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Dependence of connectivity 
on geometric distance in brain 
networks
Alessio perinelli  1, Davide tabarelli2, carlo Miniussi  2 & Leonardo Ricci  1,2

in any network, the dependence of connectivity on physical distance between nodes is a direct 
consequence of trade-off mechanisms between costs of establishing and sustaining links, processing 
rates, propagation speed of signals between nodes. Despite its universality, there are still few studies 
addressing this issue. Here we apply a recently–developed method to infer links between nodes, and 
possibly subnetwork structures, to determine connectivity strength as a function of physical distance 
between nodes. the model system we investigate is brain activity reconstructed on the cortex out of 
magnetoencephalography recordings sampled on a set of healthy subjects in resting state. We found 
that the dependence of the time scale of observability of a link on its geometric length follows a power–
law characterized by an exponent whose extent is inversely proportional to connectivity. our method 
provides a new tool to highlight and investigate networks in neuroscience.

The fact that the brain has a small–world topology makes up a widespread assumption regarding the investigation 
of brain connectivity1–3. The issue is linked to the question of how geometric distance is relevant in human brain 
networks. As pointed out by Bullmore and Sporns in their review of 20121, the dependence of connectivity on the 
physical distance appears to be a trade-off between the complexity required to carry out cognitive tasks and the 
metabolic costs of establishing and sustaining a huge number of elements and links. More recently, Gollo et al.4 
investigated the balance between costs of anatomical wirings and complexity, suggesting that any perturbation 
might induce neuropsychiatric disorders. While neural connections within the brain are not straight segments, 
geometric (Euclidean) distance turns out to be a measure apt to describe distance–related issues concerning 
the brain function5,6. Geometric distance between network elements was shown to be a relevant parameter for 
modelling the information transfer between brain regions, e.g. with regard to information transfer delays7,8. The 
interplay between geometric distance, connectivity and network topology was also investigated in relation to neu-
rological diseases9. The dependence of functional links on the geometric distance between brain regions was first 
investigated by Salvador et al.10,11 and Fair et al.12 by studying correlation coefficients assessed out of functional 
magnetic resonance imaging (fMRI) recordings. In these works, as well as in more recent ones1,9, correlation 
coefficients are proposed to be proportional to the inverse of the square distance. On the other hand, other studies 
hint at different dependencies of connectivity on distance13–15. For example, Expert et al.16 claimed that, for suffi-
ciently small ranges, correlations decrease as the inverse of the square root of distance.

In this paper we investigate the dependence on distance of the basic elements of networks, i.e. links between 
pairs of nodes. Links are assessed by means of a recently introduced method17 that, rather than relying on stand-
ard correlation measures, looks at the time scale at which cross–correlation between reciprocally undelayed time 
series occurs. The new approach is therefore complementary to traditional tools used to assess connectivity, and 
is expected to provide alternative insights into this issue.

We used cortical activity reconstructed out of magnetoencephalography (MEG) resting state time series col-
lected from 20 healthy subjects among those available in the Human Connectome Project database18,19. A set of 72 
brain regions, henceforth referred to as nodes, was randomly selected. Given a pair of nodes, we then investigated 
the dependence on their distance, henceforth referred to as link length d, of the time scale W at which cross–cor-
relation between time series generated by each node occurs. This dependence turned out to be consistent with a 
power–law.
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Results: time Scale of observability vs. Distance
The reconstruction of the cortical activity was carried out according to the atlas by Glasser et al.20, which provides 
the position of 360 different nodes. For the sake of computational simplicity, we analyzed 1/5 of the available set, 
namely 72 randomly selected nodes. For each single node a set of 60 time series is available, corresponding to 20 
subjects and 3 recordings per subject. The set of nodes results in 2556 pairs. Due to the slight anatomical differ-
ences between the subjects, each pair corresponds to a set of 20 link lengths, so that the total number of d values 
is approximately 50000 within the range from 5 to 160 mm.

