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Speckleplethysmographic (SpG) 
estimation of Heart Rate Variability 
During an orthostatic challenge
cody e. Dunn1,2,3, Derek C. Monroe4, Christian crouzet1,2, James W. Hicks5 & Bernard choi  1,2,3,6

Heart rate variability (HRV) provides insight into cardiovascular health and autonomic function. 
electrocardiography (ecG) provides gold standard HRV measurements but is inconvenient 
for continuous acquisition when monitored from the extremities. optical techniques such 
as photoplethysmography (PPG), often found in health and wellness trackers for heart rate 
measurements, have been used to estimate HRV peripherally but decline in accuracy during increased 
physical stress. Speckleplethysmography (SpG) is a recently introduced optical technique that provides 
benefits over PPG, such as increased signal amplitude and reduced susceptibility to temperature-
induced vasoconstriction. In this research, we compare SPG and PPG to ECG for estimation of HRV 
during an orthostatic challenge performed by 17 subjects. We find that SPG estimations of HRV are 
highly correlated to ecG HRV for both time and frequency domain parameters and provide increased 
accuracy over ppG estimations of HRV. the results suggest SpG measurements are a viable alternative 
for HRV estimation when ecG measurements are impractical.

The autonomic nervous system (ANS) acts unconsciously to control various organ functions, including the rhyth-
micity and contractility of the heart. The interplay between the sympathetic and parasympathetic branches of 
the ANS result in heart rate variability (HRV). A reduction in HRV reflects an increase in sympathetic input and 
withdrawal of parasympathetic input to the heart. HRV, a class of metrics derived from variability in R-R inter-
vals typically measured using electrocardiography (ECG), has implications for cardiovascular and neurological 
health1,2. Furthermore, HRV can be used to prescribe exercise in young adults3, as a biomarker of overtraining in 
athletes4–6, and as a signal to guide biofeedback training designed to reduce stress and anxiety7. Accurate remote 
monitoring of HRV (i.e., at home, field-side, or by athletic trainers) is necessary to mitigate the negative effects 
related to competitive athletic performance and inform rest requirements6.

Currently, ECG measurements provide gold-standard HRV monitoring. ECG acquired from the chest requires 
thoracic electrodes, and these electrodes are highly susceptible to noise from poor contact and motion artifact. 
Unfortunately, routine, remote HRV monitoring is limited due to convenience, comfort, and loss of accuracy8. 
Furthermore, traditional ECG measurements utilize adhesive for the electrodes that can be uncomfortable during 
removal when compared to an optical finger clip device9. Various groups have attempted to address the limita-
tions of ECG monitored HRV by estimating HRV with cheaper photoplethysmography (PPG) technology (Note: 
PPG estimates of HRV may be referred to as pulse rate variability (PRV) in some of the literature, but we elected 
to maintain the PPG HRV nomenclature for simplicity and consistency. PPG HRV is equivalent to PPG PRV in 
this work)8,10,11.

Transmittance PPG, the signal used in pulse oximetry, measures changes in intensity due to light absorp-
tion caused by the dilation and constriction of arteries and arterioles in the finger due to pulsatile blood flow. 
Nonetheless, HRV approximated from optical finger measurements loses accuracy due to significant peak time 
delays (Fig. 1) related to various factors such as arterial stiffness, vascular tone, and height12. PPG HRV has 
proven accurate only for healthy subjects at rest, but loses accuracy with increasing physical stress due to motion 

1Beckman Laser Institute and Medical Clinic, University of California, Irvine, California, 92612, USA. 2Department 
of Biomedical Engineering, University of California, Irvine, California, 92697, USA. 3Edwards Lifesciences Center 
for Advanced Cardiovascular Technology, University of California, Irvine, California, 92697, USA. 4Department of 
Neurology, University of California, Irvine, California, 92697, USA. 5Department of Ecology and Evolutionary Biology, 
University of California, Irvine, California, 92697, USA. 6Department of Surgery, University of California, Irvine, 
California, 92697, USA. Correspondence and requests for materials should be addressed to B.C. (email: choib@uci.
edu)

