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A novel Hybrid Model for 
predicting Blast-induced Ground 
Vibration Based on k-nearest 
neighbors and particle Swarm 
optimization
Xuan-nam Bui  1,2, Pirat Jaroonpattanapong3, Hoang nguyen  4, Quang-Hieu tran1,2 & 
Nguyen Quoc Long5

In this scientific report, a new technique of artificial intelligence which is based on k-nearest neighbors 
(KNN) and particle swarm optimization (PSO), named as PSO-KNN, was developed and proposed for 
estimating blast-induced ground vibration (PPV). In the proposed PSO-KNN, the hyper-parameters of 
the KNN were searched and optimized by the PSO. Accordingly, three forms of kernel function of the 
KNN were used, Quartic (Q), Tri weight (T), and Cosine (C), which result in three models and abbreviated 
as PSO-KNN-Q, PSO-KNN-T, and PSO-KNN-C models. The valid of the proposed models was surveyed 
through comparing with those of benchmarks, random forest (RF), support vector regression (SVR), and 
an empirical technique. A total of 152 blasting events were recorded and analyzed for this aim. Herein, 
maximum explosive per blast delay (W) and the distance of PPV measurement (R), were used as the two 
input parameters for predicting PPV. RMSE, R2, and MAE were utilized as performance indicators for 
evaluating the models’ accuracy. The outcomes instruct that the PSO algorithm significantly improved 
the efficiency of the PSO-KNN-Q, PSO-KNN-T, and PSO-KNN-C models. Compared to the three 
benchmarks models (i.e., RF, SVR, and empirical), the PSO-KNN-T model (RMSE = 0.797, R2 = 0.977, 
and MAe = 0.385) performed better; therefore, it can be introduced as a powerful tool, which can be 
used in practical blasting for reducing unwanted elements induced by ppV in surface mines.

Blasting for rock fragmentation is known as one of the most impressive techniques in the fields of mining and 
civil engineering. However, it is estimated that only about 20% of the total explosive energy was used for rock 
fragmentation1–4. The remaining of explosive energy is wasted, which cause various undesirable effects to the 
environment, like, air over-pressure (AOp), flyrock, ground vibration, and back-break5–7. Of these effects, ground 
vibration, that is calculated using peak particle velocity (PPV), is utilized to be the most adverse parameter due 
to it can cause structural vibration, demolish structures, include instability of bench and slope, and affects the 
underground water8–12. Therefore, precise estimation of blast-produced PPV was needed to decrease its influence 
on our environment.

