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Tissue-specific mouse mRNA 
isoform networks
Gaurav Kandoi  1,2 & Julie A. Dickerson  1,2

Alternative Splicing produces multiple mRNA isoforms of genes which have important diverse roles such 
as regulation of gene expression, human heritable diseases, and response to environmental stresses. 
However, little has been done to assign functions at the mRNA isoform level. Functional networks, 
where the interactions are quantified by their probability of being involved in the same biological 
process are typically generated at the gene level. We use a diverse array of tissue-specific RNA-seq 
datasets and sequence information to train random forest models that predict the functional networks. 
Since there is no mRNA isoform-level gold standard, we use single isoform genes co-annotated to Gene 
Ontology biological process annotations, Kyoto Encyclopedia of Genes and Genomes pathways, BioCyc 
pathways and protein-protein interactions as functionally related (positive pair). To generate the non-
functional pairs (negative pair), we use the Gene Ontology annotations tagged with “NOT” qualifier. We 
describe 17 Tissue-spEcific mrNa iSoform functIOnal Networks (TENSION) following a leave-one-tissue-
out strategy in addition to an organism level reference functional network for mouse. We validate our 
predictions by comparing its performance with previous methods, randomized positive and negative 
class labels, updated Gene Ontology annotations, and by literature evidence. We demonstrate the 
ability of our networks to reveal tissue-specific functional differences of the isoforms of the same genes. 
All scripts and data from TENSION are available at: https://doi.org/10.25380/iastate.c.4275191.

Recent studies illustrate that genes can have distinct functions with different mRNA isoforms, highlighting the 
importance of studying mRNA isoforms of a gene1,2. This diversity in mRNA isoforms is a result of Alternative 
Splicing (AS). Many alternatively spliced mRNA isoforms are variably expressed across cell and tissue types3–10. 
AS affects regulation of gene expression, development, human heritable diseases, and response to environmental 
stresses. This article builds mouse tissue-specific functional networks by integrating heterogeneous expression 
and sequence datasets at the mRNA isoform level.

In higher organisms such as mouse and human, AS plays a significant role in expanding the variety of pro-
tein species11–14. As an effect, a gene may produce multiple mRNA isoforms whose protein translations differ in 
expression, interaction and function1,5,14,15. For example, there are more than 75,000 mRNA isoforms encoded 
by over 20,000 genes in the Mouse genome annotation (GRCm38.p4). The fact that a gene is a mixture of mRNA 
isoforms makes referencing a gene as being “upregulated” or “downregulated”, uninformative.

Massively parallel sequencing of mRNA isoforms has led to a rapid accumulation of expression and sequence 
data at the mRNA isoform level. RNA-Seq has provided evidence confirming the production and expression of 
distinct mRNA isoforms under different conditions9,16,17. This has led to the improvement and refinement of 
genome annotations. Functional networks, at the mRNA isoform level are important for understanding gene 
function but are largely uninvestigated18,19.

Traditionally, functional experiments are performed at the gene level. Therefore, there are very few (few hun-
dreds) functional annotations for alternatively spliced mRNA isoforms. The functional data recorded in databases 
such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and UniProt Gene Ontology 
Annotations (UniProt-GOA) are focused on the canonical mRNA isoform and contain only few hundred annota-
tions describing the functions of alternatively spliced mRNA isoforms. These databases do not store tissue specific 
information either.

The task of mRNA isoform function prediction is a challenging problem. Some mRNA isoforms are 
non-functional and introduce noise in the data. Many mRNA isoforms are tissue and condition specific. Since a 
gene can produce multiple mRNA isoforms20, the direct transfer of function from the gene to its mRNA isoforms 
doesn’t work. Gene function prediction methods consider a gene as a single entity. Therefore, these cannot be 

1Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, USA. 2Department of 
Electrical and Computer Engineering, Iowa State University, Ames, IA, USA. Correspondence and requests for 
materials should be addressed to J.A.D. (email: julied@iastate.edu)

Received: 8 May 2019

Accepted: 5 September 2019

Published: xx xx xxxx

open

https://doi.org/10.1038/s41598-019-50119-x
http://orcid.org/0000-0003-0559-9481
http://orcid.org/0000-0003-4973-5641
https://doi.org/10.25380/iastate.c.4275191
mailto:julied@iastate.edu


2Scientific RepoRtS |         (2019) 9:13949  | https://doi.org/10.1038/s41598-019-50119-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

directly applied to mRNA isoform function prediction because they ignore the distinct functions of alternatively 
spliced mRNA isoforms. However, important advancements have been made by recent studies towards mRNA 
isoform level understanding of gene functions18,19,21–25 such as the prediction of more immune related gene ontol-
ogy terms for the mRNA isoform ADAM15B than isoform ADAM15A of ADAM15 gene, which is involved in 
B-cell-mediated immune mechanisms.

One such study developed the human isoform-isoform interactions database (IIIDB) using RNA-Seq data-
sets, domain-domain interactions and protein-protein interactions (PPIs)19. A logistic regression model was 
built using physical interaction data from the IntAct database26. The predicted human isoform-isoform physical 
interaction network was restricted to the gene pairs already present in IntAct. The problem of mRNA isoform 
functional network prediction is formulated as a complex multiple instance learning (MIL) problem in18. In 
MIL, a gene is treated as a “bag” of mRNA isoforms (“instances”). A gene pair is formulated as a bag of multiple 
instance pairs, each of which has different probabilities to be functionally related. The goal of MIL is to identify 
the specific instance pairs which are functional and maximize the difference between them and the instance pairs 
of non-functionally related bags. A Bayesian network based MIL algorithm was developed by18 to predict a mouse 
mRNA isoform level functional network using RNA-Seq datasets, exon array, pseudo-amino acid composition 
and isoform-docking data.

The studies18,19 above introduce bias in the training and testing dataset by using random mRNA isoform pairs 
as non-functional pairs (negative pairs) and do not consider the tissue-specific mRNA isoform functions. Our 
work is fundamentally different and improves upon the studies18,19 above both in terms of research content and 
computational approaches. First, we formulate the problem of mRNA isoform functional network prediction as 
a simple supervised learning task. Second, our goal is to develop tissue-specific functional networks for mouse. 
Lastly, like previous methods, we do not introduce bias by assuming that functionally unrelated (negative pair) 
mRNA isoform pairs can be selected based on the cellular localization19 or at random18, which is crucial to the 
selection of training data in a machine learning system.

We have developed 17 tissue-specific mRNA isoform level functional networks in addition to an organism 
level reference functional network for mouse. Using the leave-one-tissue-out strategy with a diverse array of 
tissue-specific RNA-Seq datasets and sequence information, we trained a random forest model to predict the 
functional networks. Because there is no mRNA isoform-level gold standard for testing, we have used the single 
mRNA isoform genes co-annotated to GO biological process, KEGG pathways, BioCyc pathways and PPIs as 
functionally related (positive pair). The non-functional pairs (negative pairs) were generated by using the GO 
annotations tagged with “NOT” qualifier. We have validated our predictions by comparing its performance with 
previous methods, datasets with randomized positive and negative class labels, updated GO annotations and 
literature evidence.

Methods
mRNA isoform level data processing. This study considers mRNA isoforms annotated in the NCBI Mus 
musculus genome assembly (GRCm38.p4) for which both mRNA and protein sequences are available. All protein 
(and corresponding mRNA) sequences smaller than 30 amino acids and those containing non-standard charac-
ters are not considered. This resulted in a filtered set of 75,826 mRNA isoforms from 21,813 genes.

To comprehensively characterize mRNA isoform pairs, we have processed 359 RNA-Seq samples from 17 
tissues of wild-type mouse (covering wide range of experimental conditions) and calculated protein and mRNA 
sequence properties as described below. Such heterogeneous features have been shown to be useful for predicting 
several biological properties18,27,28. All calculations and analyses were performed on the Extreme Science and 
Engineering Discovery Environment (XSEDE) Comet cluster29.

The mRNA and protein level features are summarized in Table 1 and an overview of the workflow is presented 
in Fig. 1. Every feature type resulted in 1 feature (as described in the following sections).

Preprocessing of RNA-seq datasets. To capture tissue specific functions, RNA-Seq datasets from multiple tissues 
are processed to extract the expression values. Starting with the ENCODE mouse RNA-Seq datasets, the following 
filtering criteria are used to select the datasets: (1) Read length ≥ 50; (2) Mapping percent ≥ 70%; and (3) No error 
or audit warning flags were generated. For the tissue specific networks, only those tissues with at least 10 samples 
were used. Based on these filters we retained 359 RNA-Seq samples from around 20 tissues, 17 of which have at 
least 10 samples (Table S1).

