracy of 97.6%. Independent verifi-
cation conducted in the validation cohort also showed improved performance with above indexes being 0.897, 
90.0%, 95.8%, and 92.6%, respectively (Fig. 7).

Characteristic PQ Pneumonia P value

Number of cases 80 100

Age 35.58 ± 12.429 39.18 ± 11.749 0.069

Sex 0.954

   Female 36 (45.6) 46 (46.0)

   Male 43 (54.4) 54 (54.0)

Symptom

   Tem (°C) 36.6 ± 0.15 38.06 ± 0.13 <0.001

   Cough 1 (1.4) 75 (75.0) <0.001

   Sputum 4 (5.7) 57 (57.0) <0.001

   Sick and vomit 52 (74.3) 5 (5.0) <0.001

Laboratory

   WBC (109/L) 12.00 ± 5.80 6.90 ± 5.00 <0.001

   CK-MB (U/L) 18.00 ± 10.25 14.00 ± 8.0 <0.01

   LDH (U/L) 219.20 ± 55.25 225.00 ± 111.30 0.932

   ALB (g/L) 17.35 ± 12.65 37.05 ± 7.83 <0.001

   ALT (U/L) 22.01 ± 8.43 20.65 ± 21.55 0.984

   AST (U/L) 45.54 ± 5.88 20.40 ± 13.80 <0.01

   Urea (mmol/L) 4.50 ± 2.15 4.31 ± 2.31 0.641

   Cr (umol/L) 70.00 ± 29.95 57.65 ± 30.38 0.056

Table 1. Patients with clinical data and Statistics results.
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Clinical application. The decision curve analysis for the radiomics signature and the integrated radiomics 
nomogram with clinical information is showed in Fig. 8. The decision curve showed that the radiomics nomo-
gram had significantly improved performance in the entire threshold range, compared with the radiomics sig-
nature only.

Discussion
In the present study, we identified CT-based radiomics as a new approach for differentiating paraquat poisoning 
lung injury and pneumonia. To our knowledge, this was the first study of CT-based radiomics for distinguishing 
paraquat poisoning lung injury and pneumonia. To develop the radiomics signature, a total of 385 candidate 
features were reduced to a set of only 34 potential descriptors by using a LASSO logistic regression model. This 
method is not only superior to the method of selecting the predictor based on the univariate correlation intensity 
of the predictor and the outcome, but also can incorporate the panel of the selected feature into the radionomics 
features9. More importantly, we have found that the radiomics has a good discrimination performance, which 
demonstrated that the radiomics can be used for not only lung tumor diseases, but also for the identification of 
paraquat poisoning lung injury and pneumonia, providing new insights for distinguishing biological and chem-
ical damage of lung.

Although PQ-induced irreversible pulmonary injury and pneumonia are similar in images, the mechanism 
of the lungs injury, the molecular and microenvironment were different. Some studies10,11 have shown that early 
pathological manifestations include pulmonary edema of varying degrees in alveolar epithelial cells and increased 
levels of inflammatory factors in PQ-poisoned patients. The alveolar surface was uneven and it demonstrated 
many cytoplasmic vesicles in type I alveolar epithelial cells earlier after intoxication. These vesicles progressively 

Figure 3. Tuning parameter λ was selected in the LASSO model using 10-fold cross-validation via minimum 
criteria. Misclassification error was plotted versus log(λ). The vertical line was plotted at the optimum value by 
using the 1 standard error and the minimum criteria.
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burst and released liquid content, which caused morphological changes of the alveolar cells, such as alveolar 
cell swelling, distortion, DNA fragmentation. Ultimately those lead to cell death. With the destruction of alveo-
lar cells, further rupture of pulmonary capillaries leads to alveolar hemorrhage, lung infection, and pulmonary 

Figure 4. ROC curves for primary and validation cohorts.

Figure 5. Radiomics nomograms of developed in primary cohorts. Note: The temperature was expressed in two 
categories, when temperature >37 was Y, and when temperature 37 was N.

Figure 6. Calibration curve of radiomics nomogram. Left: calibration curve of the training cohort; Right: 
calibration curve of the validation cohort. The y-axis shows the actual result. The x-axis represents the predicted 
probability of PQ. The diagonal dotted line represents an ideal model. The solid line indicates the performance 
of the nomogram. If the solid line is closer to the diagonal dotted line, it means a better prediction.
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fibrosis. In the case of pneumonia, bacteria or viruses activate pulmonary epithelial cells, produce inflammatory 
mediators, cause damage to lung structure and epithelial cells, and lead to vacuolar degeneration of epithelial 
cells, mitochondrial swelling12,13, and subsequent intracellular vacuolization cytoplasmic distortion and cell dam-
age14, further induce apoptosis of lung endothelial cells, trigger pulmonary edema and acute respiratory distress 
syndrome. Radiomics can extract high volumes of information from images and reflect the heterogeneity of 
lesions15. For example, GLCM features mainly reflect the internal texture of lesions. Cluster Shade feature mainly 
reflect the change of density inside the lesion. Therefore, different radiomics features can be extracted even for 
regions that are visually without lesion. This may be the root cause of distinguishing PQ poisoning lung injury 
and pneumonia by radiomics signature.