Until now, experimental and artificial intelligence (AI) commonly utilized for predicting blast-induced PPV13. 
The first one aims to establish empirical equations based on relationships between explosive charge per blasting 
delay (W) and the distance of PPV measurement (R)14–23. However, these empirical equations provide poor pre-
diction performance in some cases e.g.24–29; therefore, the latter is considered.
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Literature review shows that AI has proven its various efficient fields with promising performance, espe-
cially in advanced engineering as well as in mining and measurement30–47,48. In order to estimate blast-induced 
PPV, Khandelwal and Singh10 have successfully developed an artificial neural network (ANN) utilizing 154 
blasting events at a surface coal mine in India with the conclusion that ANN is a powerful tool to estimate 
blast-induced PPV. Saadat, et al.27 also explored an ANN model to predict blast-induced PPV of an iron mine in 
Iran (Gol-E-Gohar) has been reported using 69 blasting events, even a proper result. Using other AI technique 
(i.e., classification and regression tree – CART), Khandelwal, et al.49 also successfully predicted PPV with high 
accuracy based on 51 datasets. Based on the advantages of the XGBoost model, Nguyen, et al.50 also investigated 
and predicted PPV with high performance using 136 datasets (i.e., RMSE = 1.742, R2 = 0.952). In another work, 
Nguyen, et al.51 optimized the Cubist models by a clustering technique (i.e., hierarchical K-means), for predicting 
PPV with high reliability. They concluded that the clustering technique can be considered as a robust technique 
in the classification of the dataset, as well as optimization of the Cubist models. In another work, Hasanipanah, 
et al.52 utilized the PSO algorithm to predict blast-caused PPV, where two forms, power (P) and linear (L) were 
used. An empirical technique, along with MLR analysis, are also used for comparing with those of the two PSO 
models. They reported that the PSO-P provides high prediction performance. Armaghani, et al.53 investigated an 
integration of PSO with ANN in order to estimate blast-induced PPV, namely PSO-ANN model. They utilized 
the algorithm of PSO for optimizing the network architecture of the ANN model. A series of empirical equations 
are additionally applied to estimate PPV and compare with those of the PSO-ANN model. Conclusion of their 
study is that the PSO-ANN model yielded an outstanding result. In another study, Armaghani, et al.54 used the 
ICA optimization to estimate blast-induced PPV utilizing 73 blasting events and also a suitable result was deter-
mined in their work. Based on the ICA, Hasanipanah, et al.55 also introduced a fuzzy system (FS) model for esti-
mating the model of blast-induced PPV, i.e., FS-ICA. For performing comparisons, a variety of empirical models 
were also calculated in their study, which proved that the model of FS–ICA outperforms the other experimental 
approaches. By the use of another optimization algorithm (i.e., firefly algorithm-FFA), Shang, et al.56 developed a 
new technique to predict PPV using FFA-ANN model. Zhang, et al.57 also developed the PSO-XGBoost technique 
for the aim of PPV prediction with high performance. In addition, PSO-ANFIS and GA-ANFIS were also inves-
tigated by Yang, et al.58, for predicting PPV. Table 1 lists some studies concerning the prediction of blast-induced 
PPV using AI techniques.

We have found that optimization algorithms are becoming a powerful tool for estimating blast-induced 
PPV, notably the PSO algorithm. They play a considerable role in the case of enhancing the efficiency of models. 
However, it was only considered for ANN and XGBoost models. Nevertheless, new hybrid models are needed for 
knowledge and practical engineering to reduce the undesirable influences of blasting operations. In this work, 
we expanded the body of knowledge by proposed the PSO optimized k-nearest neighbors (KNN) and named 
as PSO-KNN for estimating blast-induced PPV. The RF, SVR, and empirical models were also considered and 
exploited to predict PPV based on the same dataset.

Materials
In this study, blasting operations were undertaken at the Deo Nai open-pit coal mine for rock fragmentation. The 
study site locates in the North of Vietnam, between latitudes 21°01′00″N and 21°20′00″N, and between longitudes 
107°18′15″E and 107°19′20″E (Fig. 1). The Arcmap version 10.2 (Link: http://desktop.arcgis.com/en/arcmap/) 
was used to create the map in Fig. 1. The total area of this mine is ~6.0 km2 with exploitation reserve of 42.5 Mt, 
and fertility of 2.5 Mt/yr59.

The geological structure in the mine is very complicated. Many interleaved faults and folds divide the deposit 
into many different complex blocks. In this mine, the volume of the overburden is 20 to 30 million m3/yr. The 
main bulk of the overburden includes conglomerate, sandstone, siltstone, claystone, and coal clay. Therefore, in 
this mine, blasting is considered to be imperative for fragmenting rocks. ANFO explosive (ammonium nitrate–
fuel oil) was used as the primary explosive in this mine with the hole diameter in the range of 150 to 250 mm. 
Note that, the non-electric delay blasting method15,60 is used in this mine in the case of rock breakage.

As stated in the literature61–63, W and R have the most impacts on PPV, therefore, in this study, both of the W 
and R parameters are utilized as the primary input parameters for PPV estimation. The Blastmate III perspective 
(i.e., Instantel in Canada) is utilized for recording the PPV value. Note that the term R was defined by a handheld 
GPS where W was extracted from 152 blast patterns. Table 2 summaries the data taken in this work. Also, the 
histograms of each attribute are illustrated in Fig. 2.