The mouse genome build GRCm38.p4 from NCBI was used to align the RNA-Seq datasets using STAR (ver-
sion 2.5.3a)30. Then, the relative abundance of the mRNA isoforms as fragments per kilobase of exon per million 
fragments mapped (FPKM) is calculated using StringTie (version 1.3.3b)31. The GFF3 annotation file correspond-
ing to the GRCm38.p4 build was also used during the alignment and quantification.

mRNA sequence composition. mRNA sequences can be represented as the frequencies of k neighboring nucleic 
acids, jointly referred to as k-mers (Eq. 1). For an mRNA sequence there are 4k possible k-mers in a k-mer group, 
while there are 20k possible k-mers for protein sequences. For a sequence of length l,
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where, f(kmeri) is the frequency of the ith k-mer and Ni is the count of the ith k-mer. We compute the k-mer com-
position for k = 3 to 6 for all mRNA isoform sequences using the rDNAse library in R32,33.

Protein sequence properties. Each protein sequence can be characterized in multiple ways by exploiting its 
sequence and order composition. Like the mRNA sequence k-mer composition described above, we compute the 
k-mer compositions for k = 1 and 2 for all protein sequences. We also compute the conjoint triad descriptors34 for 
all protein sequences. For this, the standard 20 amino acids are grouped into 7 classes according to the volume 
of the side chains and their dipoles. Then, the k-mer composition is calculated at k = 3 for this newly represented 
protein sequence. For k = 3, protein sequences can lead to highly sparse 8000 (20*20*20) features as opposed to 
only 243 (7*7*7) in case of the conjoint-triad descriptors. The dramatically reduced feature dimension also results 
in a reduced variance dimension and may also partially overcome the overfitting problem34.

To take the sequential information of the amino acids in a protein sequence into account, we also compute 
the pseudo-amino acid composition35 and Moran autocorrelation36 for all protein sequences. The amino acid 
composition (k = 1) does not contain any of its sequence-order information, whereas pseudo-amino acid compo-
sition includes additional position-related features35. Therefore, the pseudo-amino acid composition reflects both 
sequential as well as compositional order35. Moran autocorrelation (Eqs 2 and 3) is a type of topological descriptor 
which measures the level of spatial correlation between two objects (amino acid residues) in terms of their specific 
physicochemical or structural property.

Level Entity Feature Type

Sequence

mRNA

3-mers

4-mers

5-mers

6-mers

Protein

Amino acid composition (1-mer)

Di-amino acid composition (2-mer)

Conjoint Triad Descriptors

Pseudo-amino acid composition

Moran autocorrelation

Expression mRNA

Heart

Liver

Kidney

Adrenal Glands (AdGland)

Forebrain

Midbrain

Hindbrain

Embryonic facial prominence 
(EmbFacPro)

Large intestine (Lintestine)

Small intestine (Sintestine)

Lung

Limb

Neural tube (Ntube)

Ovary

Spleen

Stomach

Thymus

Organism-wide

Table 1. A list of all mRNA and protein level feature types used in this study.
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Figure 1. Overview of TENSION workflow. A brief overview of TENSION is provided. We also illustrate the 
process of generating the mRNA isoform level labels using two dummy gene ontology biological process terms, 
T1 and T2. Functional mRNA isoform pairs (positive pairs) are shown in green and non-functional pairs 
(negative pairs) are shown in red. ρ: Pearson Correlation Coefficient; z: standard z-score; FM

n
1
: nth feature of the 

mRNA M1; FM
n

2
: nth feature of the mRNA M2.

https://doi.org/10.1038/s41598-019-50119-x


5Scientific RepoRtS |         (2019) 9:13949  | https://doi.org/10.1038/s41598-019-50119-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

where, d is called the lag of the autocorrelation; Pi and Pi+d are the properties of the amino acid i and i + d; ′P  is 
the considered property P along the sequence, i.e.,

′ = ∑ =P
P

N (3)
i
N

i1

All protein sequence properties were computed using the protr library in R32,37.

mRNA isoform level feature calculation. The goal is to accurately predict a functional network which 
represents the probability of two mRNA isoforms belonging to the same GO biological process or pathway. Lower 
edge weights correlate with mRNA isoform pairs’ involvement in the same GO biological process or pathway. The 
weighted functional network is modeled as a graph G = (V, E), where the set V represents the mRNA isoforms 
(nodes) and the set E represents the mRNA isoform pairs (edges). For an mRNA isoform pair (Eij) in the func-
tional network, the class label (Lij) is assigned as shown in Eq. 4:

=








−
L

if both mRNA i and j interact or are co annotated to the same
GO biological process or pathway

otherwise

1 ,

0 (4)
ij

Many mRNA isoforms have zero FPKM values. The FPKM values were corrected by performing 
log-transformation and a small constant value of 1 was added to all FPKM values, i.e. log2(FPKM + 1). The 
log-transformation is intended to normalize and re-scale the FPKM values. The addition of a small constant 
value alleviates the problem where the log of zero FPKM value is not defined, which is not an acceptable input for 
machine learning methods.

For all mRNA isoform pairs, Fisher’s z-transformed Pearson correlation scores (Eq. 5) are calculated and used 
as input features for machine learning.

z 1
2

log 1
1 (5)2

ρ
ρ

=
−
+

Pearson correlation coefficient of 1 and −1 leads to z-score of −∞ and ∞ respectively, so these z-scores are 
replaced with an extreme value of −100 and 100 respectively. In cases where the Pearson correlation coefficient 
is not defined, we set the z-score to 0.

For every mRNA isoform pair, we calculate one z-score using the samples from one tissue and use this as 
one feature. For instance, one z-score for heart, one z-score for liver, one z-score for lungs and so on for all 17 
tissues. Additionally, one z-score is also calculated using all 359 RNA-Seq samples. This resulted in 18 features, 
one for each of the 17 tissues and one using all RNA-Seq samples. Similarly, for every mRNA isoform pair, we 
calculate one z-score for each of k = 3, 4, 5 and 6 for mRNA isoform sequences, k = 1 and 2 for protein sequences, 
conjoint-triad descriptors, pseudo-amino acid composition and Moran autocorrelation. This led to 9 further 
features resulting in a total of 27 features.

mRNA isoform level functional labels. The mRNA isoform level functional labels are created by com-
bining the information from GO biological process annotations (downloaded on 23 October 2017), KEGG path-
ways (downloaded on 25 September 2017), BioCyc pathways (downloaded on 25 September 2017) and PPIs 
(downloaded on 25 September 2017). We remove all GO biological process annotations with the evidence codes: 
Inferred from Electronic Annotation (IEA), Non-traceable Author Statement (NAS) and No biological Data 
available (ND). We utilize the GO hierarchy (gene ontology downloaded on 25 October 2017) and propagate all 
annotations by following the “true path rule”, which means that all genes/proteins annotated to a GO term T will 
also be annotated to all ancestor terms of T.

The PPIs were integrated from IntAct26, Biological General Repository for Interaction Datasets (BioGRID)38, 
Agile Protein Interactomes DataServer (APID)39, Integrated Interactions Database (IID)40 and Mentha41. For 
APID39, we include interactions with at least 2 experimental evidences (level 2 dataset). For IID40, we remove all 
interactions for which there is only orthologous evidence. For Mentha41, we remove interactions with a score less 
than 0.2. Finally, we consider PPIs only if both interactors are from mouse.

After propagation, we remove the GO biological process terms which are too broad (more than 1000 genes 
annotated) or too specific (less than 10 genes annotated). A gene is assumed to be functional if it is annotated to 
a GO biological process or a pathway. Two genes are assumed to be functionally related if both are co-annotated 
to the same GO biological process or pathway. The information in GO, KEGG, BioCyc and PPI databases usually 
focus on the canonical form of a gene/protein and doesn’t distinguish between the mRNA isoforms resulting 
from AS. The current biological databases do not explicitly differentiate the functions of different mRNA isoforms 
of the same gene. This unavailability of mRNA isoform level functional information is the cause for having no 
mRNA isoform level gold standard datasets. To overcome this challenge for building machine learning meth-
ods, there are two ways: (1) Randomly assign the functions of a gene to its mRNA isoforms; and (2) Use only 
single mRNA isoform producing genes. The first approach introduces large bias in the functional datasets while 
also losing information from the random assignment of function. In the second approach, we lose information 
from multiple mRNA isoform producing genes in the functional data, but avoid biasing the functional dataset. 
Because, we do not randomly select unannotated genes for building the non-functional dataset, we still introduce 
some complementary information from multiple mRNA isoform producing genes in the training and testing 
datasets. Both ways have their pros and cons, and we believe that although we lose information by using only 
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single mRNA isoform producing genes as functional pairs, we reduce a lot of false functional labels by not assign-
ing the functions of a gene to its mRNA isoforms randomly.

Therefore, we construct mRNA isoform level functional labels by utilizing the information from single mRNA 
producing genes and gene annotations tagged with a “NOT” qualifier. A summary of the mRNA isoform level 
functional label generation is illustrated in Fig. 1.

