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On the efficiency of chemotactic 
pursuit - Comparing blind search 
with temporal and spatial gradient 
sensing
Claus Metzner   

In chemotaxis, cells are modulating their migration patterns in response to concentration gradients 
of a guiding substance. Immune cells are believed to use such chemotactic sensing for remotely 
detecting and homing in on pathogens. Considering that immune cells may encounter a multitude of 
targets with vastly different migration properties, ranging from immobile to highly mobile, it is not 
clear which strategies of chemotactic pursuit are simultaneously efficient and versatile. We tackle 
this problem theoretically and define a tunable response function that maps temporal or spatial 
concentration gradients to migration behavior. The seven free parameters of this response function 
are optimized numerically with the objective of maximizing search efficiency against a wide spectrum 
of target cell properties. Finally, we reverse-engineer the best-performing parameter sets to uncover 
strategies of chemotactic pursuit that are efficient under different biologically realistic boundary 
conditions. Although strategies based on the temporal or spatial sensing of chemotactic gradients are 
significantly more efficient than unguided migration, such ‘blind search’ turns out to work surprisingly 
well, in particular if the immune cells are fast and directionally persistent. The resulting simulated data 
can be used for the design of chemotaxis experiments and for the development of algorithms that 
automatically detect and quantify goal oriented behavior in measured immune cell trajectories.

Chemotaxis, the ability of cells to detect and follow concentration gradients of specific chemicals, is ubiqui-
tous in biology (For an introduction to the field, see1 and the references therein). It helps sperm cells to find 
the ovum, directs cell movements during embryo-genesis, but also enables organisms to locate food sources 
and to avoid hostile environments. In particular, chemotaxis plays a vital role in recruiting motile immune cells 
to sites of infection or to malignant tumors. This recruitment of immune cells is often based on endogenous 
chemo-attractants, which are released by other host cells that are already at the location where a pathogen has 
invaded the body. However, the fact that individual immune cells are able to find and eliminate tumor cells in a 
Petri dish2,3, without any assistance, suggests that immune cells can detect chemical traces emitted by the path-
ogens themselves. We therefore investigate in this work how efficient a self-propelled agent (such as an immune 
cell) can hypothetically become in finding and elliminating randomly distributed, mobile targets (such as tumor 
cells), a problem that is related to the more general topics of pursuit and evasion4, to foraging theory5,6, to the 
behavioral ecology of finding resources7, and even to robotic control theory8.

Chemotaxis does not only play an important role for immune cells and other eukaryotes9, but also for prokar-
yotes, such as bacteria1,10. Indeed, the effects of chemotaxis in bacterial systems can be observed even on the 
macroscopic level. An early example are the traveling bands of chemotactic bacteria, which have been observed 
already in 196611 and which were theoretically analyzed in the subsequent years12,13.

In the first model of chemotaxis, published 1971 by Keller and Segel14, both the concentration of the chemoat-
tractant and that of the chemotactic agents is described by continuous distributions, coupled by partial differen-
tial equations (PDEs). Subsequently, the Keller-Segel model has been extended15, and eventually PDEs became a 
standard tool for describing chemotactic systems16. This framework allowed researchers to investigate a variety 
of collective effects, such as pursuit-evasion waves in a predator-prey system17, or stationary patter formation in 
a three-species predator-prey model18.
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Another modeling approach is based on individual chemotactic agents. A simple example is the introduc-
tion of chemotactic interactions to Brownian agents, which sometimes leads to analytically treatable models19. 
Compared to PDE-based models, these multi-agent simulations (MAS) are however much more flexible with 
regard to the properties of the agents and their possible interactions with each other and with the environment 
(For introductions and critical discussions see20–23). MAS can be used to model the chemotactic response of 
single cells in great detail24, but they have also been frequently applied to model the immune response25–27, or pat-
tern formation in multi-cellular aggregates and tumor systems28. However, the advantages of the PDE and MAS 
approaches can been combined using hybrid models29,30, where the chemotactic agents are described individually, 
while the chemoattractant is treated as a continuous field.

A kind of hybrid description was also used in a recent theoretical study of Sengupta et al.31, which investigates 
the chemotactic pursuit of a single prey agent by a predator. Although this work addresses a research question 
similar to ours, it is based on different model assumptions. In particular, it assumes not only that the predator is 
chemically attracted by the prey, but also that the prey is repelled from the predator. Furthermore, the guiding 
chemicals in31 are assumed to have an infinite life time, which prevents the formation of a stable chemical ‘cloud’ 
around each agent and leads to long-range interactions. Finally, the Sengupta paper is more interested in the 
dynamics of pursuit and escape, whereas our work is concerned with the efficiency of a repeated search process.

In the literature on search efficiency, an influential paper was published by Viswanathan et al. in 199932, in 
which the authors considered a system where target sites are sparse and can be visited any number of times. They 
found that search efficiency is maximal for a random walk with an inverse square power-law distribution of flight 
lengths, corresponding to Levy flight motion. The Levy flight was also found to be advantageous for optimizing 
the encounter rates between organisms when the searcher is larger or moves faster than the target, and when the 
target density is low33. However, James et al.34 have demonstrated in 2008 that the simplest random search strat-
egy of all, ballistic motion in a random direction, outperforms a Levy strategy in almost every case. Moreover, 
Palyulin et al.35 have argued that the advantages of the Levy walk as a search strategy can easily disappear when 
the situation is slightly more complex, in particular if there is also a drift term acting on the chemoattractant.

In any case, the Levy walk, due to its scale-free distribution of flight lengths, cannot be applied to cell migra-
tion. A much more realistic model for this purpose is the correlated random walk (CRW)36,37 with a fixed-scale 
distribution of step width and a fixed degree of directional persistence. How these two parameters affect the 
efficiency of blind search has been investigated before. In particular, Bartumeus et al.38 showed in 2005 that the 
search efficiency increases monotonically with the degree of directional persistence.

In the present paper, we are mainly interested in the scenario of a single immune cell finding and eliminating 
several target cells on a two-dimensional plane with periodic boundary conditions. The target cells are modeled 
as simple agents that move, independently from the immune cell and from each other, with fixed speed and 
with fixed directional persistence. While migrating, the targets are emitting a chemical substance that acts as a 
chemo-attractant for the immune cell. This chemo-attractant is assumed to spread quickly within the extracellular 
medium by linear diffusion. It is also assumed to decay at a constant rate, so that a concentration profile of fixed 
shape will surround each target cell at any moment.

