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X-Ray Diffraction Tomography 
Recovery of the 3D Displacement-
Field Function of the Coulomb-Type 
Point Defect in a Crystal
f. n. chukhovskii  1, p. V. Konarev  1,2 & V. V. Volkov  1

A successive approach to the solution of the inverse problem of the X-ray diffraction tomography 
(XRDT) is proposed. It is based on the semi-kinematical solution of the dynamical Takagi–Taupin 
equations for the σ-polarized diffracted wave amplitude. Theoretically, the case of the Coulomb-type 
point defect in a single crystal Si(111) under the exact conditions of the symmetric Laue diffraction for a 
set of the tilted X-ray topography 2D-images (2D projections) is considered provided that the plane-
parallel sample is rotated around the diffraction vector [220]. The iterative simulated annealing (SA) and 
quasi-Newton gradient descent (qNGD) algorithm codes are used for a recovery of the 3D displacement-
field function of the Coulomb-type point defect. The computer recovery data of the 3D displacement-
field function related to the one XRDT 2D projection are presented. It is proved that the semi-
kinematical approach to the solution of the dynamical Takagi–Taupin equations is effective for 
recovering the 3D displacement-field function even for the one XRDT 2D projection.

As is well-known1–5, the X-ray diffraction topography method is a highly sensitive nondestructive diagnostics 
method for observing various crystal lattice defects like striations, grain boundaries, stacking faults, single clus-
ters, and dislocations. All these defects change the positions of individual atoms of crystal cell relative to their reg-
ular position. The real crystal structure can be studied by the Laue diffraction topography method that provides 
the 2D image (2D projection) of crystal with defects. Based on the analytical approximate solutions of the X-ray 
optics problem by the stationary method (cf. the geometrical X-ray optics method in6), the theoretical fundamen-
tals for an analysis of the X-ray diffraction scattering from macroscopical crystalline objects are elaborated and 
widely used (see3,6,7, and references therein for details). In particular, in7, in the case of the X-ray diffraction from 
the crystals with defects, the basic principles and theoretical analysis of the X-ray coherent diffraction intensity 
and incoherent (diffuse) scattering intensity, the latter is caused by the X-ray scattering from the statistical ensem-
ble of crystal lattice defects, are comprehensively presented. In practice, to interpret and analyze the experimental 
2D images of crystals with lattice defects, the defect images are compared with the corresponding ones that can be 
evaluated using numerical methods for solving the dynamical Takagi–Taupin equations1–3,8–10.

In the last 20 years, the X-ray diffraction tomography (XRDT) method has been widely applied to investigate 
the real crystalline materials. In this method, the plate-parallel crystal sample is rotated around an axis perpendic-
ular to a set of reflection crystal planes, namely: the rotation axis is chosen to coincide with the diffraction vector 
h. Correspondingly, a set of the XRDT projections can be obtained at different rotation angle values. Each of these 
XRDT 2D projections corresponds to a certain orientation of the X-ray diffraction planes relative to the intrinsic 
Cartesian system of coordinates of the crystal sample as it is shown in Fig. 1.

The first XRDT experiments have been successfully performed on the synchrotron radiation sources ESRF11 
and SPring-812. Then, similar experiments were carried out on the laboratory setups using the X-ray character-
istic line radiation13,14. Using a complete set of experimental XRDT 2D projections, the corresponding computer 
recovery of the 3D dislocation images has been carried out based on the modified conventional iterative tomog-
raphy algorithm codes (cf.13–15).
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It is obvious, that the 3D computer image recovery based on any experimental XRDT data is connected 
equally, if not to a greater extent, with the same difficulties as the interpretation of the XRDT 2D projections on 
the X-ray diffraction topograms. They are due to the complicated contrast mechanisms of the image formation 
related to various regions around defects in crystals1–3. In this respect, it is important to find out approximate 
analytical solutions of the dynamical Takagi–Taupin equations, which would allow describing some features of 
the X-ray diffraction topograms related to particular regions in the neighborhood of single defects in crystals. 
As is expected, this is a key factor for solving the inverse XRDT problem, in particular, for the 3D recovery of the 
displacement-field function near around single defects.

