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Radiomics and MGMT promoter 
methylation for prognostication of 
newly diagnosed glioblastoma
takahiro Sasaki1,2,3, Manabu Kinoshita  2,4,5, Koji Fujita2,3, Junya Fukai  2,3, 
Nobuhide Hayashi1,2, Yuji Uematsu2,3, Yoshiko okita2,6, Masahiro nonaka2,6,7, 
Shusuke Moriuchi2,6,8, Takehiro Uda2,9, Naohiro Tsuyuguchi2,9,10, Hideyuki Arita2,5, 
Kanji Mori2,11, Kenichi ishibashi2,12, Koji takano2,13, Namiko nishida2,14, Tomoko Shofuda2,15, 
ema Yoshioka2,15, Daisuke Kanematsu2,16, Yoshinori Kodama2,17, Masayuki Mano2,18, 
Naoyuki nakao2,3 & Yonehiro Kanemura2,6,19

We attempted to establish a magnetic resonance imaging (MRI)-based radiomic model for 
stratifying prognostic subgroups of newly diagnosed glioblastoma (GBM) patients and predicting O 
(6)-methylguanine-DNA methyltransferase promotor methylation (pMGMT-met) status of the tumor. 
Preoperative MRI scans from 201 newly diagnosed GBM patients were included in this study. A total 
of 489 texture features including the first-order feature, second-order features from 162 datasets, and 
location data from 182 datasets were collected. Supervised principal component analysis was used for 
prognostication and predictive modeling for pMGMT-met status was performed based on least absolute 
shrinkage and selection operator regression. 22 radiomic features that were correlated with prognosis 
were used to successfully stratify patients into high-risk and low-risk groups (p = 0.004, Log-rank test). 
The radiomic high- and low-risk stratification and pMGMT status were independent prognostic factors. 
As a matter of fact, predictive accuracy of the pMGMT methylation status was 67% when modeled by 
two significant radiomic features. A significant survival difference was observed among the combined 
high-risk group, combined intermediate-risk group (this group consists of radiomic low risk and pMGMT-
unmet or radiomic high risk and pMGMT-met), and combined low-risk group (p = 0.0003, Log-rank test). 
Radiomics can be used to build a prognostic score for stratifying high- and low-risk GBM, which was an 
independent prognostic factor from pMGMT methylation status. On the other hand, predictive accuracy 
of the pMGMT methylation status by radiomic analysis was insufficient for practical use.
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Glioblastoma (GBM) shows poor prognosis despite development of multimodal treatment including surgery, 
radiation therapy, and chemotherapy. O (6)-methylguanine-DNA methyltransferase (MGMT) promotor methyl-
ation (pMGMT-met) is a favorable prognostic factor in GBM patients, and patients with GBM and pMGMT-met 
benefit from temozolomide1. On the other hand, meta-analysis of previous clinical trials revealed that clinical 
features such as age, neurological status, and extent of tumor removal or residual tumor volume post-surgery are 
independent prognostic factors in GBM. These facts indicate that prognosis of this malignant disease is impacted 
by both the biological nature of the disease and the clinical manifestation of the patients. Accurate prognostica-
tion for each patient is necessary not only to determine the most appropriate individual treatment strategy but 
also to identify prognostic factors for patient stratification in clinical trials. Furthermore, in clinical practice, 
identifying patients who will potentially have a good outcome despite harboring this devastating disease is of 
great benefit for not only the patients and their families but also for primary physicians to provide hope while the 
patient goes through the demanding treatment procedures.

In this investigation, we retrieved as much information as possible from the initial magnetic resonance images 
(MRIs) for patients with GBM by use of radiomics2–4. The hypothesis that radiomics of GBM could build a radio-
logically derived prognostic score was tested with respect to the tumor’s pMGMT-met status.

Materials and Methods
Patient cohort and inclusion criteria. This study was performed in accordance with the principles of the 
Helsinki Declaration and was approved by the internal ethical review boards of Wakayama Medical University, 
Osaka International Cancer Institute, and all collaborative institutes, the list of which can be found in the 
acknowledge section. Written informed consent was obtained from all patients.

Inclusion criteria for the present study were as follows: new in-house diagnosis of GBM with fresh or frozen 
tissue available for genomic analysis, and preoperative MRI available including T1-weighted images (WI), T2WI, 
and gadolinium-enhanced (Gd) T1WI. Finally, 201 cases from 10 institutions that belong to the Kansai Molecular 
Diagnosis Network for central nervous system tumors were eligible for analysis. Frozen or fresh tumor samples 
were obtained at the time of surgery, and tumor genomic DNA was extracted from those tissues for genetic 
analysis.