The immune cell is modeled as a more complex agent with concentration sensors for the chemo-attractant 
and with the ability to change its migration behavior accordingly. In the simplest case, the immune cell has only a 
single chemo-attractant sensor and compares the measured local concentrations between subsequent simulation 
time steps (temporal sensing). In the more powerful case of spatial sensing, the immune cell uses multiple sensors 
at different body positions to measure the spatial gradient of the chemo-attractant concentration.

In order to modulate the migration properties depending on the sensed concentration gradients, the immune 
cell uses probabilistic ‘stimulus-response functions’ with tunable parameters. In the case of temporal sensing, 
the response function controls the momentary probabilities for being in one of two possible modes of migra-
tion, characterized by different speeds and degrees of directional persistence. In the case of spatial sensing, the 
response function determines the probability of the immune cell turning clockwise or counter-clockwise.

The parameters of the response functions are optimized numerically, with the objective to maximize the aver-
age number of direct contacts between the immune cell and distinct target cells during a fixed simulation time - a 
number called the ‘search efficiency’ Q (Here, we assume that once a direct contact is established, the respective 
target cell is immediately removed from the system). In order to obtain an immune cell that is not only efficient in 
finding specific types of targets but also robust against variable target behavior, the simulated immune cell is con-
fronted with a broad spectrum of target cell speeds vtar and directional persistences εtar during the optimization 
phase. Once the optimal response parameters are found, we also evaluate the specific performance Q = Q(vtar, εtar) 
of the immune cell as a function of the target cell’s migrational properties.

Methods
In the following, we describe the different components of the model in detail. An overview of the simulation 
algorithm is presented in the Supplemental Information [A].

Cell migration model.  We consider a single immune cell (with index c = 0) and several target cells (with 
indices c = 1 … Ntar) on a two-dimensional simulation area of linear dimension Lsys. The migration of the cells is 
described by the time-dependent position →rc n,  of the respective cell centers, where periodic boundary conditions 
are applied both in x- and y-direction. Here, n is a discrete time index, related to the continuous time by 
tn = nΔtsim.

Throughout this work, we use a fixed simulation time interval of

Δ = .t : 1 min (1)sim
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The cell trajectories →rc n,  are modeled as discrete time, correlated random walks. In particular, the update from 
one position to the next is performed as follows:
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In Eq. (2), wc,n is the step width, which is randomly and independently drawn from a Rayleigh distribution 
with mean value v. Note that this corresponds to an average speed of the cell along the contour of the trajectory 
(which is a sequence of line segments).
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The quantity Δφc,n is the turning angle between the last and the present step of cell c, so that φc,n = φc,n−1 + Δφc,n. 
The turning angles are randomly and independently drawn from a uniform distribution between the lim-
its Δφmin(ε) and Δφmax(ε). Here, ε ∈ [−1, +1] is a persistence parameter, where ε = +1 corresponds to fully 
persistent motion, ε = 0 to diffusive motion, and ε = −1 to fully anti-persistent motion. Consequently, if 
ε > 0, we define Δφmin(ε) = −(1 − ε)π and Δφmax(ε) = +(1 − ε)π. If ε < 0, we define Δφmin(ε) = (1 − |ε|)π and 
Δφmax(ε) = (1 + |ε|)π. Note that only the magnitude of the turning angle enters in Eq. (2).

The quantity sc,n ∈ {−1, +1} is a sign factor, which controls if the cell moves left (counter-clockwise) of right 
(clock-wise). It is randomly and independently assigned to one of its two possible values, with a probability 
prob(R) = prob(sc,n = −1) = qR.

The statistical properties of the random walk generated by Eq. (2) are determined by the three parameters v, ε, 
and qR, where v controls the speed of the cells, ε their directional persistence, and qR their preference to turn left or 
right (which is usually balanced, so that qR = 1/2). In simple cell migration models, these parameters are usually 
considered as constant over time. However, it has been shown that cell migration is a heterogeneous stochastic 
process, in which all parameters can change gradually or abruptly, depending on the circumstances of the cell39,40. 
In this work, we assume in particular that the immune cell is able to adapt its speed, persistence and left/right 
preference in response to local gradients of a chemo-attractant.

Assumed size and migration parameters of cells.  Although this work is not focused on particular 
types of immune and target cells, we are using size and migration parameters for the simulated cells that are 
roughly compatible with existing experiments, in particular those involving natural killer cells and K562 leu-
kemia cells3.

If not stated otherwise, simulations in this paper assume that both the immune cell and the target cells are 
rotation-symmetric and have a radius of

μ= = .r r m: 10 (3)imm tar

Target cells are assumed to be slow and to move diffusively:

μ ε= = .v m
min

: 1 ; : 0 (4)tar tar

If required, the immune cell is able to move much faster than the targets and, at least for short periods, with 
perfect directional persistence:

μ ε= … = … .v m: 0 6
min

; : 0 1 (5)imm imm

Model for temporal evolution of the chemo-attractant.  Our basic proposition is that the target cells 
emit a substance into the extra-cellular matrix (mainly consisting of water), which is used as a chemo-attractant 
by the immune cell. For simplicity, we assume that the chemo-attractant is produced at the center point →r0  of each 
target cell with a constant generation rate g. The substance is freely diffusing with diffusion constant D, and is 
spontaneously decaying with a rate k (It is important - and also biologically realistic - that this decay rate is 
non-zero. Otherwise no stationary density profile will develop). This leads to the following partial differential 
equation for the time-dependent 2D density distribution of the chemo-attractant →f r t( , )D2 :

δ∂
∂

= → − → + ∇ + ∇ −
t

f g r r D f k f( ) ( ) , (6)D x y D D2 0
2 2

2 2

Typical parameters of diffusion and decay.  The diffusion constant of a substance within a liquid 
medium (here basically water) can be estimated by assuming a spherical shape of the diffusing molecules. Using 
Stokes formula for the friction force, the resulting Stokes-Einstein relation yields

πη
=D k T

r6
,

(7)
B

where T = 37 °C is the temperature, η = 6.91 · 10−4 Pas is the viscosity of water at this temperature, and r is the 
radius of the diffusing molecule. For a hypothetical molecule with r = 3.18 nm, one obtains a diffusion constant of
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μ μ= =D m s m min: 100 / 6000 / , (8)2 2

which will be used throughout this paper. Note that the same value of D was used in an analytical study of the 
chemo-attractant’s density profile41, where the considered molecule was the anaphylatoxin C5a. Following this 
reference, we also assume a typical decay constant of

= = . .−k s: 10 / 0 6/min (9)2

The generation rate g is less important in the sense that it does not affect the spatial shape or the temporal 
evolution of the profile →f r t( , )D2 .