Methods
As mentioned above, the principal purpose of this work is to expand a novel hybrid model for estimating 
blast-induced PPV (i.e., called PSO-KNN model). Moreover, a practical technique and also two algorithms, (e.g., 
RF and SVR), are also utilized as benchmarks for estimating blast-induced PPV. However, the description of the 
RF and the SVR has been well documented, i.e., in64–66; therefore, the background of the RF and the SVR is not 
provided in this study.

empirical. From reviewing the lecture, we have shown that empirical equation of the U.S Bureau of Mines 
(USBM)14 is the most common technique where it has been widely applied to estimate PPV produced by blasting 
operations. Therefore, for the current research, it was implemented for predicting PPV and is demonstrated as:

PPV R
W (1)

λ=










α−

https://doi.org/10.1038/s41598-019-50262-5
http://desktop.arcgis.com/en/arcmap/


3Scientific RepoRtS |         (2019) 9:13971  | https://doi.org/10.1038/s41598-019-50262-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

W stands for the maximum explosive charge per delay (in Kg);R stands for the monitoring distance (m);where λ 
and α were the site parameters and were considered using the multivariate regression analysis.

pSo algorithm. In the present work, the algorithm of PSO is utilized for optimizing the KNN model. In the 
regards of the PSO, more details have been presented in refs.67–71.

References AI technique

Singh and Singh8 ANN

Khandelwal and Singh61 ANN

Khandelwal and Singh9 ANN

Iphar, et al.107 ANFIS

Khandelwal and Singh10 ANN

Khandelwal, et al.11 SVM

Monjezi, et al.108 ANN

Monjezi, et al.24 ANN

Khandelwal, et al.62 ANN

Ghasemi, et al.25 FL

Monjezi, et al.26 ANN

Saadat, et al.27 ANN

Armaghani, et al.53 PSO-ANN

Hasanipanah, et al.109 SVM

Dindarloo110 GA

Hajihassani, et al.28 ICA-ANN

Hajihassani, et al.111 PSO-ANN

Amiri, et al.83 ANN-KNN

Monjezi, et al.112 GEP

Hasanipanah, et al.113 CART

Hasanipanah, et al.52 PSO

Taheri, et al.114 ABC-ANN

Ragam and Nimaje115 GRNN

Armaghani, et al.116 ICA

Behzadafshar, et al.117 ICA

Sheykhi, et al.118 FCM-SVR

Arthur, et al.119 GP

Table 1. Some studies concerning the prediction of blast-induced PPV using AI techniques. Note: adaptive 
neuro-fuzzy inference apparatus (ANFIS); support vector machine (SVM); gene expression programming 
(GEP); fuzzy logic (FL); genetic algorithm (GA); classification and regression tree (CART); artificial bee colony 
algorithm (ABC); generalized regression neural network (GRNN); fuzzy C-means clustering (FCM); Gaussian 
process (GP).

Figure 1. Location and landscape of the study site.
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The PSO algorithm is one of the most efficient metaheuristic techniques proposed by Eberhart and Kennedy72. 
This method was adopted from the social animals/particles behavior, like a flock of birds in a swarm and can be 
used to predict optimization issues with every solution is illustrated as a particle. In order to determine the opti-
mized solution, the algorithm of PSO considers the following steps73:

Step 1: Initialize population of particles as well as its related velocity. After that, predict the fitness of particles 
and discover the best location as local and global best.

Step 2: Each particle changes about quest zone with a particular velocity. For each iteration, global best 
and local best are calculated to assess the efficiency of the PSO-KNN models. Global best is considered as the 
best-gathered particle position, and the local best is regarded as the best solution in the prevalent iteration.

Step 3: Update the location of a particle; After predicting the velocity of particles, the positions of them change 
about quest zone with the calculated speed and for considered particles, the procedure can calculate and update 
the new velocity utilizing Eq. 2 as follow:
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where xj
i( ) denotes the position of particle j at iteration i; vj

i( ) means the particle velocity j for iteration i; w stands 
for the inertial weight coefficient; i stands for the number of iteration; r1 and r2 stand for the numbers in the inter-
val [0,1].