Genetic analysis and integrated diagnosis. Genetic analyses were performed in the Osaka National 
Hospital according to the procedures previously described5. Briefly, the methylation status of the MGMT pro-
moter was analyzed by quantitative methylation-specific PCR after bisulfite modification of genomic DNA, and 
we used a cut-off of ≥1% for MGMT promoter methylation5. The presence of hotspot mutations in IDH1 (R132) 
and IDH2 (R172)6 and the two mutation hotspots in the TERT promoter7 were analyzed by Sanger sequenc-
ing. The copy number status of 1p-19q was determined by multiplex ligation-dependent probe amplification 
(Oligodendroglioma 1p-19q probemix and EK1 reagent kit, MRC-Holland, Amsterdam, the Netherlands). 
Central pathology review was performed by a senior board-certified neuropathologist (Y.K.), and integrated diag-
nosis and WHO grading were made based on the 2016 WHO Classification of Tumors of the CNS (2016 WHO). 
Patient characteristics are listed in Fig. 1 and Supplementary Dataset.

MRI data and clinical information. All MRI analyzed in the present study were preoperatively acquired 
using either 1.5- or 3.0-T MRI scanners according to the protocols in each institution. Magnetic field strength 
of the scanners used is detailed in Supplementary Dataset. Gd-T1WIs were available in 181 cases, T1WIs in 179 
cases, and T2WIs in 181 cases. Overall survival was determined as the time from the date of the initial surgery for 
diagnosis to the date of death or the latest follow-up. Progression free survival was determined as the time from 
the date of the initial surgery for diagnosis to the date when first progression was identified or the latest follow-up. 
Visual inspection of each images was conducted in advance to sending these images for radiomics analysis in 
order to ensure that collected images are qualified for being used as GBM diagnosis. Clinical information such as 
age, sex, KPS at initial presentation and type of surgery performed was collected as well as details of post-surgical 
treatment including use of chemotherapy and/or radiation therapy. As for surgery, gross total removal was con-
sidered when more than 90% of the bulk of the tumor was surgically removed whereas partial removal was con-
sidered as significant amount of tumor being removed but not reaching more than 90% of it. Biopsy was defied 
as surgery aiming only histological confirmation of the tumor with no intention for cytoreduction of the tumor. 
Details can be found in Supplementary Dataset.

Radiomics. Radiomic analyses (radiomics) were conducted using image analyzing software developed 
in-house in combination with the Oxford Centre for Functional MRI of the Brain (FMRIB) Linear Image 
Registration Tool (FLIRT) provided by FMRIB Software Library (FSL)8–10. The in-house software was developed 

Figure 1. Overview of the analyzed cohort with landscape of genetic information. Genetic status is shown by 
color as indicated.
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in Matlab (Mathworks, Natick, MA), and seamless data transfer was carried out between Matlab-based in-house 
software and FSL via FSL integration into Matlab. All Digital Imaging and Communications in Medicine format 
images were first converted to the Neuroimaging Informatics Technology Initiative format using MRIConvert 
(University of Oregon Lewis Center for Neuroimaging: http://lcni.uoregon.edu/~jolinda/MRIConvert/), fol-
lowed by 256 gray-scale level conversion. Non-contrast T1WI and Gd-T1WI voxels that were in the top 0.1% in 
intensity were deleted as they were mainly high signal noise, and the remaining 99.9% were reallocated in 256 
gray scale. For T2WI, 100% of the data range was reallocated in 256 gray scale. This procedure was necessary 
for intensity normalization across all images acquired by different MRI scanners. Previous study by the authors 
conducting radiomics in WHO grade 2 and 3 gliomas revealed that the above-mentioned intensity normali-
zation was most suitable for further analysis11. Furthermore, T2Edge images were constructed by applying a 
Prewitt filter to T2WI. Gdzscore images were also constructed by performing a voxel-wise contrast enhance-
ment calculation using non-contrast and Gd-T1WI. Tumors were delineated by manually tracing contrast 
enhancing lesions on Gd-T1WI and high-intensity lesions on T2WI in three dimensions by experienced sur-
gical neuro-oncologists (T.S. and M.K.) to create two different voxels of interest (VOIs). A small subset of data 
was used for assessing interobserver agreement. VOIs of both Gd-T1WI and T2WI for case number 1, 2, 5, 6, 8, 
9 were created by both of the neuro-oncologists and Dice index was calculated. Dice index for Gd-T1WI-VOI 
was 0.88 ± 0.05 and that for T2WI was 0.86 ± 0.03, indicating acceptable interobserver agreement (both in 
mean ± standard deviation).