A dimensional analysis of Eq. (6) reveals that the system has a characteristic diffusion length of

μ= ≈L D k m/ 100 , (10)dif

which can be considered as the approximate spatial extent of the density ‘cloud’ around a stationary emitter. The 
characteristic time period for developing this density cloud can be estimated as

= = ≈ ≈ . .T
L
D k

s1 100 1 7 min (11)dif
dif
2

Fast diffusion limit.  Based on the above parameters, we can compute a further characteristic quantity that 
has the dimensions of a velocity:

μ= ≈v
L
T

m60 / min ,
(12)

crit
dif

dif

If the emitter of the density cloud is moving at a speed much smaller than this critical velocity, we can approx-
imately assume that the density cloud is fully developed at any moment in time. In other words, there will be a 
cloud of fixed (stationary) shape that is ‘carried around’ by the emitter along its trajectory. For our assumed typical 
target cell speed of vtar = 1 μm/s, we are indeed well within this ‘fast diffusion limit’.

Stationary density profile around single target.  The fast diffusion limit saves us from numerically 
solving the reaction-diffusion equation Eq. (6). We only need to compute the stationary, rotation-symmetric 
density profile = |→ − →|f r r r( )D2 0  around a non-moving emitter, conveniently located at the origin → =

→r 00  of the 
coordinate system. Since the immune cell can never be closer to the emission point →r0  than the radius rtar of the 
target cells, we need to solve Eq. (6) only in the region r < rtar, where the generation term disappears. In polar 
coordinates, these simplifications lead to the following ordinary differential equation for the stationary profile,
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which is solved numerically with a Runge Kutta method. At the border of the target cell, without restriction of 
generality, we set the density to f2D(r = rtar) = 1. The slope =∂

∂
f r r( )

r D tar2  at this point is iteratively adjusted such 
that f2D(r → ∞) = 0. The resulting radial profile decays rapidly in the direct vicinity of the emitter. For r → ∞, the 
curve approaches an exponential shape (see Fig. 1(b)). Since the density ‘kernels’ f2D(r) of different emitters add 
up linearly, the total distribution of chemo-attractant density from all present target cells can be written as
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Modeling sensors for the chemo-attractant.  In the case of temporal sensing, we assume that the 
immune cell can measure, in every time step n, the total density ρ = → = → =F r r t t( , )n

C
D C n2  of chemo-attractant at 

the center → = →r rC n0,  of its cell body. It then computes the temporal difference

ρ ρ ρΔ = − .− (15)n
C
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In the case of spatial sensing, we assume that the immune cell has two sensors at the left and right border of its 
cell body, that is, at positions
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where the corresponding total chemo-attractant densities are ρn
L and ρn

R, respectively. It then computes the spa-
tial difference
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ρ ρ ρΔ = − . (17)n
LR

n
R

n
L

Mapping sensor signals to migration behavior.  The two sensor signals available to the immune cell are 
the temporal density difference Δρn

C and the spatial density difference Δρn
LR. The migration parameters which 

can be affected by these sensor signals are the speed of the immune cell v, its directional persistence ε, and its 
preference to turn left qL.

For simplicity, we assume that the immune cell has two distinct migration modes, called the ‘normal mode’ N, 
and the ‘approach mode’ A. In the normal mode, the speed is vN and the persistence is εN. In the approach mode, 
the speed is vA and the persistence is εA. These four parameters can be tuned to optimize search performance.

At any time step n, the immune cell can only be in one of these two migration modes. The probability to be in 
the approach mode is computed as a function of the temporal gradient as follows

ρ= = + Δq prob A logistic c c( ) ( ), (18)A A A n
C

0 1

where

=
+ −logistic x

e
( ) 1

1 (19)x

is the logistic function, and cA0 as well as cA1 are unknown coefficients that also have to be optimized. Note that 
for cA1 < 0, the mode A is favored whenever there is a positive temporal gradient, provided that the magnitude of 
the bias cA0 is note too large.

In a similar way, the spatial gradient determines the probability qR of the immune cell to turn right:

Figure 1.  (a) Three subsequent positions of the model immune cell (white circles), which is equipped with a 
central concentration sensor for temporal gradient sensing (black dot) and two lateral concentration sensors 
for spatial gradient sensing (orange dots). The magnitude of the turning angle |Δφc,n| can be applied with 
negative of positive sign (blue). (b) Stationary radial profile of chemo-attractant density f2D(r) around a non-
moving emitter, for different diffusion lengths ldif. The semi-logarithmic inset shows that the profile decays 
almost exponentially for large radial distances r → ∞. (c) Distribution of the number of targets encountered 
by the immune cell over 105 simulation runs. The three shown cases correspond to the standard parameters 
(SP, blue), to standard parameters with the immune cell persistence increased to εN = 1 (olive), and to standard 
parameters with both εN = 1 and speed increased to vN = 6 μm/min (red). (d) Example configuration of static 
targets (orange dots), concentration distribution of the guiding substance (color code), and the trajectory 
of the immune cell (small gray dots) over 500 min. The immune cell is set to standard parameters (cA0 = −5, 
cA1 = cR1 = 0, vN = vA = 3, and εN = εA = 0.5).
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ρ= = Δq prob R logistic c( ) ( ), (20)R R n
LR

1

where cR1 is an additional coefficient to be optimized. Note that for cR1 < 0, right turns are favored whenever the 
chemo-attractant density at the right sensor is larger than that on the left sensor.