In our functional networks, if a gene G1 produces only a single mRNA M1, then M1 is assumed to perform 
the functions of G1 and is considered functional. Similarly, if two genes G1 and G2, both of which produce single 
mRNAs, M1 and M2 respectively, are co-annotated to the same GO biological process or pathway, the pair (edge) 
M1 − M2 is assumed to be functionally related (positive pair). Additionally, if G1 and G2 are involved in a PPI, the 
pair (edge) M1 − M2 is also assumed to be functionally related (positive pair).

We utilize a more robust way of defining functionally unrelated (negative pair) mRNA isoform pairs by using 
the GO biological process annotations tagged with “NOT” qualifier. A gene/protein tagged with “NOT” qualifier 
means that it is not involved in the respective GO biological process and hence can be considered non-functional 
(negative) for this GO biological process. All such annotations are propagated by the inverse of “true path rule”, 
which means that if a gene/protein is explicitly ‘NOT’ annotated to a GO term T, it will also be ‘NOT’ annotated 
to all the children of T. Consider a GO biological process term T1 annotated with genes G1, G2, G3 and G4which 
produce mRNA isoforms M M M M M M M, , , , , and1 2 31 32 41 42 43. Of these genes, if G3 is tagged with a ‘NOT’ qual-
ifier (Fig. 1), all pairs of M Mand31 32 with M M M M M, , , and1 2 41 42 43 are assumed to be functionally unrelated 
(negative pair). It should be noted that currently there are only few hundred such annotations.

Genes can be annotated to multiple GO biological process terms. In Fig. 1, single mRNA isoform producing 
genes G1 and G2 are annotated to GO biological process terms T1 and T2. However, the gene G2 is tagged with a 
“NOT” qualifier for term T2. Consequently, the mRNA isoform pair M1 − M2 is functionally related for term T1 
but functionally unrelated for term T2. In cases where an mRNA isoform pair (M1 − M2) is found to be both func-
tionally related (positive pair) for one term (T1) but functionally unrelated (negative pair) for another term (T2), 
we consider the mRNA isoform pair (M1 − M2) as functionally related (positive pair) because M1(G1) and M2(G2) 
are involved in at least one common GO biological process.

Predicting functional networks. Generating training and testing datasets. There are approximately 2.9 
billion possible mRNA isoform pairs resulting from the 75,826 annotated mRNA isoforms. Using the method 
described above (see methods section ‘mRNA isoform level functional labels’), we labelled 2,083,679 mRNA 
isoform pairs as functional pairs (positive) and 818,071 mRNA isoform pairs as non-functional pairs (negative). 
All the remaining mRNA isoform pairs are considered to be ‘unknown’, i.e. neither functional nor non-functional 
pairs. The mRNA isoform pairs in the functional and non-functional groups are mutually exclusive, i.e. an mRNA 
isoform pair can be either functional or non-functional, but not both.

We generate two types of datasets: training and testing. The training and testing datasets are mutually exclu-
sive, i.e. an mRNA isoform pair can be either in a training or testing dataset, but not both. The training dataset 
contains randomly selected 640,000 functional and 640,000 non-functional mRNA isoform pairs. The testing 
dataset contains randomly selected 160,000 functional and 160,000 non-functional mRNA isoform pairs not 
included in the training dataset. The functional pairs in the original testing dataset are made up of only single 
mRNA isoform genes. The non-functional pairs are however not restricted to single mRNA isoform genes. All 
datasets are balanced.

Random forest model for the functional networks. We formulate the task of mRNA isoform functional network 
prediction as a simple supervised learning problem. In supervised learning, a model capable of distinguishing a 
pre-defined set of ‘positives’ (functional mRNA isoform pairs in our case) from a set of ‘negatives’ (non-functional 
mRNA isoform pairs in our case) is built using a set of features derived from potential predictors of the property 
under consideration (mRNA isoform pair function in our case).

Using all 27 features for our training dataset, we train a Scikit-learn42 Random Forest43 model to predict 
the mRNA isoform functional network. Then we evaluate the performance of the random forest model by 
making predictions on the testing dataset. Commonly used performance evaluation metrics such as Accuracy, 
Area Under the Receiver Operating Characteristics Curve (AUROC), Area Under the Precision-Recall Curve 
(AUPRC), Precision, Recall, F1 Score, and Matthews Correlation Coefficient (MCC) are calculated using the 
predictions for testing dataset to assess the performance of the random forest model. The predictions are only 
evaluated when all 27 features are used for predictions. Finally, we use the random forest models to make predic-
tions on all 2.9 billion possible mRNA isoform pairs.

Building tissue-specific mRNA isoform networks. To build the tissue-specific mRNA isoform networks, we utilize 
the leave-one-tissue-out strategy. First, using all 27 features, we train an organism-level mRNA isoform functional 
network prediction random forest model. Then, we generate 17 tissue-specific mRNA isoform functional network 
prediction random forest models by removing the tissue specific RNA-Seq features, one tissue at a time. The 
mRNA isoform pairs for which the prediction is unaffected after leave-one-tissue-out are referred to as “reference 
pairs”. The two tissue-specific cases are: (1) mRNA isoform pairs which are predicted to be functional in only one 
tissue (tissue specific functional mRNA isoform pairs), and (2) mRNA isoform pairs which are predicted to be 
non-functional in only one tissue (tissue specific non-functional mRNA isoform pairs). These are also summa-
rized in Fig. 2.

If the prediction for an mRNA isoform pair changes from functional (positive) to non-functional (negative) 
after removing a tissue derived RNA-Seq feature, we consider such mRNA isoform pairs as tissue specific func-
tional pairs. Similarly, if the prediction for an mRNA isoform pair changes from non-functional (negative) to 
functional (positive) after removing a tissue derived RNA-Seq feature, we consider such mRNA isoform pairs as 
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tissue specific non-functional pairs. For instance, consider the case of heart specific mRNA isoform functional 
network prediction. We train two random forest models, (1) using all 27 features and, (2) after removing the heart 
derived RNA-Seq feature. Then, the heart specific functional mRNA isoform pairs are those which are predicted 
as functional by the first model but non-functional by the second model and vice-versa for the non-functional 
mRNA isoform pairs.

From mRNA isoform networks to gene networks. We collapse the tissue-specific mRNA isoform networks to 
gene networks as illustrated in Fig. 3. All mRNA isoform nodes of the same gene are merged into a single gene 
node. All direct edges from the mRNA isoforms of the same gene are transferred to the single gene node. This 
resulted in 17 gene level tissues networks in addition to the 17 tissue-specific mRNA isoform networks.

Tissue-specific network analysis. We use igraph44 in R32 for analyzing the graph properties of 
tissue-specific networks. We calculate basic statistics like number of nodes, number of edges, density, number 
of components, and size of the largest connected component for both mRNA isoform and gene level networks. 
Using the largest connected component for every network, we find central nodes (top 10%) using betweenness 
centrality and degree centrality. We also check the overlap between the central nodes as found using both central-
ity measures. The overlapping central gene nodes are further subjected to functional enrichment analysis.

In addition to calculating the global network properties, we also extract the mRNA isoforms, genes and gene 
pairs that are specific to a tissue and those that are shared by multiple tissues.

Figure 2. Defining tissue specific functional and non-functional mRNA isoform pairs. Here we illustrate 
the process of classifying the mRNA isoforms as tissue specific functional, tissue specific non-functional or 
organism wide reference pairs. If the prediction is functional (positive) when using all 27 features but changes to 
non-functional (negative) after removing the tissue derived RNA-Seq feature, we assume such mRNA isoform 
pairs as tissue-specific functional pairs. Contrary to tissue-specific functional pairs, if the prediction changes 
from non-functional (negative) to functional (positive) after removing the tissue derived RNA-Seq feature, we 
assume such pairs as tissue-specific non-functional pairs. For the reference pairs, the prediction is constant after 
removing any tissue derived RNA-Seq feature.

Figure 3. Constructing gene level networks from mRNA isoform networks. Shown here is the process by which 
we construct gene level networks using the tissue-specific functional mRNA isoform pair networks. All edges 
from the mRNA isoforms of the same gene in the mRNA isoform network are transferred to the single gene 
node in the gene level network. The gene and its mRNA isoforms have the same color.
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Functional enrichment analysis. We use the tissue-specific list of overlapping central gene nodes to perform 
functional enrichment analysis using the ReactomePA (version 1.26.0) and clusterProfiler (version 3.10.0) pack-
ages in R32,45,46. Enrichment is performed for Reactome pathways (version 66), KEGG pathways (release 88.2), 
GO biological process, GO molecular function and GO cellular components (GO data with a time stamp from 
the source of 10 October 2018 used by tools). In reactome data model, the core unit is a reaction while KEGG 
provides information about higher-level systemic functions of the cell and the organism. Due to the differences 
in the underlying data model and how pathways are defined, we perform enrichment analysis for both Reactome 
and KEGG pathways. We use a p-value cutoff of 0.05, false discovery rate control using Benjamini-Hochberg47 
with a cutoff of 0.05, minimum term size of 10, and maximum term size of 1000 for the enrichment analyses. We 
also remove redundant GO terms with a semantic similarity greater than 0.7 using the “Wang” measure48 and 
keep the terms with most significant adjusted p-value. We further filter the GO terms to four levels45,46 and plot 
only the top 5 most significant terms for every tissue. Neural tube was removed from the functional enrichment 
analysis because there was only 1 central gene.