After VOIs were created, all different image sequences obtained from a single subject were co-registered to 
each other using a mutual information algorithm with 12 degrees of freedom transformation with FSL-FLIRT 
to obtain transformation matrices of different image sequences. Three-dimensional lesion VOIs modeled on 
Gd-T1WI and T2WI as mentioned above were deformed and resliced using the obtained transformation matrices 
via FSL-FLIRT for each specific image sequence. VOIs created on T2WI were subtracted from VOIs on Gd-T1WI 
to obtain VOIs for edema. VOIs created on Gd-T1WI were further denoted as “VOIcore,” and the VOIs on T2WI 
subtracted from VOIs on Gd-T1WI as “VOIedema”. Three different aspects of texture features of the two VOIs were 
measured on T1WI, T2WI, Gd-T1WI, T2Edge, and Gdzscore image series, i.e., histogram-based first-order tex-
ture, second-order texture, and shape characteristics of the VOIs (Fig. 2).

Furthermore, T2WIs and Gd-T1WIs were registered to a 1.0-mm isotropic, high-resolution T1-weighted 
brain atlas provided by MNI152 using a mutual information algorithm with 12 degrees of freedom transforma-
tion with FSL-FLIRT. VOIcore and VOIedema were then registered onto MNI152 by using the obtained transfor-
mation matrices. This procedure was necessary to perform lesion mapping of the VOIs on the standard MNI152 
space. It should be noted that tissue classification i.e., delineation of VOIcore and VOIedema was performed prior 
to spatial normalization and spatial normalization of these VOIs were performed using transformation matrices 
calculated between the whole brain of the patient and MNI152. Thus, eliminating any contamination of spatial 

Figure 2. Illustration showing the workflow for image analysis. Two types of VOIs were created based on 
Gd enhancement of the tumor and edema lesion identification on T2-weighted images. Both VOIs were co-
registered, and VOIcore and VOIedema were generated. Subsequently, intensity normalization of all images was 
performed, and first-order and second-order texture analysis, VOI shape analysis, and location analysis were 
performed.
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normalization procedure into the process of tissue classification except for the fact that non-linear correction of 
the distorted brain by the lesion was not performed. The workflow for radiomics is illustrated in Fig. 2 and the 
calculated radiomic values are listed in Supplementary Table.

Statistical analysis and predictive modeling. Statistical analysis was performed by M.K. using JMP 
Pro ver. 13 (SAS, Cary, NC). Survival analysis was performed with Wald test for continuous variables such as age 
and KPS and the Kaplan-Meier method for nominal variables. Multiple group comparison was performed by 
proportional hazard.

Supervised principal component analysis (SPCA) was used for prognostication using the referenced method2. 
SPCA was originally developed to identify subsets of patients with different survival outcome from a large 
set of available data such as gene expression profiles12 and has been successfully used for this purpose13–15. In 
this context, large data set such as gene expression profiles can be considered equivalent to radiomic data and 
although SPCA has some limitations such as limited number of subclass identification and ignoring poten-
tially significant features12, SPCA has been shown to effectively perform in predicting overall survival in glioma 
radiomic study2. This analysis was performed on R using the Superpc package (https://cran.r-project.org/web/
packages/superpc/superpc.pdf). The threshold for constructing a survival prediction was searched by 10-fold 
outer-loop-cross-validation using Superpc and a threshold parameter of 1.69 was achieved as the best tuned 
parameter for the Supervised Principal Component Predictor model. Importance score of each radiomic fea-
ture was calculated with the threshold hold of Supervised Principal Component Predictor model set as 1.69, 
enabling visualization of significant radiomic features predictive of patient survival. Finally, a binary radiomic 
risk classification was achieved using the default and parameters12 as suggested in the Superpc reference manual 
of the superpc.predict function. More specifically, n.components of 1 and prediction.type of discrete were used 
with the threshold set to 1.69 as mentioned above. The Superpc will in the end produce an “object”, which could 
be considered as a complex sum of algorithm that enables to classify each individual patient into either high- or 
low-radiomic risk groups according to the arguments which, in the current study, are the radiomic features. The 
most important concept that should be reminded is that this approach is designed to stratify high-risk (which also 
means short living) patients by comparing the survival dataset and the radiomics features.