Choice of target cell density and linear system size.  The density of target cells in the two-dimensional 
simulation plane is chosen to be

ρ μ= × .− −m: 1 10 (21)tar
5 2

This density leads to a mean distance between nearest neighbors of

ρ
μ= ≈r m1

2
158 ,

(22)
nn

tar

which is slightly larger than the diffusion length Ldif = 100 μm.
The linear system size is chosen as

μ=L m1000 , (23)sys

which is considerably larger than Ldif and rnn. The average number of target cells within the simulation area is

ρ= = .N L 10 (24)tar tar sys
2

Note that if an immune cell is migrating with its maximum speed of 6 μm/min and with perfect directional 
persistence, it would take about 26 min (=26 simulation time steps) to cover the distance between two neighbor-
ing target cells. Within 100 min, an immune cell of perfect efficiency might encounter 3 to 4 target cells (ignoring 
the fact that rnn is increasing slightly with each encounter and the simultaneous removal of the target).

Measuring search efficiency.  We thus set the time period of a single simulation run to

= .T : 100 min (25)sim

After a specific simulation run k, the number of remaining target cells Ntar,k
rem is counted. We then quantify the 

efficiency of the immune cell by the number of eliminated target cells:

= −Q N N , (26)k tar tar k
rem

,

a quantity that can fluctuate considerable between each run. To overcome these fluctuations, the simulation is 
repeated

=N : 10 (27)runs
4

times for each set of system parameters, using in each run a random initial configuration of the single immune 
cell and of the Ntar = 10 target cells.

Finally, the search efficiency of the immune cell is defined as the average

∑= .
=

Q
N

Q1
(28)runs k

N

k
1

runs

Effect of periodic boundary conditions.  The periodic boundary conditions used in the simulations will 
not significantly affect the results, as long as the linear system size (Lsys = 1000 μm) is large compared to the other 
characteristic length scales of the problem, such as the mean distance between nearest neighbors r  NN ≈ 158 μm, 
or the directional correlation length Ldir of the cells (corresponding to the ‘persistence length’ in polymer science). 
While Lsys ≪ Ldir for modest values of the persistence parameter ε, the directional correlation length Ldir grows to 
infinity as ε approaches one.

In (or close to) this extreme case of ballistic motion, the periodic boundary conditions can lead to unrealistic 
results. For example, a cell traveling ballistically along a rational migration direction φ will actually perform a 
periodic orbit, and thus visit over infinite time only a finite amount of space. However, since our simulation time 
is Tsim = 100 min, even a cell of maximum speed v = 6 μ/min will only cover 60 percent of the linear system size 
Lsys = 1000 μm.

Optimization of response parameters.  In general, the search efficiency in our model depends on up to 
n = 7 unknown parameters πi:

π ε ε= → = .Q Q Q v v c c c( ) ( , , , , , , ) (29)N N A A A A R0 1 1

Finding the search strategy with the best search efficiency amounts to finding the parameter combination π→ 
that maximizes Q:
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π π→ = →argmax Q{ ( )} (30)opt

We perform this quite high-dimensional numerical optimization using a grid-based variant of the ‘Cyclic 
Coordinate Descent’ method (CCD, see42). In each loop of this iterative method, the n parameters/coordinates 
πi ∈ [1…n] are optimized one after the other in a cyclic way, greedily keeping the remaining n − 1 coordinates at 
their presently best-performing values. In our variant of the method, an individual parameter πk is optimized 
by evaluating Q = Q(πk, {πi≠k}) for all discrete values of πk on a regular grid within predefined minimum and 
maximum values, that is πk ∈ [πk,min,πk,min + Δπk, …, πk,max] The method stops when the same set of n optimal 
parameters is found in two subsequent iteration loops.

List of standard parameters.  In Table 1, we provide a list of all relevant system parameters, here called the 
Standard Parameters (SP). The first 12 parameters of the list are fixed for all simulations. During the optimization 
phase, a different random value of vtar and εtar is drawn for each target cell, from uniform distributions in their 
respective ranges. During the evaluation phase, all Ntar target cells are set to the same values of vtar and εtar, and 
these two parameters are then scanned through their ranges in subsequent simulation runs. The last 7 parameters 
of the list (vN, εN, vA, εA, cA0, cA1, cR1) are free to be optimized within the given ranges.

Covered area.  In order to compute the search area that an immune cell is exploring over time, we partition 
the 2D simulation space into quadratic patches of linear size δL = 10 μm. The covered area A(t) of an immune cell 
is then defined as A(t) = nvis(t)δL2, where nvis(t) is the total number of patches that the immune cell has visited (at 
least once) in the time period [0, t].

Mean squared displacement.  An important property of random walks is the mean squared displacement 
ΔR t( )2  as a function of lag-time Δt. It is defined as

R t r t t r t( ) ( ( ) ( )) , (31)t
2 2⟨ ⟩∆ = + ∆ −

→ →

where the average is over all time steps t, and →r t( ) is the position of a cell at time t = nΔtsim. Note that for the 
purpose of computing ΔR t( )2  of a cell, we re-calculate its trajectory from the individual steps, using Eq. (2), but 
without applying periodic boundary conditions.

Distribution of nearest target distances.  If an immune cell is surrounded by a density ρtar of randomly 
located targets, and if there is no correlation between the immune and target cells, the probability density p(dNN) 
of finding the nearest target at a distance dNN is given by the Rayleigh distribution p(dNN) = 2πρtar dNN exp(−πρ−
tardNN

2). By contrast, if the positions of the immune and target cells are somehow correlated, the distribution 
p(dNN) may change. In order to obtain p(dNN) numerically, we determine the momentary nearest target (assuming 
periodic boundary conditions) for each immune cell in each simulation time step, store the distances dNN to these 
nearest targets in a list, and finally compute a histogram of the stored values.

Symbol Value Unit Description

Lsys 1000 μm Linear system size

Δtsim 1 min Simulation time step

Tsim 100 min Total simulation time per run

Nruns 10000 — Number of runs per parameter set

D 6000 μm2/min Diffusion constant of chemo-attractant

k 0.6 1/min Decay rate of chemo-attractant (CA)

Ntar 10 — Initial number of target cells

rtar 10 μm Radius of target cells

vtar [0, 6] μm/min Speed of target cells, uniformly distributed

εtar [0, 1] — Persistence of target cells, uniformly distributed

Nimm 1 — Number of immune cells

rimm 10 μm Radius of immune cell

vN [0, 6] μm/min Speed of immune cell in normal mode

vA [0, 6] μm/min Speed of immune cell in approach mode

εN [0, 1] — Persistence of immune cell in normal mode

εA [0, 1] — Persistence of immune cell in approach mode

cA0 [−5, 5] — Bias of immune cell for approach mode

cA1 [−500, 500] — Sensitivity of immune cell for temporal CA differences

cR1 [−500, 500] — Sensitivity of immune cell for spatial CA differences

Table 1.  Table of standard, fixed simulation parameters, and the free parameters that can be optimized (last 
seven rows). Throughout this paper, we implicitly assume that all fixed parameters are set according to this table.
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Third party rights.  All material used in the paper are the intellectual property of the authors.