In the present study, an approximate analytical solution of the dynamical Takagi–Taupin equations is found 
out that seems to represent by itself a principal point to the inverse XRDT problem. Such the semi-kinematical 
approximation for the diffracted wave Eh(r) is used for recovering the 3D displacement-field function 

− = ⋅ −h uf r r r r( ) ( )0 0  in the case of the Coulomb-type point defect (r0 is the radius-vector of a point defect 
in a crystal). By applying iterative simulated annealing (SA)16 and quasi-Newton gradient descent (qNGD) algo-
rithm codes17,18, we will show that in the case of the symmetric Laue diffraction of the X-ray characteristic 
MoKα1-radiation with the diffraction vector h = [220] from a single crystal Si(111) the 3D displacement-field 
point defect function − = ⋅ −f r r h u r r( ) ( )0 0  can be recovered.

Note that the first attempt to recover the 3D displacement-field point defect function was made in19 using the 
so-called simultaneous algebraic reconstruction technique (SART) algorithm (cf.13). Unfortunately, the SART 
solutions turn out to converge only for a limited number of voxels (no more than 5 × 5 × 5 = 125 voxels) near 
around a point defect in a crystal.

Results and Discussion
The 2D diffraction imaging of a point defect. Semi-kinematical approximation. In this section, 
one derives the solution of the dynamical Takagi–Taupin equations in the semi-kinematical approximation, which 
seems to be effective for recovering the 3D displacement-field function using the inclined XRDT 2D projections 
data.

As is well-known1–3, a direct image of defect in a crystal is due to the interbranch scattering of the X-ray Bloch 
waves in the strongly distorted region in the immediate vicinity of a defect, which can be interpreted as the kine-
matical scattering of Bloch waves propagating in a perfect crystal far from the defect central region. This assertion 
was confirmed by numerous numerical calculations (see, e.g.2,3,10).

For simplicity, in order to avoid cumbersome formulas and calculations, we restrict ourselves to the case of 
propagation of a σ-polarized X-ray wave-field in a non-absorbing (thin) crystal “on average” oriented in the exact 
Bragg position, + = =k h k k0 0 , where k0 is the wave vector of the monochromatic X-ray plane wave incident 
onto a crystalline sample. In this case, the propagation of the total X-ray wave-field in a distorted crystal under 
conditions of the symmetric two-wave Laue diffraction is set in the form of the dynamical Takagi–Taupin equa-
tions (cf.8,9)
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Hereabove, in Eq. (1), = ⋅h u rf fr r( ), ( ) ( ), is the 3D displacement-field function describing the distorted 
crystal lattice of the crystal with defects and the oblique coordinates s0, sh are directed along the wave-vectors of 
transmitted and diffracted waves, respectively.

Figure 1. Original coordinate system (X, S) for the inclined X-ray diffraction geometry; 0Y-axis is 
perpendicular to the (X, S)-plane. Φ is the crystal rotation angle around the diffraction vector h parallel to the 
0X-axis. The detector plane is perpendicular to the unit vector sh = kh|/k along the diffracted wave propagation.
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Note that the boundary conditions (2) are automatically followed from the modified Eq. (1) with the added 
term − δ +s s( )i

k h
2

0  in the right-hand side of the first line equation. Using the well-known substitutions 
→ →χ χ −+ +

E E E Ee , e rik
h h

ik if
0 0

( )s sh s sh
0

0
2 0

0
2  and retaining the previous designations for the amplitudes of transmit-

ted and diffracted waves, E s s E s s( , ), ( , )h h h0 0 0 , one can easily show that the diffracted amplitude E S S( , )h h0  satisfies 
the inhomogeneous differential hyperbolic-type second-order equation in the partial derivatives over the dimen-
sionless variables S0 and Sh (S0 = s0/Λ, Sh = sh/Λ)
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Hereafter, E S S( , )h h0, 0  are the amplitudes of transmitted and diffracted waves in the crystalline medium; cor-
respondingly, S0 and Sh are the oblique coordinates along the unit vectors of =s k

k0
0 , =s k

h k
h . In the Eq. (3) the 

following notations for dimensionless variables S0 and Sh, complex parameters Γh, Γh and Λ are introduced
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where C is the X-ray polarization factor equal to 1 for σ-polarization and cos 2θB for π-polarization.
Further, we will choose a plane-parallel single crystal Si(111) sample with diffraction vector h = [220]; the 

wavelength λ of incident characteristic X-ray radiation equal to 0.071 nm of the characteristic X-ray Mo 
Kα1-radiation, photon energy of 17.48 keV. Correspondingly, the susceptibility coefficients Re(χh) = Re(χ−h) = −
1.921 × 10−6 and Im(χh) = Im(χ-h) = 1.55 × 10−8; the Bragg angle θB = 10,65°; the X-ray extinction length 