Given a subject, a recording and a pair of nodes, the time scale of observability of the corresponding link was 
assessed out of the related pair of time series, resulting in approximately 150000 values of W. While ∼ 70000 
assessments failed to produce a finite time scale W, the remaining ∼ 83000 ones provided a valid W value within 
the range from 0.4 s to 48 s.

The first goal of the present work is to verify whether there is a correlation between link length d and time scale 
of observability W. Figure 1(a) shows the joint sample probability distribution f d W( , ) obtained by partitioning 
both the distance range and the time scale range in 20 bins each. The two marginal distributions g d( )d  and g W( )W  
are shown in Fig. 1(b,c), respectively. Figure 1(d) shows the difference − ⋅f d W g d g W( , ) ( ) ( )d W , which turns out 
to be significantly nonzero. Consequently, the two variables d and W turn out to be significantly correlated. 
Besides in the (a) part of the figure, the color map representing f d W( , ) is shown in Fig. 1(f) where the bin size is 
reduced by a factor 2 on each direction. The slight asymmetry of the shape hints as well at a correlation between 
d and W.

Figure 1(e) shows the conditional sample distribution | =f W d f d W g d( ) ( , )/ ( )d . The same distribution, upon 
halving again the bin size on each direction, is shown in Fig. 1(g). The shape of the most likely region suggests that 
the relationship between W and d is nonlinear. As explained in the Methods section, among different functional 
forms analyzed, a power–law of the kind ( )W W d

d0
0

=
γ
 suitably describes the dependence of W on d. The result 

Figure 1. (a) Joint sample probability distribution f d W( , ). Both the distance range and the time scale range 
are partitioned in 20 bins each. Blue line (b) Marginal sample probability distribution of d. Red line (c) Marginal 
sample probability distribution of W. (d) Difference between the joint distribution f d W( , ) and the product 

⋅g d g W( ) ( )d W  of the two marginal distributions. (e) Conditional sample distribution f W d( )|  of W given d, 
evaluated as f d W g d( , )/ ( )d . (f) Map representation of the joint sample probability distribution f d W( , ) 
obtained by partitioning both the distance range and the time scale range in 40 bins. (g) Map representation of 
the conditional sample probability distribution f W d( )|  obtained by partitioning both the distance range and the 
time scale range in 40 bins.
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of this analysis is shown in Fig. 2. Upon setting the normalization parameter d0 to 75 mm (see Methods section), 
the parameters W0 and γ resulting from a best–fit procedure are = . ± .W (20 9 0 2) s0  and 0 44 0 01γ = . ± . .

The same analysis explained above was applied to each single subject in order to test whether the previous 
behaviour is characteristic of a single human brain or, rather, is the spurious effect of a cohort analysis. The results 
are shown in Fig. 3. The power–law dependence of W on d is indeed present in each subject, although with dif-
ferent values of the parameters W0 and γ. Most parameters pairs are clustered in a region where W ranges from 
15 mm to 30 mm and γ ranges from 0.2 to 0.7. This result is in agreement with the claim by Expert et al.16. As far 
as the exponent γ is concerned, a possible explanation of its variability relies on different levels of connectivity, 
as discussed in the next section. Interestingly, the average subject behaviour, in terms of average values of the 
two parameters among the subjects (blue dot), is in a very good agreement with the behaviour extrapolated by a 
pooled analysis of all subjects (red dot).

Discussion
As asserted in the Introduction, due to the presence of physical constraints, connectivity has to depend on dis-
tance21. This property appears to be universal, i.e. independent of the system under investigation. As an example, 
parallel to the work by Bullmore and Sporns1 concerning trade-off issues in brain connectivity, the work by 
Gastner and Newman22 addresses distributions of geometric properties in terms of costs and benefits within the 
framework of geographical networks. However, despite its universality, studies addressing the dependence of 
connectivity on physical distance are still few. Among these ones, a recent work by Hens et al.23 discusses a gen-
eral model for signal propagation in networks to classify them in families depending on “the interplay between 
network paths, degree distribution and interaction dynamics”.