Predictive modeling for pMGMT-met and long-term survivors, which is a different analysis from prognosti-
cation mentioned-above was performed based on the least absolute shrinkage and selection operator (LASSO) 
method to select features that were most significant to build predictive models for identifying patients that 
live longer than a given duration. λ, which is the tuning parameter for LASSO, was selected for the smallest 
cross-validation error (λ_min). The final predictive models were refit using the significant components chosen 
by LASSO and λ_min. Calculations were performed on R using the Glmnet package using 489 radiomic features 
and 162 datasets, which had T1WI, T2WI, and Gd-T1WIs available with 10-fold outer-loop-cross-validation, 
which was repeated five times. Each patient was assigned as long-term or shot-term survivor according to the 
defined cut-off of overall survival for predicting long-term survivors and this cut-off was continuously changed 
which enables predicting modeling of long-term survivors at various thresholds. Although the fundamental aim 
of this analysis is the same as to that of the above-mentioned SPCA, the basic philosophy of analysis is different, as 
LASSO analysis only takes into account whether the patient lived longer or shorter than a given threshold while 
SPCA includes the whole survival duration into analysis.

Results
One hundred one cases were pMGMT-met, and 100 were MGMT promotor unmethylated (pMGMT-unmet). A 
total of 489 texture features including first-order texture features, second-order features (Gray level co-occurrence 
matrix and Grey level run length matrix), and shape characteristics of the VOIs were extracted from 162 datasets, 
and location data from 182 datasets were collected. Location analysis showed that VOIs of core and edema accu-
mulated symmetrically around the periventricular white matter (Fig. 3).

Next, prognostic modeling via radiomics was attempted by the aid of supervised principal component anal-
ysis, which was used to build a model capable of stratifying high- and low-risk GBM purely based on the initial 
MRI (Fig. 4A). The median overall survival time for radiomic high-risk GBM was 15 months, whereas that 
of radiomic low-risk GBM was 19 months (p = 0.004 Log-rank test). Furthermore, prediction of long-terms 
survivors at various overall survival cut-offs using LASSO also supported the finding by use of supervised prin-
cipal component analysis. More specifically, predictions of patients surviving longer than 10, 11, 12, 13, 14, 
15, 16 and 17 months were possible with high accuracy (Fig. 4B). These survival times are exactly when the 
Kaplan-Meier curves separates in Fig. 4A. As a reference, the median overall survival time of pMGMT-unmet 
GBM was 16 months, whereas that of pMGMT-met GBM was 20 months (p = 0.003 Log-rank test, Fig. 4C). 
The Supervised principal component analysis (SPCA) was able to identify 22 radiomic features that were sig-
nificant for prognostication of GBM (Fig. 5A) and the trained prognostication model was able to label each 
subject into either a radiomic-high or -low risk class. Similarly, LASSO was able to identify 36 radiomic features 
that were significant for predicting patients surviving longer than 17 months (Fig. 5B). Five radiomic features 
were identified as prognostic features both by supervised principal component analysis and LASSO (Fig. 5A,B). 
Parametric survival analysis, however, using only these 5 radiomic features failed to converge to a meaningful 
predictive model for overall survival and univariate analysis revealed that only 3 among 5 features significantly 
correlated with survival duration of the patient (Supplementary Fig. 1). These results suggested that other listed 
radiomics factors were necessary for either SPCA or LASSO to construct their predictive model. On the other 
hand, attempt of predictive modeling of the pMGMT-met or unmet status via radiomics revealed to be unsat-
isfactory. Although radiomic feature selection predictive for pMGMT methylation status was pursued using 
LASSO regression (Fig. 5C), predictive accuracy of the pMGMT methylation status was as low as 67% on average 
measured by 10-fold cross-validation repeated five times (Table 1), suggesting limited use of this technique for 
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pMGMT methylation status prediction. Univariate analysis revealed that age, pretreatment KPS, type of surgery, 
pMGMT methylation status and radiomic-risk stratification but not type of MRI used for analysis significantly 
correlated with overall survival (Fig. 4 and Supplementary Fig. 2). Cox regression analysis further revealed 
that age (p = 0.009), pMGMT methylation status (p = 0.001) and radiomic risk (p = 0.03) were independent 
prognostic factors. The hazard ratio of pMGMT-unmet was 2.04 (95% CI: 1.33–3.16, p = 0.001), and that of 
radiomic high-risk was 1.62 (95% CI: 1.04–2.52, p = 0.03). This result also supports the conclusion that radiomic 
risk score and pMGMT methylation status are independent prognostic factors (Table 2). Aside from radiomic 
analysis being able to stratify poor and favorable patients in terms of overall survival, this was not the case in 
progression free survival (Supplementary Fig. 3).