Received: 14 May 2019

Accepted: 4 September 2019

Published: xx xx xxxx

open

https://doi.org/10.1038/s41598-019-50526-0
http://orcid.org/0000-0002-4380-8291
mailto:choib@uci.edu
mailto:choib@uci.edu


2Scientific RepoRtS |         (2019) 9:14079  | https://doi.org/10.1038/s41598-019-50526-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

artifact and the noted time delay11. The differences are more easily noticeable in the frequency domain, especially 
in the high frequency band (0.15–0.4 Hz)13 due to pulse transit time (PTT) variability and respiratory activity12. 
Novel phone-based reflectance PPG measurements provide improved accessibility but face the same inherent 
limitations as transmittance PPG as well as reduced signal quality14,15. Other state-of-the-art methods used for 
approximation of HRV lack feasibility outside of a lab-based setting16.

Speckleplethysmography (SPG), an optical signal that measures changes in blood flow using laser speckle 
imaging17, provides an improved signal-to-noise ratio18 and robustness in the presence of motion artifact and cold 
temperatures as compared to PPG19 (Fig. 1). Similar to PPG, it can be measured from the finger and processed 
in real-time19. In addition, SPG peaks before PPG, which should improve accuracy and reduce the impact of 
vascular compliance on HRV estimation (Fig. 1). The components required for SPG acquisition, a budget camera 
and laser pointer, are relatively inexpensive20. To date, SPG has not been reported on in the literature as a measure 
of HRV. Given the aforementioned benefits of SPG, we determined the accuracy of SPG during an orthostatic 
challenge for estimations of HRV.

Results
Artifact correction. Although the subjects were asked to remain still, the impact of motion artifact on signal 
quality varied for each subject. Furthermore, the peak detection algorithm had higher accuracy for some sub-
jects depending on noise inherent to the signals based on factors such as individual blood flow21 and skin tone22. 
We noted the percentage of corrected artifacts in Kubios for each time series (Table 1; Fig. 2). As expected, the 
standing data had a larger percentage of artifacts. The seated PPG signals (black) had a larger number of corrected 
artifacts than the seated ECG (green) and SPG (blue) signals.

Figure 1. An in vivo comparison of ECG (black), SPG (blue), and PPG (red) waveforms measured from a single 
subject. Because of the pulse transit time from the chest (ECG) to the finger (SPG/PPG), the ECG has its R peak 
before the SPG peak. SPG peaks before PPG.

ECG Sit SPG Sit PPG Sit ECG Stand SPG Stand PPG Stand

Minimum (%) 0 0 0 0 0 0

Median (%) 0 0 0.28 0 0 0

Maximum (%) 0.45 0.36 9.78 1.41 13.01 13.86

Table 1. Corrected Artifacts (n = 17). A comparison of the minimum, median, and maximum percentage of 
corrected artifacts for each measurement technique during the orthostatic challenge (n = 17).

Figure 2. A box plot comparison of the percentage of artifacts corrected for ECG (green), SPG (blue), and 
PPG (black) during the orthostatic challenge (n = 17). The circles represent outliers. Motion artifact and noise 
negatively impacted the peak detection algorithm accuracy, especially for PPG.
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time domain parameters. We independently compared the SPG and PPG estimates of HRV to the ECG 
HRV during both the sitting and standing periods of the orthostatic challenge. We plotted the standard deviation 
of normal to normal R-R intervals (SDNN; ms) from the 17 subjects, which reflects both the short-term and 
long-term cyclic components responsible for variability during the recording period13, given by the equation23:
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In addition, we plotted the root mean square of the successive differences (RMSSD; ms), which reflects vagal 
tone24 and short-term variability, from the 17 subjects, given by the equation23:
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We also generated the corresponding Bland-Altman plots (Fig. 3). The SPG results are highly correlated to 
the ECG results and fall within the predetermined acceptable limits of agreement for both the sitting (Fig. 3, 
column 1) and standing (Fig. 3, column 2) periods. The PPG results are less correlated to the ECG results (Fig. 3, 
columns 3 and 4) than the SPG results and some of the data points fall outside the acceptable limits of agreement. 
Interestingly, the PPG results improved when the subjects went from sitting to standing.