πΛ θ= cos B, ℓ = 36.287 μm; C = 1 for the σ-polarized X-ray plane wave. The vector elastic displacement field of 
a Coulomb-type point defect, −u r r( )0  has a form

− =
π

−
−

=
F Fu r r r r

r r
( )

4
, const,

(5)
0

0

0
3

where r0 is the radius vector of the point defect in a crystal.
The differential Eq. (3) describing the diffracted wave propagation through an imperfect crystal can be cast in 

the integral form
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where the dynamical diffracted wave amplitude E S S( , )h
id

h
( )

0  within a perfect crystal and the kernel function 
− −K S P S P( , )hh
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( )
0 0  take the form (see, e.g.1,3 for details)
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respectively.
In the Eq. (7), E S S( , )h

id
h

( )
0  and − −K S P S P( , )hh

id
h h

( )
0 0  are the corresponding diffracted wave amplitude and the 

Green (point source) function in a perfect crystal; Γ − −J S P S P(2 ( )( ) )h h0 0 0  is the zero-order Bessel function of 
the first kind.

Further, we will use the image peculiarity of the XRDT 2D projections that are directly linked with strongly 
distorted regions near around a single defect core. As is shown in1–3, in such the regions the X-ray diffraction scat-
tering is, in general, kinematical owing to the interbranch scattering of the Bloch X-ray waves. Physically, it does 
mean that the so-called direct defect image contrast on the XRDT 2D projections is due to the diffracted wave 
propagation through the strongly distorted crystal region along the wave vector kh. It immediately follows that the 
direct defect image on the XRDT 2D projections is formed due to the kinematical scattering.

The above assertion is equivalent to building the first-order perturbation theory solution of the dynamical 
Takagi-Taupin Eq. (1) if the corresponding zero-order approximation for the X-ray transmitted amplitude in a 
perfect crystal is used.

Thus, after some obvious straightforward manipulations with the integral Eq. (6), one obtains the following 
expression
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for the diffracted wave amplitude in the scope of the semi-kinematical approach, where the dynamical transmitted 
wave amplitude E S P( , )id

h0
( )

0  within a perfect crystal is defined by

Γ= + + ≥ .E S S S S S S( , ) cos[( ) ], ( 0) (9)id
h h h0

( )
0 0 0

and the integral in the right-hand side of Eq. (8) is taken over the variable Ph along the direction of the diffracted 
wave propagation.

Formula (8) for the amplitude E S S( , )h h0  describes the kinematical scattering of the X-ray dynamical transmit-
ted wave with the amplitude E S P( , )i

h0
( d)

0  ain vicinity of the defect core, which represents by itself the pure phase 
object. That is why the formula (8) can be treated as the semi-kinematical approximate solution of the dynamical 
Takagi-Taupin Eq. (1).

Further, the theoretical formula (8) rewritten as
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is utilized for recovering the 3D displacement-field function − = ⋅ −hf r r u r r( ) ( )0 0  together with the corre-
sponding expression for function −f r r( )0 , namely:
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where Ф is the rotation angle around the diffraction vector h (see Fig. 1). Note that the dimensionless X, Y, Z 
coordinates are linked with the intrinsic Cartesian coordinates in the crystal.

The formulas (10), (11) for the 3D displacement-field function −f r r( )0  are the basic theoretical expressions 
for solving the inverse problem XRDT under consideration. Finally, one has to determine the error-functional 
(the target function) and generate its optimization procedure. The latter has to apply to the target function in the 
standard form as follows
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where the rectangular prism with dimensions 0 ≤ Z ≤ T, −X/2 ≤ X(T) ≤ X/2, −Y/2 ≤ Y(T) ≤ Y/2, summation in 
the right-hand side of Eq. (12) is carried out over an array of the XRDT 2D-projections, n is the number of the 
inclined XRDT 2D-projections; the dimensionless thickness T is chosen to be equal to unity.

Recovery of the 3D displacement-field function. The SA and qNGD algorithm codes. In 
this Section, we apply the iterative SA16 and qNGD17,18 algorithm codes, adapted to solving the inverse XRDT 
problem.