•	 The global best and the local best can be updated when the new particle becomes to remove. The system was 
calculated and then updated the location, for each particle, using Eq. 3 as below:

= + = …+ +x x v j n; 1, 2, , (3)j
i

j
i

j
i1 ( ) ( 1)

•	 Investigate the termination criteria, when the principle of termination has been satisfied, change the global 
best as the proper and optimized solution for an issue.

Properties W R PPV

Min. 3200 308.2 2.050

1st Qu. 3952 448.0 8.545

Median 4135 513.0 12.435

Mean 4120 518.3 12.400

3rd Qu. 4295 574.1 15.980

Max. 4643 799.2 29.180

Table 2. Properties of the data taken. Note: W denotes the explosive charge per delay (in Kg); W indicates the 
monitoring distance (in m); PPV means the intensity of ground vibration (in mm/s).

Figure 2. Histogram of the blast-induced ground vibration dataset.
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k-nearest neighbors (Knn). The KNN is known as one of the non-parametric approaches in term of 
classification and regression issues74. The most critical parameters of the KNN algorithm are the number of near-
est neighbors (k) and the distance metric (d). In regression problems, the parameter k specifies the number of 
neighbor observations that contribute to the output predictions (i.e., PPV. Instead of considering at the closest 
reference sample, the algorithm of KNN views at the k instances in the reference collect which is near to the 
unknown instance as well as performs a vote to make a decision75,76. More details in the case of the algorithm of 
KNN can be obtained in refs.77–79.

Review of previous works indicate that the KNN algorithms have been applied correctly in many fields80–82; 
however, it seems to be rarely considered for estimating blast-induced problems. Amiri, et al.83 Amiri et al. pro-
posed the model ANN-KNN for the first time. ANN-KNN is composed of two component models of KNN and 
ANN. Each model predicts test samples, and the obtained outcome is a weighted combination of the findings. 
Firstly, they use K means clustering to partition the training sample within identical clusters. In order to predict 
a testing sample by KNN, the nearest teammate instance has been found utilizing the distance of city for the 
test sample. Then, the values of the factors of the closest train instance were considered to the test instance. For 
each cluster, besides KNN, an ANN can be trained to utilize the train instance of that cluster. Once the ANN 
models trained, they can be used to predict PPV on the same group of the testing dataset. However, optimization 
problems for the ANN model and the KNN approach for estimating blast-induced PPV in their work have not 
been implemented. The weights and ascending bias, as well as the hidden node of the ANN model, have been 
reviewed and calculated according to the experimental formulas. Likewise, the KNN model was also determined 
by the traditional method. Note that, in the present study, the training dataset is not divided by clustering algo-
rithms. The KNN algorithm was applied to develop the KNN model on the whole of the training dataset with the 
hyper-parameters (k, d) put to use to tune the performance of KNN model. To define the most optimal values for 
the KNN model, the PSO method was included in the adjustment process of k and d of the KNN model.

proposing the pSo-Knn model. In the present work, the KNN algorithm is the primary algorithm used 
to estimate blast-induced PPV. The two main hyper-parameters of the KNN model, including k and d, are utilized 
to adjust the efficiency of the algorithm. For determining the optimal values of k and d, the PSO algorithm was 
adopted. As shown in Fig. 3, the particles in PSO performed a global search procedure for the best k and d values 
of the KNN model, called PSO-KNN model. The expanding of the PSO-KNN algorithm has been accomplished 
through four steps as:

Figure 3. Scheme of a proposed PSO-KNN model for estimating blast-induced PPV.
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- Step 1: Making the PPV data and preparing the training and testing databases.
In this step, 152 blasting events were divided into two phases by randomly; 124 blasting activities in the first 

phase (~ about 80 percent of the whole dataset) are used for the training process to expand the PSO-KNN mod-
els. The rest 28 blasting events (~20%) in the second phase were used to check the efficiency of the constructed 
approaches.