Based on these results, we established a combined risk stratification using both radiomic risk and pMGMT 
methylation status of GBM. The cohort was categorized into three groups: 1. those with pMGMT-unmet and radi-
omic high risk considered high risk, 2. those with pMGMT-met and radiomic low risk considered low risk, and 
3. the others considered intermediate risk. The median overall survival times for these groups were 13, 20, and 
18 months, respectively (p = 0.0003, Fig. 6). The survival difference was mainly attributable to the high- versus 
medium- or low-risk group and the survival difference between low- and medium-risk group was not statically 
significant (p = 0.21).

Discussion
Development of objective and high-throughput analysis of lesion textures enabled acquisition of quantitative 
imaging features on various imaging modalities, which is now termed radiomics2–4,6,16. The main goal of radiom-
ics in neuro-oncology is to identify imaging biomarker(s) to predict biological features of brain tumors such as 
genetic status or clinical outcomes. Although this approach is potentially powerful for identifying IDH mutation 
status in high- and low-grade gliomas6,11,17–19, whether this method can be successfully applied for predicting 
pMGMT methylation status of GBM is still controversial. The current study is an extension of the authors pre-
vious study focusing on radiomics and WHO grade 2 and 3 gliomas11 and attempted to predict pMGMT meth-
ylation status of GBM by building a radiomic model and further stratify a poor prognostic subgroup of GBM 
patients based on radiomic profiles. A revised analytical system except for constructing the classifier was used in 
this study as the previous system was not yet incorporating secondary texture analysis11.

In radiomic analysis, intensity normalization is one of the key steps to ensure correct quantitative measure-
ments of qualitative images such as MRI. Although there are other image intensity normalization methods which 
in some cases takes into account the tissue types within the image2,20, we have adopted the simplest but yet the 
closest to clinical practice. Similar to diagnostic radiologist thresholding and narrowing the window of images 
when reading, the current method performed similar thresholding of images to achieve intensity normalization 
for further radiomic analysis. In the current research, radiomic analysis consisted of location and texture analysis. 
Location analysis was included in the analysis to quantitatively evaluate the distribution of tumor locations, as this 
information could harbor valuable information about the biological features of GBM as reported previously21,22. 

Figure 3. Lesion location mapping on the MNI152 standard brain atlas. Note that both enhancing and edema 
lesions were distributed symmetrically on both sides of the brain. Also note that enhancing lesions tended to 
occur in proximity to the ventricles compared with edema lesions.
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Figure 4. Kaplan-Meier curve of the cohort stratified by radiomic risk score (A) and pMGMT methylation 
status (C). Both stratifications identified the poor-risk subgroup within the cohort. P values were calculated 
with the Log-rank test. LASSO was further used to predict long-term survivors using various cut-off in overall 
survival (B). In this analysis, predictive modeling was possible only when the cut-off was set within 10 to 17 
months.

Figure 5. (A) Significant radiomic features corresponding to the prognostic outcome within the cohort 
using supervised principal component analysis. Twenty-two features were identified by supervised principal 
component analysis. (B) Significant radiomic features corresponding to the prognostic outcome within 
the cohort using LASSO. 36 features were identified by supervised principal component analysis. Items 
colored in “red” are those both identified by supervised principal component analysis and LASSO. (C) Two 
radiomic features were identified to be predictive of pMGMT methylation status. Of note, higher T1Gd_core_
GLRLMLrge_SD was indicative of pMGMT unmethylated glioblastomas.

Average of 5 repetitive 
measures

Accuracy 67%

Sensitivity 67%

Specificity 66%

Positive predictive value 67%

Negative predictive value 67%

Prevalence of pMGMT 
methylation 50%

Table 1. Prediction accuracy of pMGMT methylation status with radiomics.
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The current system is unique in that contrast enhancing tumor core (VOIcore) and the surrounding edematous 
lesions (VOIedema) were separately analyzed to retrieve as much radiomic information as possible.