Figure 3. A comparison of SPG, PPG, and ECG HRV time domain parameters (SDNN; ms and RMSSD; ms) 
for the 17 subjects during both sitting and standing conditions. SPG and PPG are compared to ECG on scatter 
plots with a line of best fit and the line of best fit equation, the Pearson’s correlation coefficient, and significance 
in the upper left corner of the plot. Each Bland-Altman plot corresponds to the scatter plot directly above it, 
with the mean difference (black line), the 95% upper and lower limits of agreement (blue dashed lines), and 
the acceptable upper and lower limits of agreement (red dashed lines) also plotted. It should be noted that the 
Bland-Altman plots for SPG and PPG have different y-axis scales.
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frequency domain parameters. In addition, we compared the low frequency (LF; ms2) and high fre-
quency (HF; ms2) components of the three signals, which span the 0.04 Hz–0.15 Hz and 0.15 Hz–0.4 Hz bands, 
respectively24 (Fig. 4).The low frequency band originates from long-term regulation mechanisms such as ther-
moregulation and hormonal mechanisms, while the high frequency band originates from vagal tone and relates to 
the respiratory cycle24. Once again, the SPG results are highly correlated to the ECG results during both standing 
and sitting. However, for the SPG versus ECG Bland-Altman LF plots from both the sitting and standing meas-
urements, there is a single point that falls outside of the acceptable limits of agreement. All HF SPG measurements 
fall within the acceptable limits of agreement. Similar to the time domain measurements, the PPG measurements 
have a larger correlation to the ECG results when the subjects are standing. All of the PPG Bland-Altman plots 
have one or more points that fall outside the acceptable limits of agreement.

The last set of HRV parameters we compared combine the HF and LF components from above25. First, we 
examined the normalized HF (normalized units or n.u.), HF (ms2)/[HF (ms2) + LF (ms2)]. Both the sitting and 
standing SPG measurements correlated well with the ECG measurements and better than the PPG measurements 
(Fig. 5, rows 1 and 2). The seated SPG measurements fell within the acceptable limits of agreement, but one point 
from the standing SPG measurements fell outside the acceptable limits of agreement. Next, we compared the LF/
HF ratio, which represents a mix of sympathetic and vagal activity24, between the three signals (Fig. 5, rows 3 and 
4). Based on the Bland-Altman plots, SPG and PPG appear to underestimate the LF/HF ratio at higher ratios. SPG 
has a higher correlation with ECG as compared to PPG with ECG during both the sitting and standing conditions.

Figure 4. A comparison of SPG, PPG, and ECG HRV frequency domain parameters (LF; ms2 and HF; ms2) 
for the 17 subjects during both sitting and standing conditions. SPG and PPG are compared to ECG on scatter 
plots with a line of best fit and the line of best fit equation, the Pearson’s correlation coefficient, and significance 
in the upper left corner of the plot. Each Bland-Altman plot corresponds to the scatter plot directly above it, 
with the mean difference (black line), the 95% upper and lower limits of agreement (blue dashed lines), and the 
acceptable upper and lower limits of agreement (red dashed lines) also plotted. It should be noted that some of 
the Bland-Altman plots for SPG and PPG have different y-axis scales.
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Discussion
HRV measurements provide rich information concerning autonomic regulatory capacity as an indicator of cardio-
vascular and neurological function. However, the gold standard technique for the determination of HRV parame-
ters involves ECG, which is limited in situations where peripheral measurements are desirable due to convenience 
and motion artifact8. Substitute techniques that provide estimates of HRV parameters (i.e. PPG) address these 
limitations at the cost of accuracy26. Our results demonstrate that SPG estimates both time and frequency domain 
parameters of HRV with relatively high accuracy during both sitting and standing conditions, suggesting SPG 
could prove beneficial for remote measurements of ANS function. When examining the Bland-Altman plots, 
all SPG estimations remain within the acceptable limits of agreement for time domain measurements. Accuracy 
decreases for frequency domain measurements. The correlation coefficients decrease for the HF (n.u.) and LF/
HF ratio because of compounding errors. Our data suggest that SPG is more accurate than PPG across all HRV 
parameters assessed in this study when collected from the same device. As expected, a larger percentage of artifacts 
required correction during standing than sitting. One possible explanation for the improved PPG correlations dur-
ing standing is that the signal quality improved such that the peaks were sharper, which allowed for improved peak 
detection when corrections were unnecessary11. The improved signal quality may be attributed to the increased 
blood volume in the finger due to gravity and location of the finger relative to the heart while standing27.

