# Table 1 The best-fitted distribution and estimated parameters of wagers.

Game Name Game Category Wager Currency Arbitrary Bet Max Bet Odds Best-Fitted Model Parameters
csgofast- Double (A) Roulette Virtual Skin Ticket Yes 500,000 (A1) 2 (Red) Log-normal μ = 3.689, σ = 1.952 xmin = 21
2 (Black) μ = 3.807, σ = 1.922 xmin = 21
14 (Green) μ = 3.972, σ = 1.647 xmin = 21
50,000 (A2) 2 (Red) μ = 2.936, σ = 2.108 xmin = 11
2 (Black) μ = 3.175, σ = 2.118 xmin = 12
14 (Green) μ = 2.633, σ = 2.113 xmin = 14
csgofast- X50 (B) 50,000 2 (Blue) μ = 2.734, σ = 1.930 xmin = 11
3 (Red) μ = 2.450, σ = 2.030 xmin = 12
5 (Green) μ = 2.814, σ = 1.999 xmin = 12
50 (Gold) μ = 3.416, σ = 1.548 xmin = 11
csgofast- Crash (C) Crash 10,000 (C1) Player- Selected μ = 1.647, σ = 2.226 xmin = 15
20,000 (C2) μ = 1.932, σ = 2.143 xmin = 11
Ethcrash (D) Crypto- currency 0.25 ETH μ = 7.186, σ = 6.356 xmin = 1
Satoshi dice (E) Satoshi Dice 10 BCH 1.98 μ = 5.910, σ = 2.691 xmin = 34
Coinroll (F) 3 BTC μ = 1.930, σ = 2.638 xmin = 2
csgospeed (G) Jackpot Virtual Skin Ticket 500,000 Not-fixed μ = 5.167, σ = 1.301 xmin = 23
csgofast- jackpot (H) In-game Skin No 15 items 180,000 per item Power Law - Exponential - Power Law α = 0.802, δ = 2.457 × 102
β = 7.080 × 10−3, η = 3.783
λ = 8.625 × 10−5, xmin = 250
1. For games (A, B, C, E, F, G) the best-fitted model is a log-normal distribution, and for game (D) the log-normal distribution is truncated at a maximum value. For game (H) the wager distribution follows a power law - exponential - power law pattern. In the rightmost column, μ (respectively σ2) represents the mean (respectively variance) of the logarithms of bet values.