Results
Concentration profile of chemo-attractant.  In the fast diffusion limit, the global concentration distri-
bution of chemo-attractant is a linear superposition of ‘kernels’, centered around the target cells. These kernels 
are the temporally stationary, rotationally symmetric solutions f2D(r) of Eq. (13). We have numerically computed 
the kernel for different diffusion lengths Ldif (See Fig. 1(b), in which the the green line corresponds to the case 
of standard parameters). As expected, the concentration profile decays almost exponentially for large radial dis-
tances r → ∞.

Blind search (BLS).  We start with an immune cell that completely lacks the ability to sense concentration 
gradients (cA1 = cR1 = 0), and which is therefore performing a ‘blind’ search process (BLS). At the same time, we 
assume an extreme bias for the normal migration mode (cA0 = −5), which reduces the probability of the immune 
cell being spontaneously in the approach mode to an almost negligible value of qA ≈ 0.007 (The migration param-
eters of the approach mode are set to medium values vA = 3 and εA = 0.5). The migration of such an immune cell 
can therefore be described as a homogeneous, correlated random walk with a fixed speed vN and a fixed degree of 
directional persistence εN.

The Ntar = 10 target cells, which are assigned random positions and migration directions before each simu-
lation run, are assumed to form a widely mixed ensemble with respect to their migration parameters. For this 
purpose, at the beginning of each simulation run, we draw the speed and persistence parameters of each target 
cell independently from uniform distributions in the ranges vtar ∈ [0, 6] and εtar ∈ [0, 1], respectively.

We first set the migration parameters of the immune cell to medium values vN = 3 and εN = 0.5. In this case, the 
trajectory of the immune cell is not able to explore a significant part of the simulation area, even when the available 
time span is increased from the standard setting Tsim = 100 min to Tsim = 500 min (See Fig. 1(d)). Repeating the sim-
ulation Nrun = 104 times, each spanning an evaluation period of Tsim = 100, we find that the number Qk of encounters 
between the immune cell and target cells is fluctuating from one run k to the next. The distribution p(Qk) has an 
approximately exponential shape: In most simulation runs, the immune cell does not find any target, rarely one 
target, and almost never two targets. The average number of encounters with target cells, defined above as the search 
efficiency, is Q = 0.110 in this case. If we let the immune cell migrate faster, using the parameters vN = 6 and εN = 0.5, 
the search efficiency increases to Q = 0.173. Additionally making the immune cell more directionally persistent, 
using the parameters vN = 6 and εN = 1, results in a further increase of the search efficiency to Q = 0.271. This demon-
strates that even a blind, homogeneous search process can be optimized via the migration parameters vN and εN.

We therefore use CCD optimization to find the perfect migration parameters for the immune cell, again using 
the mixed ensemble of target cells throughout the optimization phase. It turns out that a blind, homogeneous 
search within a mixed ensemble of targets has the best efficiency Q when it is performed with maximum possible 
speed (in our case vN = 6) and with perfect directional persistence εN = 1 (Fig. 2(a)).

The resulting optimal efficiency QBLS = 0.27 can be seen as the overall performance of the immune cell, aver-
aged over many possible types of target cells. In practice, it will also be of interest how the immune cell is per-
forming against targets with specific, fixed migration parameters. To investigate this ‘versatility’ of the immune 
cell, we have computed the search efficiency Q = Q(vtar, εtar) of the optimized immune cell (that is, using vN = 6 
and εN = 1), as a function of the speed and persistence of the target cell (Fig. 2(b)). Here we find that the resulting 
search efficiency can vary between Qmin ≈ 0.25 and Qmax ≈ 0.32, depending on these two parameters. In particular, 
blind, homogeneous search works best when the targets are themselves fast and directionally persistent. Yet, if the 
targets exceed the immune cell with respect to the migration parameters, it is more appropriate to say that the 
targets are finding the immune cell than vice versa.

It is instructive to inspect the trajectory of the immune cell (Small gray dots in Fig. 2(c)), in relation to the 
targets, over an extended time period. For this purpose, we set the speed of the targets to zero, so that they remain 
stationary throughout the entire simulation. Since the persistence of the optimized immune cell is εN = 1 in the 
normal mode, the trajectory is straight for most of the time (Note the effect of periodic boundary conditions). 
However, with a tiny probability of qA ≈ 0.007, the immune cell also adopts the ‘approach mode’, where the migra-
tion parameters are vA = 3 and εA = 0.5, and these rare events lead to an abrupt change of direction. It is remarka-
ble that there occur several ‘near misses’ between the immune cell and one of the targets. Yet, without any sensing 
abilities, the immune cell most of the time cannot seize these opportunities.

Random mode switching (RMS).  We continue to consider blind search, characterized by the absence of 
sensitivity for concentration gradients (cA1 = cR1 = 0). But this time we allow the immune cell to switch between 
its two migration modes randomly and spontaneously, a situation that creates a heterogeneous correlated random 
walk. For this purpose, we now declare not only the parameters vN and εN, but also cA0, vA and εA as free, optimiz-
able parameters.