We acknowledge that the study does have some limitations. First, we did not control the room temperature, 
although it remained relatively constant for each subject measurement and did not shift more than 4 °C between 
subjects. Colder temperatures reduce the signal quality of PPG, which in turn makes accurate peak detection dif-
ficult28. Furthermore, we did not apply more complex signal processing methods for filtering of the signals prior 

Figure 5. A comparison of additional SPG, PPG, and ECG HRV frequency domain parameters (normalized HF; 
normalized units (n.u.) and LF/HF; ratio) for the 17 subjects during both sitting and standing conditions. SPG 
and PPG are compared to ECG on scatter plots with a line of best fit and the line of best fit equation, the Pearson’s 
correlation coefficient, and significance in the upper left corner of the plot. Each Bland-Altman plot corresponds to 
the scatter plot directly above it, with the mean difference (black line), the 95% upper and lower limits of agreement 
(blue dashed lines), and the acceptable upper and lower limits of agreement (red dashed lines) also plotted.
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to peak detection29,30. We deemed using SPG peaks to assist with PPG peak detection reasonable because both 
signals are collected by the same imaging device. With preliminary analysis, we observed that PPG peak detection 
results using the same filtering techniques applied to the SPG signal (described in the Methods section) were poor, 
possibly because the PPG signal has a smaller signal to noise ratio than SPG18. To aid in future motion artifact 
identification and correction, we suggest collecting accelerometer data during an orthostatic challenge31. The sub-
jects involved in this study were aerobically trained athletes that may have a reduced minimum rise time32, which 
would improve HRV estimation accuracy; we acknowledge that the results of this study may not extend to the 
general population. PPG estimations of HRV become less accurate as subjects age due to increased arterial stiff-
ness and more PTT variability, but we predict SPG would be more robust to these changes based on past results19.

SPG faces many of the same limitations as PPG because of the PTT separating thoracic electrical measure-
ments at the heart from optical measurements at the fingertip. On the other hand, the reduced susceptibility to 
motion artifact and temperature during both sitting and standing conditions suggest SPG measurements are pref-
erable to PPG measurements for estimating HRV. To the authors’ knowledge, this is the first study to directly com-
pare SPG and ECG as a substitute measurement for HRV, and the correlation coefficients obtained support the 
notion that SPG HRV estimations are preferable to PPG HRV estimations in settings when ECG HRV cannot be 
collected. SPG estimations of HRV can aid in the prevention of over-training by enabling remote and convenient 
monitoring of decreases in HRV. Furthermore, recent studies noticed a decrease in HRV after concussions6,33,34. 
SPG could provide a method for on-field monitoring of head impacts.

Materials and Methods
Subject recruitment. We recruited 17 healthy intercollegiate athletes (9 males, 23 ± 3.74 years; 8 females, 
19.25 ± 1.28 years) who were undergoing preseason ECG measurements as part of a study designed to monitor 
athletes for head impact exposure. The subjects were instructed to avoid caffeine consumption for six hours prior 
to the measurement. All measurements were done in accordance with human subject protocols approved by the 
Institutional Review Board at University of California, Irvine (HS#2008-6307 and HS#2014-1338). Informed 
consent was obtained from all subjects.