- Step 2: Configuration of the KNN model.
As a criterion, the KNN model is considered as the dominant model to predict PPV in the present work. It is 

noted that three shapes of kernel function were applied for KNN, including quartic (Q), triweight (T), and cosine 
(C). These functions are described as following74,84:

K u uQuartic: ( ) 15
16

(1 ) (4)
2 2= −

K u uTriweight: ( ) 35
32

(1 ) (5)
2 3= −

π π
=







K u uCosine: ( )

4
cos

2 (6)

where K is a function that can be integrated with non-negative real values. The primary purpose of using these 
kernel functions in the present study is to map the data to a higher dimension with the linear relationship. It 
makes regression of PPV values more accurate in modeling. More details of kernel functions for the KNN model 
can be found at the following references74,84–87.

- Step 3: Optimization of KNN, evaluation of fitness, and check termination criteria.
This step aimed to find an optimal KNN model with the lowest amount of a fitness function by searching the 

best amounts for the hyper-factors of KNN (k, d) using PSO algorithm. To perform the most appropriate KNN 
approaches according to the PSO algorithm, RMSE is computed as a fitness function as described in Eq. 7. The 
flowchart of the suggested PSO-KNN algorithm for estimating blast-induced PPV was illustrated in Fig. 3.

- Step 4: Final PPV predictive model.
After that, the optimization method by the algorithm of PSO is completed, the best hyper-parameters of the 

KNN model were derived and used to build the final PPV predictive methods. The goodness of the approaches 
was evaluated via the training dataset and performance statistical indexes like MAE, RMSE, and R2. The error dis-
tribution is provided by RMSE88,89 illustrating the idea of how proper an approach has adjusted the information 
via R2. In an optimal model, the RMSE, and MAE could be equal to zero whenever the R2 could be equal to 1. The 
performance indicators are computed as:
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n stands for a total number of observations; yPPVi is the measured PPV,yPPViˆ  is predicted PPV, and y  is the mean 
of yPPVi.

establishing the predictive Models
In order to develop PPV predictive models in this work, the database, including 152 blasting events, was split into 
two parts. According to Nick90, the most usually utilized train/test ratio was 80:20, which was a proper starting 
ratio based on Swingler91,92; hence, 80% of the total information (around 124 events of blasting) is used as the 
training database for the first section; the remaining amount that consists of 28 blasting events was recognized as 
the testing database in the second section.

empirical model. For the empirical model, λ and α are the site parameters and are found using an analysis 
of multivariate regression. In the present work, the SPSS method (version 16.0) is employed to specify λ and α 
according to 124 blasting events of the training database. We found that λ = 0.051 and α = −2.596 are the opti-
mized amounts for the site parameters. In this work, the empirical equation USBM is illustrated as below:

PPV 0 051 R
W (10)

2 596

= .










.

Rf model. RF is considered as the best decision tree methods suggested by Breiman93. It may predict both 
classification and regression issues, i.e., predict PPV. For this aim, the number of the tree (ntree) and randomly 
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selected predictor (mtry) are the main hyper-parameters involving to adjust the quality of the RF approach. 
Theoretically, ntree must be large enough to avouch the wealth and objectivity of the forest94. Each decision tree 
in the forest acts as a voter. Therefore, ntree was set equal to 2000. To introduce the optimized value of the mtry 
parameter, the grid search approach95 was applied with mtry in the range of 1 to 50; The 10-fold cross-validation 
resampling method96 is used to avoid over-fitting for RF model. As a result, ntree = 2000 and mtry = 1 were the 
best for the RF model (Fig. 4). Its performance was evaluated through RMSE, MAE, and R2 on the training dataset.