Although the system is now considerably more flexible than in the case of homogeneous blind search, CCD 
optimization shows that this flexibility brings no significant improvement of the the search efficiency (Fig. 2(d)), 
as QRMS = 0.28 ≈ 0.27 = QBLS. Indeed, the optimal efficiency is found for a bias cA0 = 5, which keeps the immune 
cell in the approach mode virtually all the time, thus leaving the values vN = 4 and εN = 0 irrelevant. Within the 
approach mode, the optimized immune cell is as fast (vA = 6) and persistent (εA = 1) as possible, just like in the 
above homogeneous BLS case. This demonstrates that in blind search, purely spontaneous mode switching performs 
worse than a homogeneous random walk at maximum speed and perfect directional persistence. Since the optimal 
RMS strategy is - except for a name change of the dominating migration mode - identical to the BLS strategy, we 
also find the same results for Q = Q(vtar, εtar) (Fig. 2(e)). The sample trajectory of the immune cell also resembles 
that of the BLS strategy (Fig. 2(f)).
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Temporal gradient sensing (TGS).  Next, we investigate how the killing efficiency can be enhanced when the 
immune cell is able to measure temporal gradients of the chemo-attractant and to switch between the normal mode 
N and the approach mode A accordingly. In order to make this adaptive mechanism work, there are six parameters 
to be optimized: The speeds (vN, vA) and persistence values (εN, εA) in the two migration modes, as well as the bias 
of the approach mode (cA0) and the sensitivity for temporal chemo-attractant gradients (cA1). Without restriction 
of generality, the latter quantity is assumed to be non-negative, cA1 ≥ 0, because a positive temporal gradient of the 
chemo-attractant Δρn

C means that the immune cell is approaching a target cell, and this should increase the prob-
ability of the approach mode A, whatever this means for the speed and persistence of the immune cell.

CCD optimization shows (Fig. 3(a)) that the optimum bias for the approach mode is cA0 = 2, which corre-
sponds to a probability qA ≈ 0.88 of the immune cell being in the approach mode if detecting no or only a very 
weak temporal gradient. When however a significant gradient is present, the large sensitivity parameter cA1 = 500 
causes an almost deterministic mode switching behavior: In positive gradients, the optimal TGS cell is adopting 
the approach mode, which is maximally fast (vA = 6) and persistent (εA = 1). In negative gradients, it is adopting the 
normal mode, which is also fast (vN = 6), but directionally non-persistent (εN = 0). The resulting search efficiency of 
the optimized TGS strategy against target cells with mixed migration properties is QTGS = 1.07, which surpasses 
the blind strategies by a factor of QTGS/QBLS ≈ 4.

Confronted with target cells of fixed migration properties (Fig. 3(b)), the performance of the optimized TGS 
strategy is degrading relatively quickly when the targets are fast and directionally persistent.

The sample trajectory of the immune cell (Fig. 3(c)) demonstrates the alternating phases of zero persistence 
(εN = 0, ‘zigzag’-like motion) and perfect persistence (εA = 1, straight motion). In contrast to the blind search 
strategies, the immune cell is now able to perfectly home in on a target, once it came close to it.

Spatial gradient sensing (SGS).  We now consider an immune cell that is virtually always in the approach 
mode (enforced by cA0 = 500), but has the ability to turn left (clock-wise) or right in response to the spatial gra-
dient of the chemo-attractant. The relevant response coefficient for this mechanism is the sensitivity cR1. Yet, how 
well the immune cell can follow a spatial gradient also depends on the migration parameters vA and εA, because 
they determine how quickly the cell can adjust its direction as it follows a spatial gradient.

CCD optimization shows (Fig. 3(d)) that the optimized SGS immune cell turns into the direction of larger 
chemo-attractant concentration with maximum sensitivity (cR1 = 500). It migrates with maximal speed (vA = 6), but 
with a specific degree of persistence that is smaller than one (εA = 0.8). The resulting search efficiency of the opti-
mized SGS strategy against target cells with mixed migration properties is QSGS = 2.58, which surpasses the TGS 
strategy by a factor of QSGS/QTGS ≈ 2.4, and blind strategies by a factor of QSGS/QBLS ≈ 9.6.

Confronted with target cells of fixed migration properties (Fig. 3(e)), the optimized SGS cell has a relatively 
constant performance for targets with small to medium speeds and persistences. In the extreme case of targets 
with vtar ≈ 6 and εtar ≈ 1, the performance declines, but even then it is still about as good as the optimal TGS 
performance.

The sample trajectory (Fig. 3(f)) shows that the optimized SGS immune cell is wasting almost no time between 
subsequent target attacks. It moves from one target to the next in an efficient way, resembling the optimal solu-
tions of a traveling salesman problem.

Figure 2.  Blind search BLS (a–c) and Random Mode Switching (d–f). Left column (a,d): Optimum parameters 
for an immune cell that faces a mixed ensemble of targets with random speeds and persistences. Middle 
column (b,e): Search efficiency of the optimized immune cell when facing a pure ensemble of targets with fixed 
speed vtar and fixed persistence εtar. Right column (c,f): Example configuration of static targets (orange dots), 
concentration distribution of the guiding substance (color code), and trajectory of the immune cell (small gray 
dots) over an extended period of 500 min.
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Combined spatial and temporal gradient sensing (CGS).  We also consider an immune cell that can, 
both, switch between two migration modes in response to the temporal chemo-attractant gradient, and at the 
same time turn left and right in response to the spatial gradient. Since these two mechanisms have different 
requirements with respect to the migration parameters (For example, temporal sensing requires εN = 0, but spa-
tial sensing works best with εN = 0.8), it is not clear whether a combination of the two abilities is advantageous or 
reduces the killing efficiency.

CCD optimization of combined gradient sensing involves the complete set of eight free parameters (Fig. 3(g)). 
The resulting bias cA0 = 5 means that the optimized CGS cell is adopting the approach mode practically all the 
time. In this mode, it just performs spatial gradient sensing, since all the parameters that are relevant to SGS 
are actually unchanged (cR1 = 500, vA = 6, and εA = 0.8). However, the optimized CGS cell is also highly sensi-
tive to temporal gradients (cA1 = 500). Therefore, in the presence of a sufficiently negative temporal gradient, 
it will switch to the normal mode, which is fast (vN = 6) but only medium persistent (εN = 0.5). This means that 
Combined gradient sensing is basically like spatial gradient sensing, but with the additional feature of a less persistent 
migration in strongly negative temporal gradients. The resulting search efficiency of the optimized CGS strategy 
against target cells with mixed migration properties is QCGS = 2.61, which is only slightly better than the SGS 
strategy. The versatility of combined gradient sensing resembles that of purely spatial gradient sensing (Fig. 3(h)). 
Also the sample trajectory (Fig. 3(i)) has basically the same characteristics as in the SGS strategy.

Indirect effects of target-directed search.  We have shown above that a target-directed migration of 
the immune cells, as realized in the TGS, SGS and CGS strategies, significantly improves the search efficiency Q 
compared to random migration. However, it is not clear how the target-directed behavior affects other statistical 
properties of the immune cell trajectories. We therefore investigate in the following the effect of TGS and SGS on 
three selected properties that are relevant in the context of search.