equipment. We utilized a commercial finger-clip blood-flow sensing device (Flowmet, Laser Associated 
Sciences (LAS), Inc., Irvine, CA) connected to a Microsoft Surface Pro 5 with LAS software for simultaneous SPG 
and PPG signal acquisition. A coherent light source (785 nm) transilluminated each subject’s finger and a 752-pixel 
× 480-pixel CMOS array detected the transmitted light, similar to a pulse oximeter. The Flowmet acquired images 
at 250 Hz and the exposure time was adjusted to ensure adequate signal given different finger thicknesses and 
skin tones. For wireless ECG acquisition at 2000 Hz, we used a Nomadix Wireless Receiver with ECG Amplifier 
(BIOPAC Systems, Inc., Goleta, CA). We designed and built a circuit for optical triggering of the Flowmet and 
electrical triggering of the BIOPAC system to ensure temporal synchronization of the two monitoring devices.

Data collection. We placed the Flowmet on the left index finger and the wireless ECG system in the lead II 
configuration on the chest of the subject. Next, we instructed the subject to remain seated still during the meas-
urement with the room lights off and then triggered the data acquisition protocol for both devices. The room 
temperature ranged from 20 °C to 24 °C. We continuously collected SPG, PPG, and ECG data with the subject first 
seated for 5 minutes and then standing for 5 minutes (Fig. 6).

Data analysis. We processed the raw ECG data using MATLAB software (R2018b, Mathworks, Inc., Natick, 
MA) for peak detection of the R wave and subsequent R-R interval calculation. The R-R intervals for seated and 
standing measurements were separated and saved as two text files for analysis in Kubios HRV Standard 3.1.0 
(Kubios, Kuopio, Finland).

The Flowmet outputs raw data as average intensity, I, in camera counts from 0–255 and average speckle 
contrast squared, K 2, from 0–1 for each image. We converted the average intensity to PPG according to the 
Beer-Lambert Law35:

=PPG
I

1
ln( ) (3)

where PPG is measured in arbitrary units. Speckle contrast was converted to SPG, which correlates linearly with 
blood flow36, using the simplified speckle imaging equation37:

=SPG
TK
1

2 (4)2

where SPG is measured in arbitrary units and T is the exposure time of the Flowmet image detector.
To process the raw Flowmet data, we wrote MATLAB software for simple filtering and peak detection. We 

removed high frequency noise from the SPG and PPG signals using a 6 Hz low pass filter and the local DC com-
ponents by subtracting the values from a 500-point (2 second) moving average38. Next, a third order, 11-point 
Savitzky-Golay filter was applied to the signals for smoothing without peak distortion39. We wrote peak detection 
software for the SPG signal to identify the first peak, located immediately after the peak of the first derivative, 
for consistency (Fig. 7). Since the PPG signal was generally noisier than the SPG signal, and both signals were 
acquired from the same device, the PPG peak was located by finding the first peak after the SPG peak (Fig. 7). 
We calculated the intervals between peaks and saved them as text files for further processing. For completeness, 
we compared results from the peak of the first derivative for both signals (Supplementary Figs S1–S4) and the 
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foot of both signals (Supplementary Figs S5–S8), defined as the trough immediately before the peak of the first 
derivative. The results for these two processing methods were less accurate for the SPG-based estimation of HRV.

We processed the text files of 5 minute intervals in Kubios with the default settings23. We manually corrected 
artifacts from the series of R-R intervals individually via the built-in thresholding function, without consulting 
the other available signals (e.g. the seated SPG signal was analyzed independent of the seated ECG signal for the 
same subject), to account for missed beats and poor peak detection. Artifact correction involved replacing the 
inaccurate R-R interval with a new interpolated interval based on the local surrounding intervals23. For calcu-
lation of the frequency domain results such as LF and HF, we applied the autoregressive approach, which has 
improved stability for shorter time series40.

Statistical analysis. We plotted the Kubios HRV results from ECG, SPG, and PPG and then plotted the lines 
of best fit. We calculated the pairwise linear correlation coefficient for SPG versus ECG and PPG versus ECG. 
In addition, we generated corresponding Bland-Altman plots with 95% confidence limits of agreement41. We 
decided a priori that acceptable limits of agreement for HRV indices from SPG and PPG when compared to ECG 
would be within 20% variation of the mean ECG measurement11.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author upon reasonable request.
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