Model evaluation. Randomization experiments. To test the effect of randomization during the generation 
of training and testing datasets, we performed 1000 iterations of random training and testing dataset generation. 
In each iteration, we shuffle the combined functional and non-functional pairs, select 640,000 functional pairs 
and non-functional pairs respectively for the training dataset, select 160,000 functional and non-functional pairs 
respectively for the testing dataset, train a random forest model on the training dataset, use the trained model 
to make predictions on the testing dataset, and compute performance metrics. These datasets are referred to as 
“randomized datasets”.

To examine whether the random forest model learns genomic and sequence features that are predictive of 
functional mRNA isoform pairs, we perform a control experiment in which the functional and non-functional 
class labels are randomly shuffled to destroy the feature-class relationship in the original dataset. We perform 500 
iterations of random training and testing dataset generation in which the functional and non-functional mRNA 
isoform pair class labels are shuffled. We train a random forest model on the class label shuffled training dataset, 
use the trained model to make predictions on the class label shuffled testing dataset and compute performance 
metrics. These datasets are referred to as the “class-label shuffled datasets”.

We also evaluate the impact of number of trees on the performance of the random forest model. For this, we 
use the following number of trees: 10, 20, 50, 100, 200, 500, 1000, 2000, and 5000. Again, we train one model with 
each of these number of trees using the training dataset and then evaluate the performance using the predictions 
on the testing dataset.

Using stratified cross-validation. We evaluate the performance of TENSION using a Stratified 10-Fold 
cross-validator. In terms of bias and variance, stratification, a sampling technique without replication and where 
class frequencies are preserved, is generally a better scheme as compared to regular cross-validation49. We use 
the original training data to create the 10-fold splits using StratifiedKFold function from Scikit-learn42 which 
preserves the relative class frequency in each training and held out test fold. We then evaluate the performance of 
each fold by computing the AUROC and AUPRC using the predictions made on the held-out test fold.

Validating predictions using new annotations. Because there is no gold standard dataset available for mRNA iso-
form level functions, we validate our predictions using the latest annotations from GO, KEGG pathways, BioCyc 
pathways, IntAct26, BioGRID38, APID39, IID40 and Mentha41. The new annotations (downloaded on 5 June 2018) 
were also processed as described in the “mRNA isoform level functional labels” section. Using our strategy to 
utilize the single isoform gene annotations for creating functional pairs, we found 284,916 functional pairs in the 
new annotations not present in our original functional pairs. Similarly, we found 112,827 non-functional pairs 
in the new annotations not present in our original non-functional pairs. We refer this new set of functional and 
non-functional mRNA isoform pairs as the “validation set”.

Validation of literature datasets. We also validate the predictions made by TENSION using two datasets from 
the literature: (1) a list of 20 ubiquitously expressed genes50 and, (2) a list of 5035 genes that are expressed higher 
(expression fold change greater than 4 relative to all other tissues) in a specific tissue51. Only the tissues present 
in both TENSION and the transcriptomic BodyMap of mouse are selected for validation. We merge the three 
brain regions used in TENSION, forebrain, midbrain and hindbrain into a single brain entity for the analysis. 
Additionally, we removed the transcriptomic BodyMap of mouse genes that were not included in our initial 
21,813 genes. This resulted in a final gene set of 1654 genes for the transcriptomic BodyMap of mouse. It is impor-
tant to note that the above gene lists are based solely on the gene expression and do not necessarily translate to 
functionally enriched genes and as such we expect to find interactions involving these genes in multiple tissues.

Comparison with existing methods. To demonstrate the utility of using a simple supervised learning frame-
work and improvements over previous methods for mRNA isoform functional network prediction, we compare 
TENSION with the Bayesian network based multi-instance learning model in18. We use our original training 
dataset with all 27 features to train the Bayesian network classifier and TENSION and make predictions on our 
original testing dataset. The output scores for mRNA isoform pairs in the original testing dataset from Bayesian 
network classifier and TENSION were used to compare the performance of the methods. We evaluate the perfor-
mance of both the methods by computing the AUROC and AUPRC.
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Results
A random forest model for functional network prediction. We use the mouse genome build 
GRCm38.p4 from NCBI in this study. After filtering the mRNA isoforms containing non-standard characters, 
less than 30 amino acid protein products and those missing either sequence or expression profile, we retained 
2,874,753,225 mRNA isoform pairs. We have calculated 27 heterogeneous genomic and sequence-based features 
for all the mRNA isoform pairs (Table 1). Of these, we labelled 2,083,679 mRNA isoform pairs as functional pairs 
(positive) using the single mRNA isoform genes (described in methods section). And 818,071 mRNA isoform 
pairs as non-functional pairs (negative) by using the “NOT” annotation tag in the GO annotations (described 
in methods section). These functional and non-functional mRNA isoform pairs are used to train and develop 
random forest models for predicting mouse mRNA isoform level functional networks. The predictions made by 
random forest have an associated probability score which measures the strength of mRNA isoform interactions.

Randomization experiments. Randomization experiments test the effect of selecting functional and 
non-functional pairs when generating training and testing datasets. Figure 4 shows that there is very little to no 
variance in the performance of randomized datasets. Therefore, we generate one final training and testing dataset 
(“original datasets”) by randomly selecting functional and non-functional pairs and use it to generate the final 
functional network prediction models.

To help us identify if TENSION is actually learning from the data and not just making random predictions, we 
estimate the performance of the random forest model on the class-label shuffled datasets. The AUROC obtained 
on the class-label shuffled datasets is 0.5 (as compared with 0.947 on the original testing dataset) indicating that 
our functional network prediction model performs significantly better than random predictions (Fig. 5).

Performance evaluation. We evaluate the performance of TENSION when using all 27 features from the predic-
tions on the original testing dataset. We first evaluate the impact of number of trees on the performance of random 
forest model. It can be seen in Fig. S1 that there is very little improvement in the performance of the model after 
100 trees. To reduce computational complexity without sacrificing the performance while making predictions for 
all 2.9 billion mRNA isoform pairs, we use 100 trees in our final models. On the original testing dataset, we obtain 
a high correlation as seen in Table 2 and Fig. S2 suggesting a highly accurate model. We use the Gini index from 
Scikit-learn42 Random Forest43 to evaluate the importance of features (Fig. S3). While we see that some features are 
more important than others, we found that using all 27 features resulted in the best performance.

Evaluation by stratified cross-validation. In addition to evaluating the performance of our random forest on a held-out 
test set, we also perform stratified 10-fold cross validation. The AUROC and AUPRC curves for each fold are shown in 
Fig. 6. We see that there is very little variance in the results of each fold. The results are also very close to those obtained 
on the original testing dataset (Fig. S2). The results of stratified cross-validation emphasize the robustness of TENSION.

Figure 4. Performance evaluation on randomized datasets. A boxplot of various performance evaluation 
metrics calculated using 1000 randomized datasets. The median value is shown for the performance metrics. 
The width of the boxes along the x-axis represent the variability in the value of the performance metric across 
1000 randomized datasets. Higher metric value and smaller box width is better. Abbreviations - AUROC: Area 
Under the Receiver Operating Characteristic Curve; MCC: Matthews Correlation Coefficient.
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Validating predictions using new annotations. After processing the new GO annotations, pathway, and PPIs data, 
we learned a new set of 397,743 previously unknown mRNA isoform pairs. Of these, we labelled 284,916 as func-
tional and 112,827 as non-functional mRNA isoform pairs. Using all 27 features, TENSION correctly classified 
315,844 (out of 397,743) mRNA isoforms pairs at an overall accuracy of 79.4%. The true positives, true negatives, 
false positives, and false negatives collectively represented by a confusion matrix are presented in Table 3. Since 
the distribution of functional and non-functional mRNA isoform pairs in the validation set is imbalanced, we 
also access the performance of our classifier by computing the AUPRC and AUROC. We observe an AUPRC of 
0.926 and an AUROC of 0.855 (Fig. 7). In addition to these curves, we also calculate the Precision (0.885), Recall 
(0.819), F1 score (0.851) and MCC (0.524). These are much higher than random predictions shown in Fig. 5 sug-
gesting that TENSION performs better than random guessing and is also able to predict potential functional and 
non-functional mRNA isoform pairs accurately.

Of these new mRNA isoform pairs, 8200 are predicted as tissue-specific functional mRNA isoform pairs. 
However, the annotations in GO, KEGG, BioCyc, and PPI databases do not store tissue information, so we cannot 
validate the tissue specificity of these predictions.