First, we consider how the total search area A(t) explored by an immune cell is growing over time, both in 
target-directed search and in a blind reference search with comparable parameters. Note that in a blind search, if 
targets are distributed randomly (that is, according to a spatial Poisson distribution with a fixed average density) 
and are not moving, the only way to improve the search efficiency Q is to increase A(t) as fast as possible. In the 
optimal case (corresponding to hypothetical immune cells that migrate along a straight line and with constant 
velocity through an infinite territory, thereby avoiding to ever return to the same spot again), the search area A(t) 

Figure 3.  Temporal Gradient Search TGS (a–c), Spatial Gradient Search SGS (d–f), and Combined Gradient 
Search CGS (g–i). Left column (a,d): Optimum parameters for an immune cell that faces a mixed ensemble of 
targets with random speeds and persistences. Middle column (b,e): Search efficiency of the optimized immune 
cell when facing a pure ensemble of targets with fixed speed vtar and fixed persistence εtar. Right column (c,f): 
Example configuration of static targets (orange dots), concentration distribution of the guiding substance (color 
code), and trajectory of the immune cell (small gray dots) over an extended period of 500 min.
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would increase linearly with time. Indeed, we find an almost linear increase of A(t) for immune cells that act 
according to the optimized TGS or SGS parameters, but with the sensitivity for the chemotactic gradients set to 
zero (blue lines in Fig. 4(a,d)). When the sensitivity is switched back on, the A(t) curves hardly change, except for 
very long times t, where the target-directed immune cells cover a slightly smaller search area than in the blind ref-
erence case (orange lines in Fig. 4(a,d)). The reason for the reduced A(t) is that chemotactically sensitive immune 
cells spend a longer time in the vicinity of particular targets. In order to home in on these targets, they repeatedly 
change speed, persistence, or direction, which necessarily reduces their ability to explore new territory.

Next, we consider the immune cell’s mean squared displacement ΔR t( )2  (abbreviated as MSD) as a function 
of lag-time, which is an important statistical property in the theory of random walks (Note that for the purpose of 
computing the MSD, the immune cell trajectories were re-constructed without periodic boundary conditions). In 
the case of the ‘blinded’ reference cells (blue lines in Fig. 4(b,e)), we find the typical MSD signature of a direction-
ally persistent random walk with a fixed velocity auto-correlation time: A gradual cross-over from ballistic behav-
ior ( ∝ ΔR t2 2) at small lag-times to diffusive behavior ( ∝ ΔR t2 ) at large lag-times. In the case of target-directed 
search (orange lines in Fig. 4(b,e)), ΔR t( )2  is reduced, because the interaction with the target cells effectively 
decreases the velocity auto-correlation time, so that the non-ballistic regime is starting earlier. In the case of SGS 
(orange lines in Fig. 4(e)), the MSD at large lag-time is even slightly sub-diffusive, reflecting the fact that the 
immune cells get ‘bound’ to their targets for a certain time period.

Finally, we consider the distribution p(dNN) of distances between an immune cell and its nearest target. In an 
infinite system where immune and target cells are distributed randomly with fixed average densities, without any 
statistical correlations between the cell positions, p(dNN) would be a Rayleigh distribution (see Method section), 
with a peak at some non-zero distance dNN that depends on the target density as dNN ∝ ρtar

−1/2. This is basically 
what we find for the ‘blinded’ reference cells (blue lines in Fig. 4(c,f)), although the histograms are not exactly 
Rayleigh distributions, due to the effect of periodic boundary conditions. By contrast, target-directed search 
creates exponential-like distributions p(dNN) (orange lines in Fig. 4(c,f)), where the most probable distance is 
approximately zero. This qualitative change of the distribution type demonstrates very drastically the ‘localization’ 
effect of the chemotactically sensitive immune cells around their momentary targets.

Discussion and Summary
The present work was motivated by experiments on chemotactic ‘pursuit’ in a Petri dish. These experiments stud-
ied the interaction of natural killer (NK) cells43 with 293T embryonic kidney cells2 or K562 leukemic cells3 as tar-
gets. These in-vitro experiments demonstrated that single immune cells are able to find their targets on their own 
account. However, it remained unclear if the observed attacks were merely chance encounters, or actually guided 

Figure 4.  Indirect effects of goal-directed search on the immune cell’s covered area A(t) versus time (first 
column), on its mean squared displacement ∆R t( )2  versus lag-time (second column), and on the probability 
density p(dNN) of the distance to the nearest target (third column). The top row (a–c) corresponds to temporal 
gradient search (TGS), the bottom row (d–f) to spatial gradient search (SGS). Orange lines were obtained with 
the optimized immune cell parameters, whereas blue lines were obtained with sensitivity parameters (cA1 for 
TGS, and cR1 for SGS) set to zero, effectively creating a blind search. In the double-logarithmic plots of the first 
two columns, the fine lines correspond to individual immune cells (10 per run) and simulation runs (10), 
whereas the thick lines are logarithmic averages. The search strategies TGS and SGS have little effect on the 
immune cell’s covered area ((a,d)), but lead to significantly reduced mean squared displacements at longer lag-
times ((b,e)). The most drastic effect of TGS and SGS is seen in the distribution p(dNN), which is Rayleigh-like in 
blind search (blue histograms in (c,f)), but exponential-like in goal-directed search (orange histograms in (c,f)). 
These effects are caused by the attraction of the immune cells towards the targets, which in turn leads to a partial 
localization of the immune cell trajectory in the vicinity of targets.
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by chemotactic mechanisms. Moreover, we do not know which search efficiencies can be expected from a ‘blind’ 
search, and from different ‘guided’ search strategies based on chemotaxis. Finally, identifying distinct, efficient 
and robust search strategies by numerical optimization of a simulated immune cell will also reveal characteristic 
patterns of search behavior, that might then be used as characteristic ‘fingerprints’ of goal-directed search in 
future automatic detection algorithms.

We have compared five distinct strategies of search, namely blind search with fixed speed and directional per-
sistence of the immune cells (BLS), blind search with random switching between two distinct migration modes 
(RMS), guided search based on temporal gradients of the chemo-attractant (TGS), guided search based on spatial 
gradients of the chemo-attractant (SGS), and a combination of temporal and spatial sensing (CGS). Throughout 
our study, we have kept the system geometry (two dimensions, as on a Petri dish) and all parameters (density of 
the target cells, properties of the chemo-attractant, sizes and migration properties of the cells, sensing abilities of 
the immune cell) close to experimentally realistic values.