SVR model. For SVR model, the regression problem of PPV was employed through a kernel function. Many 
previous scientists recommended that the radial basis function (RBF) should be applied in SVR for regression 
problems with more high accuracy97–99. Therefore, the function of the RBF kernel is chosen selected for SVR model 
with σ and C were the RBF’s parameters. The 10-fold cross-validation resampling method is implemented for the 
SVR model to avoid over-fitting. In the case of expansion of the SVR method, a grid search method for σ and C was 
established to discover the most proper amounts of the SVR. In this regard, σ was set in the range of 0.1 to around 
1; C was adjusted in the range of 50 to 100. Eventually, an optimized SVR method is determined with σ = 0.16 and 
C = 94.5. Figure 5 indicates the performance of the SVR model for predicting PPV on the training dataset.

pSo-Knn model. In this part, the development of the PSO-KNN method for estimating PPV was presented 
in detail. As stated earlier, this model is developed via a combination of KNN and PSO algorithms, as shown in 
Fig. 3. The training dataset for the proposed PSO-KNN method is identical with those utilized in the empirical, 
RF, and SVR models. According to the training dataset, as the first step, a primary KNN model is produced. Then, 
as the next step, the hyper-factors of the KNN method are improved using the algorithm of PSO. This part aimed 
to discover a PPV predictive method with the lowest RMSE by finding the best amounts for the hyperparameters 
by the algorithm of PSO. In this algorithm, maximum particle’s velocity (Vmax), maximum iteration number 
(mi), the population number (p), individual and group cognitive (φ1, φ2), as well as inertia weight (w), are the 
factors utilized for the optimization approach. The sample size should be large enough to ensure the population 
diversity100,101. Hence, a trial-and-error method is selected, and 50 individuals were the best for the immediate 
work area (p = 50). For the process of terminating the optimization, mi is adjusted equally to 500102 for check-
ing the particle positions fitness by utilizing the RMSE metric (Eq. 7). For ensuring the balance among global 
detection and also local search, w is adjusted equal to around 0.9103. Based on previous works, Kennedy104 and 
Clerc and Kennedy105, φ1 can be identical to φ2 and φ1 + φ2 lie in the range of 0 to 4. Hence, in the present work, 
φ1 = φ2 = 1.5. In order to ensure convergence along with preventing explosion106, Vmax is adjusted equal to 2.

Once the PSO’s factors are adjusted, the compatibility of particle locations is calculated via the RMSE function. 
For any definition in the process of optimization, considered particles jump in a constrained checking zone and 
exchange their experiment to discover the best location (i.e., lowest RMSE); 500 iterations were used to determine 
the best factors of the suggested PSO-KNN model according to the best position (i.e., lowest RMSE) of the swarm 
of whole repeats. Note that, three forms of the kernel function (Q, T, C) were applied for the PSO-KNN model as 
described in the previous section. Figure 6 indicates the efficiency of the optimization approach for the PSO-KNN 
algorithms. Note that, the best amounts of the hyper-factors obtained for the PSO-KNN models (i.e., after the 
process of optimization) were determined in Table 3.

Results and Discussions
In the present section, the outcomes of the PPV predictive algorithms were highlighted. The efficiency indexes of 
the empirical, the RF, the SVR, and the three PSO-KNN models were evaluated based on RMSE, R2, and MAE, 
as illustrated in Table 4. The testing database is utilized as the unseen information to check the quality of the 
expanded models.

Table 4 indicated that the PSO-KNN models properly performed compared to the empirical, RF, and SVR 
models in estimating PPV. On the training dataset, the PSO-KNN models obtained robust performance with 
the RMSE in the range of 0.773 to 0.873; R2 in the range of 0.975 to 0.982; MAE in the field of 0.403 to 0.430. The 
benchmark models (RF and SVR) were additionally performed quite suitable in this work. But their efficiency 

Figure 4. Efficiency of the RF algorithm on the training database.
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Figure 5. Efficiency of the SVR method on the training dataset.

Figure 6. Efficiency of the PSO-KNN models in the process of optimization.