Comparison with existing methods. We compare the performance of TENSION when using all 27 features with that 
of the Bayesian network based MIL method18. The default parameters are used for the Bayesian network-based MIL 
method. We use our original training dataset to train the Bayesian network-based MIL method and TENSION and 

Figure 5. Performance evaluation on label shuffled datasets. A boxplot of performance evaluation metrics 
calculated using 1000 label shuffled datasets. The functional and non-functional labels for mRNA isoform pairs 
are randomly shuffled while still maintaining the class distribution (equal functional/non-functional pairs). 
The median value is shown for the performance metrics. The width of the boxes along the x-axis represent 
the variability in the value of the performance metric across 1000 label shuffled datasets. Higher metric value 
and smaller box width is better. The performance of a model which makes random guesses is about 0.5 (or 
0 for MCC because it ranges from −1 to 1). Abbreviations - AUROC: Area Under the Receiver Operating 
Characteristic Curve; MCC: Matthews Correlation Coefficient.

Metric Value

Accuracy 0.872

Area Under the Receiver Operating Characteristic Curve (AUROC) 0.947

Area Under Precision-Recall Curve (AUPRC) 0.947

Precision 0.873

Recall 0.871

F1 score 0.872

Matthews Correlation Coefficient (MCC) 0.745

Table 2. Prediction performance metrics for TENSION on the original testing dataset with all 27 features.
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then make predictions on our original testing dataset. We calculate the AUROC and AUPRC using these predictions 
for both models to compare their performance. The functional mRNA isoform pairs are derived from single mRNA 
producing genes co-annotated to GO biological process, pathways or PPIs whereas the non-functional mRNA iso-
form pairs are constructed by using the ‘NOT’ tagged GO biological process annotations.

The Bayesian network based MIL method achieves an AUROC of 0.761 (Fig. 8) which is higher than the orig-
inal AUROC value of 0.656 reported in the original study18. TENSION achieves significantly higher AUROC of 
0.947. Similarly, TENSION achieves significantly higher AUPRC of 0.947 as compared to Bayesian network-based 
MIL method’s AUPRC of 0.757 (Fig. 8). The significantly higher AUROC and AUPRC values of TENSION 
highlights the importance of using a simple supervised learning framework and improvements over the more 
complex MIL-based methods for mRNA isoform functional network prediction. It should be noted that the 
MIL-based method was originally developed using different set of features, however, for the purpose of compari-
son we have used the same training and testing datasets for both methods. The improved performance of Bayesian 
network-based MIL method on our dataset also highlights the significance of mRNA isoform level functional 
label and feature generation in TENSION.

Tissue-specific networks. Tissue-specific functional mRNA isoform pair networks. As shown in Fig. 2, to 
build the tissue-specific mRNA isoform level functional networks, we assume that, for a tissue i, if an mRNA isoform 
pair is predicted to be functional (positive) using all 27 features, but the prediction after removing the tissue i- spe-
cific feature is non-functional (negative), the mRNA isoform pair is only functional under tissue i. The strength of 
mRNA isoform interactions is measured by the probability score predicted by random forest. To remove noise, low 
confidence predictions and organism-wide reference mRNA isoform pairs from tissue-specific functional networks, 
we only consider the mRNA isoform pairs which have a random forest predicted probability score ≥0.6 when using 
all 27 features and a probability score ≤0.4 after removing the tissue derived RNA-Seq feature. For the tissue specific 
functional networks, a lower probability score corresponds to higher strength of mRNA isoform pair to be involved 
in the same GO biological process or pathway. A summary of all 17 tissue-specific mRNA isoform functional net-
works as obtained after applying the above filtering criteria is provided in Table 4.

Figure 6. Performance evaluation by 10-fold stratified cross-validation. The precision-recall and receiver 
operating characteristic curve for all 10 folds of the stratified cross-validation. Note that the performance is 
virtually identical for all folds suggesting the robustness of TENSION. A model with area under the curve 
closer to 1 is better while a model with an area under the curve of 0.5 is equivalent to making random guess. 
Abbreviations - AUC: Area Under the Curve.

True Label ↓

Predicted Label

Functional Non-Functional

Functional 233434 51482 284916 (81.9%)

Non-Functional 30417 82410 112827 (73%)

263851 133892

Table 3. Confusion matrix for predictions on validation set.
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The tissue-specific functional networks identify around 10.6 million tissue-specific functional mRNA isoform 
pairs (0.37% of all possible mRNA isoform pairs). The density of tissue-specific functional networks is in the 
order of 10−2–10−5 and most networks are very sparse. The number of tissue-specific functional mRNA isoform 

Figure 7. Performance evaluation on validation dataset. The precision-recall and receiver operating 
characteristic curve for predictions on the validation dataset. The validation dataset is constructed by using the 
later version of gene ontology annotations, pathways and protein-protein interactions than those used for our 
original mRNA isoform level label generation. A model with area under the curve closer to 1 is better while a 
model with an area under the curve of 0.5 is equivalent to making random guess. Abbreviations - PR: Precision-
Recall; ROC: Receiver Operating Characteristic.

Figure 8. Performance comparison with Bayesian network based multi-instance learning method. The 
precision-recall and receiver operating characteristic curve for performance comparison of TENSION with 
previously published Bayesian network based multi-instance learning method. The original training dataset was 
used to train both models and performance was calculated using the predictions made on the original testing 
dataset. Abbreviations - AUC: Area Under the Curve.
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pairs vary greatly across the tissues, from few thousands in limb and neural tube to few million in large intestine 
and ovary (Table 4). All these mRNA isoform pairs are present in only one tissue. Table 4 shows the number of 
functional mRNA isoform pairs identified as single tissue-specific in each of the 17 tissues.

All tissues have many connected components (Table 4). Limb, neural tube and kidney have less than 50% 
mRNA isoform nodes in their largest connected component, whereas some others like hindbrain, large intestine, 
ovary, and forebrain etc. have over 90%. These differences in the size of networks, mRNA isoforms involved and 
the network structures highlight the differences in tissue-level biological processes as evident by the differences 
in the enriched pathways and gene ontology terms (discussed later).

To highlight the differences that arise when analyzing functional networks at the mRNA isoform and gene 
level and because all functional enrichment tools are built for analyzing genes, we also compress the mRNA iso-
form level networks to gene level networks. In the gene level networks, all mRNA isoform nodes of the same gene 
are combined into a single gene node. Table 5 provides a summary of the gene level networks for all 17 tissues. 
We identified around 7.79 million unique gene pairs (3.27% of all possible gene pairs) using these tissue level 
gene functional networks. It was recently observed in mouse and humans that testis and ovary express the high-
est number of genes whereas brain and liver express the highest number of tissue enriched genes under normal 
conditions51,52. This is also reflected in our gene level networks (Table 5) where ovary, hindbrain and forebrain 
networks have the largest number of edges (gene pairs) and nodes (genes).

While the majority of gene pairs are present in only one tissue level gene functional networks (98% of identi-
fied gene pairs; Table 5), a small fraction (2% of identified gene pairs; Table 5 and Fig. 9) is present in at least two 
tissue level gene functional networks. Although the gene pairs are shared between tissues, the mRNA isoform 
pairs resulting from these gene pairs are specific to only one tissue. This highlights that different mRNA isoforms 
of the same gene can have different functional partners across tissues.

Shared gene-pairs may indicate shared processes between tissues. The spleen and embryonic facial promi-
nence share the highest fraction of gene pairs (about 7.6% of gene pairs; Table 5) with other tissues, while ovary 
shares the lowest fraction (3% of all ovary gene pairs; Table 5). The composition of gene pairs shared between the 
tissue level functional networks is quite complex and is shown in Fig. 9 (additionally, Fig. S4 shows the fraction 
of mRNA isoform that are predicted to be functional in multiple tissues). Upon further investigation, we find 
that the spleen network shares 4.8% of its gene pairs with ovary network while ovary network shares only 0.1% 
of its gene pairs with the spleen network. We also find that thymus shares about 3.7% of its gene pairs with ovary, 
supporting the notion that thymus is necessary for normal ovarian development and function after the neonatal 
period53,54. These findings further justify the importance of our networks in characterizing tissue level processes.

Like the mRNA isoform networks, the gene-level neural tube network contains only 2.9% of genes in its largest 
connected components (Tables 4 and 5). All other gene-level tissue networks have a very high fraction of genes 
and gene pairs in the largest connected components (Table 5).