Regarding the radiomic elements separating pMGMT-met from -unmet (Fig. 3), only two radiological fea-
tures distinguished these two subgroups of GBM. Of note, second-order texture of the core lesion was heavily 
affected by the pMGMT methylation status. The sensitivity and selectivity, however, were not high enough to 
accurately predict pMGMT methylation status of GBM. Lesion location mapping also did not reveal any asymme-
try in lesion occurrence between the two, a conclusion that is still controversial in the literature16,21,22. The present 
accuracy of 67% for predicting pMGMT methylation status is comparable to the accuracy described in previous 
investigations using different patient cohorts and analysis systems16,23. Those studies reported an accuracy rang-
ing from 71 to 73%. Taking all these reports into consideration, the accuracy of radiomic prediction of pMGMT 
methylation status is at best around 70%. Considering that pMGMT methylation status is binary, this accuracy is 
far from satisfactory. Prediction of pMGMT methylation status may be limited by structural MRI alone.

On the other hand, when radiomics was compared with survival time of the cohort, radiomics was able to sep-
arate the cohort into poor versus good prognostic groups. As many as 68 among 162 cases (42%) were differently 
classified compared with the pMGMT methylation status. In fact, Cox regression analysis indeed identified that 
pMGMT methylation status and radiomic stratification were independent prognostic factors. It should further be 
noted that radiomic stratification was more prognostic than initial KPS or type of the surgery performed although 
residual tumor volume is now emerging as a key prognostic factor24–26. This finding is similar to that reported by 
Kickingereder et al. who used a different cohort and a different radiomic system and showed that radiomic risk 
scoring of GBM is independent of pMGMT methylation status27. It is also interesting that most of the radiomic 
features that the Supervised principal component analysis (SPCA) identified as prognostic derived from radiomic 
feature of the core lesions of GBM (14 out of 22). Although the reason in unclear, it is intuitively understandable 
that “enhancing core lesions” exhibit a more pronounce biological phenotype of the tumor than the surrounding 
edematous lesions. It is also of note that no location related information was identified as prognostic, which is 
different from our previous study focusing radiomic analysis and WHO grade 2 and 3 gliomas11. From a clinically 
practical point of view, as the SPCA model produces a “trained classifier object”, the actual numerical process of 
the predictive classification is not intuitive, which is difficult for clinician to incorporate this system into actual 
clinical practice. Furthermore, although the combination of pMGMT methylation status and radiomic risk score 
was able to identify an extremely high-risk group of patients (i.e. the combined high-risk group), the survival 
difference of combined low- and medium-risk was not statistically significant, requiring careful interpretation of 
the difference between these two groups.

Factor Hazard ratio (lower to upper 95% CI) p value

Age 1.02 (1.00–1.04)* 0.009**

Pretreatment KPS 0.99 (0.98–1.00)* 0.114

Type of Surgery

Partial to Total removal: 1.57 (0.97–2.51)

0.138Biopsy to Partial removal: 0.94 (0.50–1.71)

Biopsy to Total removal: 1.47 (0.81–2.61)

pMGMT unmethylated 2.04 (1.33–3.16) 0.001**

Radiomic high-risk 1.62 (1.04–2.52) 0.031**

Table 2. Hazard ratio for overall survival of investigated factors. CI; confidence interval, *per unit change in 
regressor, **considered statistically significant.

Figure 6. Kaplan-Meier curve of three different risk groups: low risk is composed of patients of radiomic low 
risk with pMGMT methylated status; medium risk is composed of patients of radiomic low risk with pMGMT 
unmethylated status or radiomic high risk with pMGMT methylated status; high risk is composed of patients of 
radiomic high risk with pMGMT unmethylated status. The P value was calculated with the Log-rank test.
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Limitations of this study include the retrospective nature of the study and the absence of external cohort 
validation. It should also be pointed out that other machine learning methods for prognostication or pMGMT 
methylation status of GBM was not tested in this study and should be further pursued in future studies.

Conclusion
The current study revealed that radiomics can be used to build a prognostic score stratifying high- and low-risk 
GBM; this score was an independent prognostic factor from pMGMT methylation status. On the other hand, 
predictive accuracy of pMGMT methylation status by radiomic analysis was 67%, which remains insufficient 
for practical use. A combination of radiomic score and pMGMT methylation status effectively provided a more 
accurate stratification of clinical outcomes for newly diagnosed GBM patients.

Data Availability
Raw analyzed data are available in Supplementary Dataset.
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