Model

Optimization values of the 
hyper-parameters

k d

PSO-KNN-Q 20 0.493

PSO-KNN-T 10 0.503

PSO-KNN-C 16 0.499

Table 3. The hyper-parameters of PSO-KNN models.

https://doi.org/10.1038/s41598-019-50262-5
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was poorer than the PSO-KNN models with an RMSE in the range of 0.852 to 0.995, R2 in the field of 0.966 
to 0.973, and MAE in the range of 0.508 to 0.574. In contrast, the empirical model yielded the poorest per-
formance (RMSE = 2.525, R2 = 0.822, and MAE = 1.306). Observing the efficiency of the models on the test-
ing dataset, it may be observed that the PSO-KNN algorithms were also outperformed over the other models 
(RMSE = 0.797 to 1.014; R2 = 0.960 to 0.977; MAE i = 0.385 to 0.455). Remarkable, the PSO-KNN model with 
the triweight kernel function (PSO-KNN-T) yielded the most accuracy among the proposed PSO-KNN models 
(i.e., RMSE = 0.797, R2 = 0.977, and MAE = 0.385). Next are the PSO-KNN-Q, PSO-KNN-C, RF and SVR models 
with RNSE in the range of 0.982 to 1.175; R2 in the range of 0.944 to 0.964; MAE in the range of 0.454 to 0.634. In 
contrast, the empirical obtained the poorest performance on the testing dataset (i.e., RMSE = 3.615, R2 = 0.579, 
and MAE = 1.727). Based on the results in Table 4, all the models are well generalized, especially the PSO-KNN 
model with triweight kernel function (i.e., PSO-KNN-T) is an outstanding model in term of RMSE, R2, and MAE. 
Therefore, it was selected as the most appropriate model for estimating PPV produced by bench blasting. Figure 7 

Model

Training dataset Testing dataset

RMSE R2 MAE RMSE R2 MAE

Empirical 2.525 0.822 1.306 3.615 0.579 1.727

RF 0.995 0.966 0.508 1.126 0.952 0.499

SVR 0.852 0.973 0.574 1.175 0.944 0.634

PSO-KNN-Q 0.836 0.977 0.417 0.982 0.964 0.454

PSO-KNN-T 0.773 0.982 0.403 0.797 0.977 0.385

PSO-KNN-C 0.873 0.975 0.430 1.014 0.960 0.455

Table 4. Efficiency indexes of the PPV predictive approaches in this work. Note: the best model was shown in 
bold type.

Figure 7. Measured versus predicted values of the models.
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shows the efficiency of the models on the testing database. Also, the precision of the expanded models is even 
compared in Figs 8–11.

conclusions
Blasting is known as one of the most appropriate and cheapest approaches for the fragmentation of hard-rocks 
in the case of open-pit mines. Nevertheless, its improper impacts on the surrounding environment, particularly 
ground vibration (PPV), are unavoidable. Hence, precise blast-induced PPV estimations are essential for decreas-
ing the effects on our environment. The present work proposed a new hybrid technique for estimating PPV 
according to the KNN and PSO algorithms with high accuracy, namely PSO-KNN. According to the outcomes of 
this work, authors obtain some results as follows:

•	 Blast-induced PPV is a usual involved and non-linear issue that is hard to investigate and estimate. High accu-
racy of the proposed PSO-KNN model in this study indicating that AI techniques are reasonable solutions, 
which solve this problem better than the empirical method.

Figure 8. Comparison among exact and estimated amount using the empirical model.

Figure 9. Comparison among exact and estimated amount using the PSO-KNN-T model.

Figure 10. Comparison among exact and estimated amount using the RF model.
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•	 The PSO algorithm is a suitable optimization tool for estimating purposes of blast-induced PPV. It has a 
dramatic role in enhancing the precision of the KNN approach, according to RMSE, R2, and MAE, as illus-
trated in Table 4. However, the integration of PSO and KNN algorithms are often complexity when setting 
the parameters.

•	 The proposed PSO-KNN model (PSO-KNN-T) is a superior approach in estimating PPV induced by bench 
blasting; therefore, it is an alternative tool that should be considered for other areas in predicting PPV, as well 
as the other blasting problems in practical engineering.

•	 This research only considered two parameters of W and R for establishing the blast-induced PPV modes. 
Therefore, the performance of these models can be enhanced if the other parameters related to the blast pat-
tern and properties of rock mass are to be considered.

Data Availability
All data generated or analyzed during the current study are included.
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