Central genes in tissue-specific functional networks have tissue related characteristics. The central genes identified 
in our tissue-specific networks are enriched in tissue related GO terms and pathways (Figs 10 and 11). The central 
genes in the heart specific gene network are significantly enriched in transmembrane transporter activity, vitamin 
binding, complement and coagulation cascades etc. (Figs 10 and 11). Supplementation of several vitamins such 
as Vitamin B6, Vitamin D, Vitamin E, and folate etc. are linked to reduced risk of cardiovascular diseases55–59. The 

Tissue

mRNA 
isoforms 
(Nodes)

mRNA 
isoform 
pairs 
(Edges) Density

Clusters 
(Connected 
Component)

Largest 
connected 
component size

Adrenal Glands 41623 161149 1.86E-04 718 40067

Embryonic facial 
prominence 23328 24494 9.00E-05 3022 15805

Forebrain 66871 659338 2.95E-04 117 66631

Heart 35299 208256 3.34E-04 1744 31310

Hindbrain 59759 281402 1.58E-04 276 59186

Kidney 14112 11481 1.15E-04 3354 6089

Limb 14522 9939 9.43E-05 4649 175

Large intestine 37796 2687698 3.76E-03 525 36707

Liver 38792 81796 1.09E-04 1174 36156

Lung 31571 60428 1.21E-04 1255 28732

Midbrain 33907 68118 1.19E-04 1017 31721

Neural tube 7683 4308 1.46E-04 3377 15

Ovary 33752 5968367 1.05E-02 552 32587

Small intestine 29118 122594 2.89E-04 1599 25544

Spleen 37058 128500 1.87E-04 779 35425

Stomach 33630 160221 2.83E-04 1060 31357

Thymus 24773 28582 9.32E-05 2237 19381

Table 4. Summary statistics for mRNA isoform level single tissue functional networks.
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serine proteinase cascades of the coagulation and the complement systems have been associated with functions of 
the cardiovascular and immune systems60.

Several important renal processes such as JAK-STAT signaling pathway, cytokine signaling in immune sys-
tem, cytokine-cytokine receptor interaction, and signaling by interleukins etc. are enriched in the central genes 
of the kidney specific gene network (Figs 10 and 11). Defects in these processes and pathways have been linked 
to several renal disorders and related co-morbidities61–64. Genes in the kidney network are also enriched for 
interferon-gamma production and inflammatory bowel disease (IBD; Figs 10 and 11). In IBD, interferon-gamma 
negatively regulates the Na+/Ca2+ exchanger 1 (NCX1) -mediated renal Ca2+ absorption contributing to 
IBD-associated loss of bone mineral density and altered Ca2+ homeostasis65.

The large intestine has specific and efficient carrier mediated transporter mechanisms for the absorption of 
several water soluble vitamins (pantothenic acid, biotin, thiamin, riboflavin and folate)66. These vitamins are 
essential for several biological processes and their enrichment in large intestine specific gene network only seems 
natural (Figs 10 and 11). The brain-in-the-gut or the enteric nervous system (ENS) is the largest component of the 
autonomous nervous system67–69. The small intestine ENS is equipped to perform functions relating to inflamma-
tion, digestion, secretion and motility among others67–69. The identification of several neuronal terms for central 
genes in the small intestine network is in line with such literature findings (Figs 10 and 11)67–69.

Fertility and energy metabolism are reciprocally regulated and tightly linked in female animals and this rela-
tion has been conserved throughout evolution70–72. Metabolic disorders such as those of the liver can lead to 
changes in reproductive functions and vice-versa70–72. It was recently proposed that in case of protein scarcity, 
the estrous cycle is blocked and the liver acts as a critical mediator of reproductive and energetic functions70–72. 
The enrichment of several reproduction and fertility related terms in our liver specific network also point towards 
such observations (Figs 10 and 11).

We also find significantly enriched tissue related process terms for other tissues such as spleen, ovary, adrenal 
glands and limb etc. (Figs 10 and 11). However, the tissue specific central genes do not always lead to significantly 
enriched terms.

The identification of tissue related biological processes via the central genes highlights that TENSION can 
correctly capture the tissue-specific functional mRNA isoform pairs produced by genes involved in tissue related 
functions. We can identify the specific mRNA isoforms of these genes by looking back at the mRNA isoform level 
tissue networks. Finding the specific mRNA isoforms responsible for these processes should provide a significant 
clue towards understanding of developmental and molecular processes of diseases and biological functions.

Tissue-specific non-functional mRNA isoform pair networks. To build the tissue-specific mRNA isoform level 
non-functional networks, we assume that, for a tissue i, if an mRNA isoform pair is predicted to be non-functional 
(negative) using all 27 features but the prediction after removing the tissue i- specific feature changes to func-
tional (positive), the mRNA isoform pair is only non-functional under tissue i (Fig. 2). To remove noise and low 
confidence predictions in tissue-specific non-functional mRNA isoform networks, we only consider the mRNA 
isoform pairs which have a random forest predicted probability score of ≤0.4 when using all 27 features and a 
probability score of ≥0.6 after removing the tissue derived RNA-Seq feature. Higher probability score reflects 

Tissue
Genes 
(Edges)

Gene 
pairs 
(Edges)

Tissue 
specific 
gene 
pairs Density Clusters

Largest 
connected 
component 
size

Gene 
pairs 
shared 
with 
other 
tissues

Adrenal gland 17171 146413 137526 9.33E-04 153 16953 8887

Embryonic facial 
prominence 13058 24183 22346 2.62E-04 610 12001 1837

Forebrain 19979 509765 485982 2.44E-03 22 19944 23783

Heart 15874 189042 178026 1.41E-03 274 15452 11016

Hindbrain 19546 239309 228381 1.20E-03 44 19491 10928

Kidney 9672 11226 10413 2.23E-04 1236 7059 813

Limb 9619 9677 9139 1.98E-04 1300 6689 538

Large intestine 14981 1999465 1893127 1.69E-02 173 14648 106338

Liver 17420 77521 72872 4.80E-04 147 17216 4649

Lung 14784 56739 52527 4.81E-04 255 14402 4212

Midbrain 15581 62722 59576 4.91E-04 211 15265 3146

Neural tube 6057 4278 3978 2.17E-04 2083 176 300

Ovary 14613 4207053 4079552 3.82E-02 196 14221 127501

Small intestine 14254 116777 110355 1.09E-03 345 13676 6422

Spleen 15320 119865 110709 9.43E-04 234 14962 9156

Stomach 14991 152581 142860 1.27E-03 238 14589 9721

Thymus 13145 27451 25378 2.94E-04 458 12374 2073

Table 5. Summary statistics for gene level functional networks.

https://doi.org/10.1038/s41598-019-50119-x


1 5Scientific RepoRtS |         (2019) 9:13949  | https://doi.org/10.1038/s41598-019-50119-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

stronger tissue-specific non-functional mRNA isoform pair. A summary of all 17 tissue-specific mRNA isoform 
level non-functional networks as obtained after applying the above filtering criteria is provided in Tables 6 and 7.

Using these tissue-specific mRNA isoform level non-functional networks we identified around 3.5 mil-
lion tissue-specific non-functional mRNA isoform pairs (0.12% of all possible mRNA isoform pairs). The 
tissue-specific non-functional networks are also sparse with density in the order of 10−3–10−5. The number of 
tissue-specific non-functional mRNA isoform pairs also vary greatly across the tissues. For instance, forebrain has 
a very high number of 1.4 million (40% of all tissue-specific non-functional mRNA isoform pairs) non-functional 
mRNA isoform pairs. All these mRNA isoform pairs are specifically non-functional in only one tissue.

Similar to the functional networks, we also compress the non-functional mRNA isoform networks to gene 
level non-functional networks. In the gene level networks, all mRNA isoform nodes of the same gene and their 
edges are combined into a single gene node. Many gene pair (but no mRNA isoform pair) are present in at least 
two tissue level gene non-functional networks.

Different mRNA isoforms of the same gene are functional in different tissues and have tissue 
preferred functional partners. The tissue level functional mRNA isoform networks along with the iden-
tification of gene pairs that are shared across tissues provide us an opportunity to distinguish the tissue-specific 
functional mRNA isoforms of a gene. We have identified around 164,000 functional gene pairs with different 
mRNA isoform pairs that are shared by multiple tissues. This points to the tissue specific expression and function 
of different mRNA isoforms of a gene.

The fraction of gene pairs shared between tissues is presented in Fig. 9. We see that several pairs of tissues such 
as limb and forebrain, heart and large intestine, midbrain and forebrain, thymus and ovary, spleen and ovary etc. 
share a large number of gene pairs. This suggests that while these gene pairs are functional in multiple tissues, the 
actual mRNA isoform pairs can differ and our networks are capable of identifying such differential relationships 
between mRNA isoform pairs of the same gene pair.