SA algorithm: setting the displacement-field function in analytical form. As is known, the SA 
algorithm16 is applied to minimize nonlinear target χ2-functions. Essentially, it is one of the efficient methods 
for solving inverse problems with a large number of variables and combinatorial nature of iterative calculations. 
Starting with a model specified as the initial model and varying pseudo-randomly its parameters, the SA algo-
rithm works until the current model fits best the data set ‘observed’ that means the minimum of the target func-
tion is achieved. The advantage of the SA algorithm seems to overcome local minima of the target function, which 
are the main obstacles for other nonlinear optimization methods, e.g., for the qNGD methods17,18.

In our case, the position of a point defect is set by a radius vector r0 = nT/2, where n is the internal normal 
to the input crystal surface, Z = 0. Note, the crystal thickness T of a single crystal Si(111) is chosen such that the 
X-ray absorption in a sample can be neglected. In the first study stage, one needs to checkup that the SA algorithm 
code can be effective in the case of one XRDT 2D projection when only the term with Φ = 0 is taken into account 
in formula (12).

Correspondingly, formula (12) reduces to

∑χ = =

= | |
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where I X T Y T{ ( ), ( ); 0}h true,  is the true X-ray topography 2D projection simulated according formula (10) with 
the true displacement-field function (11). The intensity I X T Y T{ ( ), ( ); 0}h calc,  is calculated according to formula 
(10) with trial displacement-field functions according to an iterative procedure of the target function 
optimization.

For simplicity, without the loss of generality, the scaling coefficient G can be set to unity in formula (11). 
Besides, to estimate the convergence of the iterative optimization procedure, one uses the error parameter CP, 
which is defined as
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and it yields the quantitative estimate of the relative deviation of a current solution −f r r( )calc 0  from the true 
solution −f r r( )true 0 .

The true XRDT 2D projection is depicted in Fig. 2. As is seen from Fig. 2, the calculated true XRDT 2D pro-
jection represents by itself the ‘double form’ image of the Coulomb-type point defect in accordance with the 
dipole behavior of the function −f r r( )true 0  (see Eq. (11), Fig. 3, and19 for details).

The initial model of the 3D displacement-filed function −f r r( )ini 0 has been taken as the averaged superpo-
sition of functions −f r r( )0  with the descending indices {pi}, i = {1 ÷ 4}. For each initial descending indices 
combination of pi, i = {1 ÷ 4}, the operation range of descending indices in search has been chosen in the 
3∙Random [Real, 0, 1] interval. For particular computer calculations, the spatial grid {41 × 41 × 41} for the 
Cartesian system coordinates (X, Y, Z) is used.

The recovery data of the SA algorithm code application for the 3D displacement-field function −f r r( )sol 0  are 
listed in Table 1. As it follows from Table 1, in the case of the one descending index pi for i = 1, the solution for the 
3D displacement-field function −f r r( )sol 0  has been obtained with the accuracy, when the error parameter CP 
reaches the value of 10−6. In the calculated cases of the two with combinations of descending indices pi for i = {1 ÷ 3} 
and i = {1 ÷ 4}, the solution −f r r( )sol 0  has been obtained with the error parameter CP of the order of 10−2.

SA, qNGD algorithm codes: numerical displacement-field function assignment. From the prac-
tical viewpoint, it is of great interest to perform the 3D displacement-field function −f r r( )0  recovering with its 
numerical assignment. In contrast to the case above described, we consider the 3D function −f r r( )0  values in 
each voxel of the spatial grid as parameters in search. Further, one uses the constraints for these functions 

−f r r( )0  that are due to the symmetry properties of the function −f r r( )true 0  over the variables X, Y, and Z − Z0. 
Besides, a requirement for a monotonic decrease of the function −f r r( )true 0  with an increase of variables |X|, |Y|, 
and |Z − Z0| is imposed as well.

Based on formulas (10), (11), the true XRDT 2D projection for a single crystal Si(111) sample calculated on 
the spatial grid {15, 15, 15} is displayed in Fig. 2. As is easily seen from Fig. 2, the XRDT 2D projection is symmet-
ric towards the coordinate Y and shifted from the center along the X coordinate by T/2 · tan θB. The recovery data 
of the 3D function −f r r( )sol 0  linked with the true XRDT 2D projection are listed in Table 2. The grid node 
numbers along the 0Z axis, in which the values of the function −f r r( )0  are altered in the optimization proce-
dure, are shown in bold. Correspondingly, all the other −f r r( )0  values are chosen as the ones of the true func-
tion −f r r( )true 0 . As it follows from Table 2, in the case of the spatial grid {15, 15, 15} the SA algorithm code 
application provides the target function value to be reduced by more than six orders of magnitude, whereas the 
error parameter CP increases from 0.0658 to 0.118. This may occur because of the solution ambiguity of the 
inverse XRDT problem under consideration.