In this study, we collected demographic factors, clinical symptoms, and initial laboratory tests that may be 
related to the identification. Body temperature, nausea and vomiting, AST and radiomics signature were finally 
selected. On one hand, PQ patients and pneumonia patients are different in terms of temperature rise, nausea and 
vomiting in clinical manifestations. On the other hand, we found that some laboratory indicators are meaningful. 

Figure 7. ROC curves of the integration between the clinical markers and radiomics (Radscore_Clinical) for 
primary and validation cohorts, each were 0.995 and 0.897.

Figure 8. Decision curves for radiomics nomogram. The y-axis represents the net benefit (The net benefit was 
calculated by subtracting the proportion of all false-positive patients from the true-positive patient, and the 
weight is the relative hazard of abandoning treatment versus negative patients). The red dotted line indicates 
the radiomics nomogram. The black dotted line indicates the radiomics features. The grey solid line indicates 
the hypothesis that all patients were treated by one scheme (for example, assuming that all patients were with 
PQ poisoning). The black line represents the hypothesis that all patients were treated by another scheme (For 
example, assuming that all patients were with pneumonia). Obviously, the radiomics nomogram was better than 
Rad-score with added net benefit.
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Yang16 found that acute paraquat poisoning patients appeared AST elevation, the mortality rate was generally 
high, indicating a poor prognosis. Therefore, AST can be used as an indicator to identify PQ poisoning and pneu-
monia. Although PQ has direct nephrotoxicity, there is no statistical difference between urea and creatinine in 
this experiment. The probable reason is that the kidney has strong compensatory ability. When the glomerular 
filtration rate is reduced to 50% of the normal value, creatinine and urea can still be normal, and creatinine can 
also be affected by exogenous factors. Ralib17 showed that creatinine and urea were not sensitive enough in early 
renal injury and could not predict changes in later renal function. Although there are some differences between 
the ALB, Wang JL18 believed that the ALB in patients with PQ poisoning on the first day of hospital admission 
may be associated with a transient increase in blood concentration (emetic, diversion, fasting water). Therefore, 
the sensitivity of blood creatinine, urea nitrogen, and ALB is poor. WBC may be associated with inflammatory 
reactions in the lungs. The lung injury caused by PQ poisoning and pneumonia both have leukocytes and inflam-
matory mediators accumulated in the lungs. Therefore, WBC are elevated in both and may not be a predictor.

Image acquisition is an important part of the radiomics research. Accurate segmentation of lesions is very 
important for feature extraction and model construction. For different purposes, we need to segment differ-
ent regions of ROIs using different segmentation methods19. Nowadays, doctors believed that the gold standard 
was the manual segmentation of lesion areas by radiologists. However, this method had the disadvantages of 
large individual differences, time-consuming, low efficiency, and low repetition rate. Therefore, this study chose 
a semi-automated method of region growing, which was a human-computer interaction segmentation method, 
which was simple, stable and with high efficiency. When accompanied with manual modification, it further 
improved the accuracy and repeatability of ROI delineation. Another, we chose the entire lung as the ROI. The 
ROI covered all the imaging features of PQ poisoning lung injury and pneumonia, including GGO, consolidation, 
thickening of Broncho vascular bundles, cystic changes, and lungs with no obvious abnormal changes. For lesion 
characteristics that were difficult to quantify, it was also possible to include in this study. This not only avoided the 
influence of subjective factors, but also can fully measure the severity and extent of lung injury.

This study has several limitations. Firstly, the pneumonia included in this study was diagnosed by sputum 
culture or bronchial lavage. However, we did not classify pneumonia. It may be necessary to further research the 
impact of different pneumonia subtypes. Secondly, the data for this study originated from the same institution 
and required more research institutions to perform validation and follow-up studies. Thirdly, we did not explain 
the biological interpretation of radiomics features in this study completely20, so we are fully aware of the need for 
further exploration in subsequent studies.

In conclusion, a radiomics nomogram was built that integrates both the radiomics signature and clinical risk 
factors, and can be conveniently used to differentiate pneumonia and acute paraquat lung injury.

Data availability
Inclusion and exclusion criteria and radiomics feature extraction methodology are available in Supplementary 
Data.
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