The gene pair Fundc2 (FUN14 domain containing 2) and Necab1 (N-terminal EF-hand calcium binding pro-
tein 1) is present in both ovary and heart. The Fundc2 gene produces a single mRNA isoform NM_026126.4 

Figure 9. Fraction of gene pairs shared between tissues. The heatmap represents the fraction of gene pairs 
shared between two tissues. The numbers shown in the heatmap are not symmetric because the fraction is 
weighted by total gene pairs in that row’s tissue. The fraction is weighted by the total number of pairs in the 
tissue specified on row. For instance, spleen shares 4.8% of all gene pairs present in the spleen network with 
ovary. Darker shades refer to higher fractions of shared gene pairs. The numbers in the heatmap should be 
interpreted as reading a matrix rowwise. Abbreviations - AdGland: Adrenal glands; EmbFacPro: Embryonic 
facial prominence; Ntube: Neural Tube; Sintestine: Small intestine; Lintestine: Large intestine.

https://doi.org/10.1038/s41598-019-50119-x


1 6Scientific RepoRtS |         (2019) 9:13949  | https://doi.org/10.1038/s41598-019-50119-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

while Necab1 gene produces two mRNA isoforms, XM_006538234.1 and NM_178617.4. The interaction 
between Fundc2 and Necab1 can be dissected into two interactions corresponding to the two mRNA isoform 
pairs (Fig. 12A). Among the two mRNA isoform pairs, the pair involving XM_006538234.1 is heart specific 
functional mRNA isoform pair while the other pair involving NM_178617.4 is functional in ovary. This reveals 
the tissue preferred interaction partners of Fundc2 mRNA isoform NM_026126.4. Further investigation of all 
tissue specific functional mRNA isoform pairs involving Necab1 mRNA isoform XM_006538234.1 revealed that 
most of its interactions are found in heart (366 out of 391). Similarly, most of the interactions involving Necab1 
mRNA isoform NM_178617.4 are found in ovary (836 out of 859). This highlights the expression and functional 
preference of Necab1 mRNA isoforms.

Figure 10. Gene ontology functional enrichment. Since the functional annotations are at the gene level, we 
use the central genes identified by both betweenness centrality (top 10%) and degree centrality (top 10%) 
to perform gene ontology enrichment. Only the top 5 terms for every tissue are shown here. The dot size 
represents the ratio of genes present in our central genes annotated to a gene ontology term to genes present 
in our central network. The color signifies the value of adjusted p-value from false discovery rate control using 
Benjamini-Hochberg, with lower adjusted p-values shown in darker intensities of red. (A) Enrichment for 
cellular component aspect of gene ontology. (B) Enrichment for molecular function aspect of gene ontology. 
(C) Enrichment for biological process aspect of gene ontology. Abbreviations – AdGland: Adrenal glands; 
EmbFacPro: Embryonic facial prominence; Sintestine: Small intestine; Lintestine: Large intestine.
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Another such gene pair involves two mRNA isoform producing genes, Apoc2 (apolipoprotein C-II) and Nts 
(neurotensin). The gene pair involving Apoc2 and Nts is found in the networks of ovary and forebrain and can be 
dissected into four interactions corresponding to the four mRNA isoform pairs. Three of these mRNA isoform 
interactions are found to be tissue-specific functional mRNA isoform pairs (Fig. 12B). Interactions involving the 
Apoc2 mRNA isoform NM_001309795.1 are preferred in forebrain (1310 out of 1903) and NM_001277944.1 are 
preferred in ovary (355 out of 586). The NM_024435.2 mRNA isoform of Nts is enriched in ovary (1314 out of 
1358) and interacts with the ovary enriched Apoc2 mRNA isoform NM_001277944.1 in ovary, suggesting a tissue 
preferred interaction pattern.

TENSION is also able to distinguish the tissue-specificity of mRNA isoforms of a gene between closely related 
tissues. For example, the gene Olfr994 (olfactory receptor 994) produces two mRNA isoforms, XM_006499549.1 
and NM_146433.1. The mRNA isoform NM_146433.1 is preferred in hindbrain (223 out of 309 interactions) 

Figure 11. Pathway enrichment analysis. We use the central genes identified by both betweenness centrality 
(top 10%) and degree centrality (top 10%) to perform pathway enrichment. Only the top 5 pathways for every 
tissue are shown here. The dot size represents the ratio of genes present in our central genes annotated to a 
pathway to genes present in out central network. The color signifies the value of adjusted p-value from false 
discovery rate control using Benjamini-Hochberg, with lower adjusted p-values shown in darker intensities 
of red. (A) Enrichment for reactome pathways. (B) Enrichment for KEGG pathways. Abbreviations - KEGG: 
Kyoto Encyclopedia of Genes and Genomes; AdGland: Adrenal glands; Sintestine: Small intestine; Lintestine: 
Large intestine.
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while XM_006499549.1 is preferred in midbrain (57 out of 65 interactions). There are several cases in which 
the mRNA isoforms of the same gene exhibit tissue preferred interactions. However, this is not true for all 
multi-isoform genes. The mRNA isoforms of many multi-isoform genes are not involved in tissue preferred 
interactions.

Some mRNA isoform pairs are functional while other mRNA isoform pairs of the same gene 
pair are non-functional. We find about 660,000 instances where an mRNA isoform pair is functional while 
other mRNA isoform pairs of the same gene pair are non-functional. Around 143,000 of such cases are within 
the same tissue. For example, the mRNA isoforms of genes Agrp (agouti related neuropeptide) and Olfr1152 
(olfactory receptor 1152) result in two mRNA isoform pairs (Fig. 12C). The pair involving NM_001011834.1 
(Olfr1152) and NM_001271806.1 (Agrp) is predicted to be functional in hindbrain while the other pair involving 
Agrp mRNA isoform NM_007427.3.1 is non-functional in hindbrain (Fig. 12C). The NM_007427.3.1 mRNA 

Tissue

mRNA 
isoforms 
(Nodes)

mRNA 
isoform pairs 
(Edges) Density Clusters

Largest connected 
component size

Adrenal glands 35368 213426 3.41E-04 3043 28354

Embryonic facial 
prominence 15194 8856 7.67E-05 6341 22

Forebrain 63151 1407212 7.06E-04 98 62947

Heart 30603 26859 5.74E-05 5817 15456

Hindbrain 62114 509639 2.64E-04 219 61653

Kidney 16503 10427 7.66E-05 6095 1247

Large intestine 47731 89559 7.86E-05 1357 44697

Limb 48172 112519 9.70E-05 754 46585

Liver 45339 114783 1.12E-04 1473 42159

Lung 14585 8380 7.88E-05 6213 28

Midbrain 23621 15607 5.59E-05 8036 163

Neural tube 18465 11510 6.75E-05 6958 40

Ovary 55783 799229 5.14E-04 526 54638

Small intestine 40655 99825 1.21E-04 1611 37148

Spleen 23949 37927 1.32E-04 5479 10275

Stomach 26541 23988 6.81E-05 4982 14012

Thymus 21565 22458 9.66E-05 6308 5189

Table 6. Summary statistics for single tissue mRNA isoform level non-functional networks.

Tissue Genes

Gene 
pairs 
(Edges)

Tissue 
specific 
gene 
pairs Density Clusters

Largest 
connected 
component 
size

Gene 
pairs 
shared 
with 
other 
tissues

Adrenal glands (Nodes) 172220 167593 0.001514 218 14489 4627

Adrenal glands 14882 172220 167593 1.51E-03 218 14489 4627

Embryonic facial 
prominence 9601 8792 8464 1.84E-04 1438 5699 328

Forebrain 18556 1035497 1003429 5.83E-03 22 18520 32068

Heart 14025 26063 24758 2.52E-04 369 13342 1305

Hindbrain 18511 416933 396527 2.32E-03 36 18449 20406

Kidney 10024 10240 9678 1.93E-04 1234 7047 562

Large intestine 16997 87150 84028 5.82E-04 78 16880 3122

Limb 16981 100402 96023 6.66E-04 75 16877 4379

Liver 16600 102783 99668 7.23E-04 113 16427 3115

Lung 9358 8316 7991 1.83E-04 1562 4873 325

Midbrain 12586 15341 14363 1.81E-04 847 10728 978

Neural tube 10794 11410 10838 1.86E-04 1108 8191 572

Ovary 18573 715062 703048 4.08E-03 50 18497 12014

Small intestine 15084 84532 78142 6.87E-04 165 14833 6390

Spleen 12155 35158 33764 4.57E-04 559 11014 1394

Stomach 12764 23213 22020 2.70E-04 489 11829 1193

Table 7. Summary statistics for single tissue gene level non-functional networks.
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isoform of Agrp is functionally enriched in the forebrain but has most of its non-functional interactions in hind-
brain (362/447 functional interactions in forebrain vs 324/343 non-functional interactions in hindbrain), but the 
opposite is true for the isoform NM_001271806.1. The NM_001271806.1 mRNA isoform of Agrp contains an 
alternate 5′ exon, although both Agrp mRNA isoforms produce the same protein.

Similarly, for the gene pair involving Iqcf6 (IQ motif containing F6) and Gstcd (glutathione S-transferase, 
C-terminal domain containing), only one mRNA isoform pair is functional in adrenal glands while two other 
pairs are non-functional (Fig. 12D). The remaining mRNA isoform pair could be functional or non-functional 
in multiple tissues.

The remaining 520,000 instances are across tissues, i.e., one mRNA isoform pair is tissue-specific functional 
in one tissue while other mRNA isoform pairs of the same gene pair are tissue-specific non-functional in other 
tissue.