We compare the above3D displacement-field function recovery results with the corresponding ones by using 
the nonlinear qNGD algorithm based on the Levenberg–Marquardt scheme20. Further, one utilizes the open 
access NL2SNO program code as an implementation of the qNGD algorithm (see18 for details). The correspond-
ing optimization results of the target function (13) obtained by the qNGD algorithm are listed in Table 2. It is 

Figure 2. True XRDT 2D imaging projection. The Coulomb-type point defect in a single crystal Si(111). The 
true displacement-field function with a descending index p = 1.5 is determined on the spatial grid nodes {15, 15, 
15}, −0.5 ≤ {X, Y} ≤ 0.5. The rotation angle Φ = 0.
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seen that for the spatial grids, i.e.: {15, 15, 1–6|7–9|10–15} and {15, 15, 1–5|6–10|11–15}, the final target function 
values of order of 10−22 and the error parameter CP ones of the order of 5 · 10−5 are obtained. It should be noted 
that in the case of the spatial grid {15, 15, 15}, the values of the error parameter CP are much more than the initial 
error CP ones due to the solution ambiguity of the inverse XRDT problem under consideration.

The recovered 3D displacement-field function −f r r( )sol 0  is illustrated in Fig. 3, where the cross-sections of 
the 3D function −f r r( )sol 0  are presented for the two values of Z equal to 0.375, 0.5, respectively.

Figure 3. Cross-sections of the 3D displacement-field function in the spatial grid nodes {15, 15, 15}, 
respectively, −0.5 ≤ {X, Y} ≤ 0.5, at Z-levels: (a) Z = 0.375; (b) Z = 0.5. The upper and lower rows: the cross-
sections of the true and recovered 3D displacement-field functions by the qNGD algorithm.

Spatial grid 
{i, j, k}

Initial Final

pi, {i = 1 ÷ 4}
Target 
Function CP pi, {i = 1 ÷ 4}

Target 
Function CP

{41, 41, 41} {0.9} 0.79 1 {1.5} 8 · 10−7 4 · 10−7

{41, 41,41} {0.5, 1.0, 1.8} 0.48 0.96 {1.49, 1.49, 1.52} 3 · 10−4 1 · 10−2

{41, 41, 41} {0.9,1.2,1.8,2.1} 1.44 1 {1.48,1.54,1.49, 1.49} 3 · 10−3 1.4 · 10−2

Table 1. Initial and final recovery data for the 3D displacement-field function by the SA algorithm. The initial 
3D displacement-field function parameters {pi}, i = {1 ÷ 4}. The 3D displacement-field function is determined in 
the analytical form.

https://doi.org/10.1038/s41598-019-50833-6


7Scientific RepoRtS |         (2019) 9:14216  | https://doi.org/10.1038/s41598-019-50833-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

The upper row (Fig. 3a,b) gives cross-sections of the true 3D function −f r r( )true 0 , the lower row gives 
cross-sections of the 3D function −f r r( )sol 0  recovered by the qNGD algorithm code. The corresponding 2D 
cross-section images match each other better for the value of Z = 0.5. Generally, this indicates that the 3D func-
tion −f r r( )sol 0  recovery data are much better in the nearer vicinity, Z = 0.5, of the Coulomb-type point defect 
core.

Conclusions
The theoretical semi-kinematical approach has been developed that describes the X-ray diffraction propagation 
in the vicinity of the point defect core in a crystal. To solve the inverse XRDT problem the iterative SA and qNGD 
algorithm codes have been applied.

In the case of the Coulomb-type point defect the recovery of the 3D displacement-field function −f r r( )0  has 
been obtained. With certain limitations on a class of the searched functions −f r r( )0  specified in both the ana-
lytical and numerical forms, the iterative SA and qNGD algorithm codes in use work well even for the one XRDT 
2D projection.

At this point, it should be noted once more that the present semi-kinematical approach embraces the inverse 
XRDT problem even if alternative algorithm codes have to be applied. On the other hand, a convergence of the 
optimization procedure for the target function based on the SA and qNGD algorithm codes might be improved 
by exploiting a number of the true XRDT 2D projections and, besides, some modifications of the SA and qNGD 
algorithm codes in use. The question of whether the elaborated theoretical approach overall is effective or whether 
it should be given up in favor of other approaches, which should be applied instead, remains a good topic for 
future work.
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