In the case of blind search (BLS), not surprisingly, the search efficiency of the immune is almost an order of 
magnitude lower than with the best guided search mechanism. Nevertheless, since many pathogens will not emit 
any chemical substance that the immune cell can detect and use as a guide to its target, blind search may often be 
the only option. It is therefore fortunate that blind search can be easily optimized by making the immune cell as 
fast and directionally persistent as possible. This can be understood most easily assuming immobile target cells 
that are located at random positions within the plane. As the search time t is going on, the blindly migrating 
immune cell is exploring more and more regions of the Petri dish, and we can mentally mark all spatial pixels that 
have been visited at least once by the immune cell. The total area of all marked pixels, A(t), here called the ‘covered 
area’, is growing monotonously with time, and all target cells that happen to be located within the covered area can 
be considered as found by the immune cell. Their expected number is N found(t) = ρtar A(t), where ρtar is the areal 
density of target cells. If the immune cell is migrating with low directional persistence, it will re-visit many pixels 
more often than once, which is counter-productive with target cells that never move. In this case, the covered area 
will grow sub-linearly with time. By contrast, A(t) ∝ t for an immune cell that is migrating with perfect directional 
persistence and constant speed, that is, uniformly along a straight line (See 1.11 for the effect of periodic bound-
ary conditions). It is therefore clear that high directional persistence is an important way to improve the blind 
search efficiency Q of immune cells. At the same time, speed is another key factor for efficient search: For an 
immune cell in uniform motion, the expected number of found target cells at the end of the search period, N
found(t = Tsim) ∝ vimm, will be directly proportional to its speed.

However, it is well-known that actual cells - and not only immune cells - are showing gradual or abrupt 
changes of their speed and persistence39,40, so that their migration has to be described by a temporally heteroge-
neous stochastic process. The result of such parameter fluctuations are often ‘anomalous’ properties of the cell’s 
random walk, such as a mean squared displacement that increases with lag-time approximately as a power-law. 
It is not clear whether temporally heterogeneous cell migration is just a side effect of other causes (such as differ-
ences in the local micro-environment of the migrating cell or internal changes connected with the cell cycle), or if 
it actually serves a purpose. Theoretically, the heterogeneity may help to increase the blind search efficiency of an 
immune cell, particularly when the targets are mobile. We have therefore investigated how the search efficiency 
is affected when the immune cell performs random switches between two different migration modes (the RMS 
strategy). Yet, as suggested by the theoretical argument above, the RMS strategy did not perform significantly 
better than blind search with fixed migration parameters.

Next, we have investigated guided search strategies that are based on the sensing of chemotactic gradients. 
In the case of temporal gradient sensing (TGS), we found that the optimized immune cell is switching between 
two distinct migration modes: In positive gradients, it is adopting the approach mode, which is maximally fast 
(vA = 6) and persistent (εA = 1). By this way, the cell is climbing up the gradient consistently, which usually corre-
sponds to approaching one of the targets. In negative gradients, it is adopting the normal mode, which is also fast 
(vN = 6), but directionally non-persistent (εN = 0). In this mode, the cell is exploring new migration directions, 
until it finds one with a positive gradient. Note that the optimal TGS strategy found here by numerical parame-
ter optimization strongly resembles the chemotaxis behavior of Escherichia Coli44, with its gradient-dependent 
switching between swimming and tumbling modes of migration. Compared to blind search, TGS is more effec-
tive. On the other hand, the gained factor of four in search efficiency is not really large.

In the case of spatial gradient sensing (SGS), we found that the optimized immune cell turns into the direction 
of larger chemo-attractant concentration with maximum sensitivity (cR1 = 500). It migrates with maximal speed 
(vA = 6), but with a specific degree of persistence that is smaller than one (εA = 0.8). Presumably, this specific 
degree of persistence represents an optimal compromise between the need to maximize the visited area, and the 
need to perform clockwise and counter-clockwise turns with the right curvature. Compared to blind search, SGS 
is almost an order of magnitude more efficient. A combination of temporal and spatial sensing (CGS) turned out 
to bring no significant advantages compared to pure spatial sensing.

The blind and guided search strategies differ characteristically in how the search efficiency Q = Q(vtar, εtar) 
depends on the migration parameters of the targets: While blind search (BLS, RMS) works better with fast and 
persistent targets, the opposite is true for guided search (TGS, SGS, CGS). In guided search, due to the optimiza-
tion against a mixed set of targets, the search efficiency Q = Q(vtar, εtar) remains approximately constant for most 
combinations of vtar and εtar. Only for targets that are simultaneously extremely fast and persistent does Q decline 
significantly. Assuming an experimental possibility to vary the migration properties of the targets, without affect-
ing the immune cell or the properties of the chemo-attractant, this predicted difference in Q = Q(vtar, εtar) offers 
an indirect possibility to distinguish between blind and guided search strategies.

Finally, our work suggests how to detect different search strategies of an immune cell by looking for charac-
teristic patterns in the cell’s trajectory: In the case of temporal sensing, the immune cell will show alternating 
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phases of low and high directional persistence, and the probability of the high persistence mode will increase 
whenever the immune cell approaches one of the targets. In the case of spatial sensing, the left- and right-turns 
of the immune cell will occur in such a way that they tend to align the cell into the direction of the closest target. 
Indeed, trajectories simulated with the models discussed in this work have already been used to validate different 
algorithms that can detect the presence of remote cell-cell interactions45,46.

In future work, our investigation could be improved and extended in various ways. For example, we have so 
far assumed that the immune cell is able to detect arbitrarily small concentrations (or differences between two 
concentrations) of the chemo-attractant. A lower detection limit may very well change the optimal search param-
eters and, accordingly, the associated search strategies. It would also be possible to go beyond the fast diffusion 
limit. The problem then becomes computationally more demanding, as it requires to solve the partial differential 
equation of the spreading and decaying chemo-attractant along with the motion of the cells. However, we have 
already demonstrated the feasibility of this approach in 2D (Supplemental Information [B]).

Data Availability
All simulation programs and results are available online at http://tiny.cc/chemotacticpursuit.
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