Validation of super-conserved and transcriptomic BodyMap of mouse tissue-specific 
genes. The first gene set contains 20 genes that are known to be widely expressed50. These genes have 
tissue-specific functional interactions in most of our 17 tissue-specific networks validating their ubiquitous 
expression and function (Fig. 13). The second gene set contains 1654 genes from the transcriptomic BodyMap of 
mouse that have a very high expression in one tissue (relative to all other tissues) and thus a higher propensity to 

Figure 12. mRNA isoforms of the same gene have different functional partners across tissues. Few examples 
where the mRNA isoforms of the same gene have different functional/non-functional partners in specific 
tissues. The mRNA isoforms of the same gene are represented in same shape. The node color, edge color and 
the edge label color are encoded based on the tissue for part A and B. Functional pairs have green, while non-
functional pairs have red node color, edge color and edge label color in parts C and D. Lower edge weight 
reflects higher strength of functional mRNA isoform pair. (A) The mRNA isoform NM_026126.4 of gene 
Fundc2 forms a functional pair with different mRNA isoforms of Necab1 gene in heart and ovary. (B) The ovary 
enriched mRNA isoform NM_001277944.1 of gene Apoc2 forms a functional pair with another ovary enriched 
Nts mRNA isoform NM_024435.2 in ovary. Other Apoc2 mRNA isoform NM_001309795.1 is preferred in 
forebrain. (C) The Olfr1152 mRNA isoform NM_001011834.1 forms a functional pair with Agrp mRNA 
isoform NM_001271806.1 in hindbrain while the other pair involving Agrp mRNA isoform NM_007427.3.1 
is non-functional in hindbrain. (D) The gene pair Iqcf6 and Gstcd result in four mRNA isoform pairs of which 
one pair is functional and two are non-functional in adrenal glands.
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have more tissue-specific functions. For every gene, we compute the top n All{1, 3, 5, 7, 9, }=  tissues for its 
mRNA isoforms based on the number of functional interactions in the tissue.

We find that the top tissue (n = 1) among our tissue-specific networks and that in the transcriptomic BodyMap 
of mouse matches for 503 genes (30%; Table 8). However, a gene can be involved in multiple functions across mul-
tiple tissues due to different mRNA isoforms. Therefore, when we consider the top 3 (52% match) or top 5 (68% 
match) tissues, we find a much higher correlation with the transcriptomic BodyMap of mouse (Table 8). Overall, 
we find 1245 (75%) genes to have at least one tissue specific interaction in the same tissue as described in the 
transcriptomic BodyMap of mouse.

It is interesting to note that if we consider the tissue-specificity of only the genes, ignoring the tissue-specificity 
of different mRNA isoforms of the same gene, we find a weaker correlation with the transcriptomic BodyMap of 
mouse (15% and 41% respectively for n = 1 and 3). Most studies including the transcriptomic BodyMap of mouse 
focus only on the gene expression and function, completely ignoring the effects of alternatively spliced mRNAs. 
Our study further illustrates the importance of distinguishing the functions of different mRNA isoforms of the 
same gene.

Figure 13. Validation of super-conserved genes. A heatmap showing the presence or absence of a tissue-
specific functional interaction for the 20 super-conserved genes. The genes are on the y-axis and the tissues 
are on the x-axis. If a gene has a tissue-specific functional interaction, the corresponding block is filled green, 
or orange otherwise. Abbreviations - AdGland: Adrenal glands; EmbFacPro: Embryonic Facial Prominence; 
Lintestine: Large intestine; Ntube: Neural tube; Sintestine: Small intestine.

Tissue

Genes 
in 
original 
study

Top n tissues

1 3 5 7 9 All

Adrenal glands 41 5 20 36 38 39 39

Brain 639 405 598 637 637 637 637

Heart 35 — 9 18 23 24 24

Kidney 131 — 15 31 39 44 45

Liver 245 5 42 145 176 181 181

Large intestine 36 9 18 19 19 19 19

Lung 71 2 13 26 33 36 37

Ovary 76 71 74 74 74 74 74

Small intestine 116 1 10 26 38 39 41

Spleen 153 4 33 70 84 93 93

Stomach 39 — 2 10 15 15 15

Thymus 72 1 21 30 37 39 40

Total 1654 503 855 1122 1213 1240 1245

Table 8. Number of genes with tissue-specific functional interactions in the same tissue as the transcriptomic 
BodyMap of mouse.
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Similar tissues have similar mRNA isoform expression profile. Tissues that are functionally and 
morphologically similar tend to have more consistent gene expression profile than other tissues51. We also observe 
that similar tissues such as midbrain, forebrain, hindbrain and neural tube have a very high Pearson correlation 
coefficient (ρ ≥ 0.97; Fig. 14) based on the median mRNA isoform expression profile. Likewise, adrenal gland is 
most highly correlated with ovary (ρ = 0.87), large intestine with small intestine (ρ = 0.84) and thymus with spleen 
(ρ = 0.88) among others, and are consistent with previous findings51.

Discussions
We have developed tissue-level functional networks to study mRNA isoform functional relationships, providing 
a higher resolution view of biological processes as compared to traditional gene-level networks. Learning the dif-
ferences in the functional connections of mRNA isoforms of the same gene are crucial for functional genomics, 
and helps us in deepening our understanding of gene functions. Determining the functional interaction patterns 
of mRNA-isoforms of the same gene also provides useful information about biological regulation, diseases, and 
stress response caused by AS.

It is widely believed that the fate of biological processes and pathways varies with different mRNA isoforms of 
the same gene. Many pathways and molecular processes differ across cell and tissue-types. These mechanisms are 
also altered by external conditions such as abiotic and biotic stress. Understanding of such deviations in cell, tis-
sue and condition specific functional relationships would be of interest to understand the perturbed mechanisms.

Based on the analysis of 359 mouse tissue-specific RNA-Seq samples along with 9 diverse sequence proper-
ties, we have constructed 17 tissue-specific mRNA isoform level functional networks. These networks constitute 
~10.6 million unique functional and ~3.5 million non-functional mRNA isoform interactions across 17 tissues. 
In addition to these tissue-specific networks, we have also developed an organism-wide reference network. We 
show that TENSION is highly accurate with very high precision and recall by comparing our predictions with 
class label shuffled datasets, ten-fold stratified cross validation, previous method, and updated annotations from 
gene ontology, pathway databases and PPIs. In addition to these, we also validate our predictions by using a 
gene set of 20 ubiquitously expressed genes and 1654 genes with a very high expression in one tissue from the 
transcriptomic BodyMap of mouse. The improvement in the performance (compared to the original study) of 
Bayesian network-based MIL method on our dataset also prove the utility of TENSION in generating better 
mRNA isoform level datasets.

Our tissue-specific networks capture the differences in functional relationships of mRNA isoforms of the 
same gene across multiple tissues highlighting the importance of tissue-specific changes in biological processes 
and pathways. We are also able to distinguish the tissue-specific functional mRNA isoforms of a gene. We also 

Figure 14. Similar tissues have similar mRNA isoform expression profile. A heatmap showing the Pearson 
correlation coefficient between pairs of tissue based on the median mRNA isoform expression values. The 
dendrogram on the rows and columns reflects the clustering of tissues. Green represents higher positive 
correlation between a pair of tissue while red reflects higher negative correlation. Similar tissues can be seen 
being clustered together.
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find that different mRNA isoforms of the same gene are enriched in different tissues, suggesting differential 
tissue-level activity of mRNA isoforms of the same gene. Furthermore, we also see that morphologically and 
functionally similar tissues tend to have more consistent mRNA isoform expression profile.

By studying the gene level networks in conjunction with mRNA-isoform level functional networks, we are 
able to gain different insights into the molecular mechanisms of biological processes. Diving down further into 
the tissue-specific networks sheds more light on the tissue-level activities of a gene and its mRNA isoforms. The 
central genes identified in these tissue-level networks are enriched in tissue related processes.

Despite all the efforts to reduce bias and account other variables that can impact the results, there are few 
shortcomings. Like similar studies, we do not distinguish between the co-variates such as sex and age, but rather 
build generic mouse functional networks. A very important and common assumption of all machine learning 
studies in biological sciences is the fact that the current biological databases are accurate and complete to-date. 
And like previous studies, our study will also suffer from the loss of information not present in biological data-
bases such as Gene Ontology, Pathway and PPI databases.

In summary, we provide the research community with a comprehensive characterization of mRNA isoform 
level tissue-specific functional networks for mouse. TENSION is simple and generic, making it easily applicable 
to other organisms. We expect that these networks will allow further in-depth investigations of the impact of 
alternatively spliced mRNA isoforms on biological processes. We anticipate that tissue-specific mRNA-isoform 
functional networks will find wide applications in genomics, agriculture and biomedical sciences.

Data Availability
All data and scripts have been deposited and is available at DataShare: Iowa State University’s Open Research Data 
Repository through https://doi.org/10.25380/iastate.c.427519173.
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