Figure 2. Map representation of the conditional sample probability distribution f W d[ log( ) log( )]|  obtained by 
partitioning both the distance range and the time scale range in 40 bins. The white dots represent the average 
value W  of W given d, while the upper and lower white, thin lines bound the 68% confidence region for W. The 
green straight line corresponds to the best linear fit to the average points for which ⩾d 15 mm. The slope 
corresponds to 0 44 0 01γ = . ± . .

Figure 3. Cartesian representation of the γW( , )0  pairs resulting from the power–law fit on each single subject 
(black dots) and on the whole set of subjects (red dot). The errorbars correspond to the uncertainties on the fit 
parameters; in the case of the whole set of subjects, errorbars are too small to display. The blue dot and the 
related errorbars correspond to the sample mean and sample standard deviation of the coordinates W0 and γ of 
the 20, single–subject black dots.
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In neuroscience, to separate local–scale and large–scale regimes, Bellec et al.24 described distance–dependent 
correlation between fMRI time series by relying on variograms, a tool from spatial statistics to quantify correla-
tion as a function of distance25. Variograms allowed to empirically extract information on the spatial extent of 
correlations in fMRI connectivity26–28 and to account for the complicated characteristics of fMRI data29. In addi-
tion, variograms were applied to remove spurious correlations due to voxel proximity in fMRI studies within the 
auditory cortex30 and to monitor the spatial distribution of cellular activity in the brain31. In general, correlation 
is shown to quickly decrease down to a critical distance and then to saturate. A crucial issue in the investigation of 
human brain connectivity is to establish whether, and to what extent, structural connectivity, assessed by diffusion 
tensor imaging and tractography32, determines functional connectivity33–36. This issue is ultimately linked to how 
the neuron wiring is related to brain cognitive functions4,37 and how it is possible to reconstruct physical links out 
of temporal correlations detected through electrophysiological measurements.

Our investigation tackles the problem of determining the dependence of the connectivity strength on the 
geometric distance in a link between two nodes. Connectivity strength is expressed in terms of time scale of 
observability assessed by exploiting an analytical tool recently developed that relies on the analysis of time series 
each stemming from a single node. In the present case, time series are cortical activities reconstructed out of MEG 
recordings.

Figure 4. Correlation diagram (left) and p–value diagram (right) for the R–TF and the R–s32 brain regions (see 
Table 1) computed on one recording of the second subject.

Nr.
Atlas area 
(hemisphere) Nr.

Atlas area 
(hemisphere) Nr.

Atlas area 
(hemisphere)

1 TF (right) 25 V4 (right) 49 TPOJ1 (right)

2 V3B (right) 26 52 (right) 50 PeEc (left)

3 AAIC (right) 27 IFJa (right) 51 11 l (right)

4 10pp (right) 28 TF (left) 52 8 C (right)

5 6r (right) 29 s6–8 (right) 53 MIP (left)

6 47 s (left) 30 V4 (left) 54 EC (left)

7 POS2 (right) 31 OP2–3 (right) 55 7AL (left)

8 s32 (right) 32 STGa (right) 56 24dv (right)

9 p24pr (left) 33 25 (right) 57 5m (left)

10 FOP2 (left) 34 VVC (left) 58 IFJp (left)

11 6ma (left) 35 a32pr (left) 59 V6A (right)

12 FOP4 (right) 36 10r (left) 60 23d (left)

13 STV (left) 37 p9–46v (left) 61 6 mp (right)

14 PFcm (left) 38 47 m (right) 62 STGa (left)

15 STSvp (left) 39 VVC (right) 63 7 m (left)

16 PeEc (right) 40 LIPd (right) 64 a10p (right)

17 PI (right) 41 H (left) 65 a47r (right)

18 OFC (left) 42 RSC (right) 66 AVI (left)

19 PBelt (right) 43 IFSa (right) 67 PFm (right)

20 p9–46v (right) 44 43 (right) 68 p10p (right)

21 TE1a (right) 45 45 (right) 69 7Pm (left)

22 31a (left) 46 V6 (right) 70 24dd (right)

23 FOP4 (left) 47 52 (left) 71 10r (right)

24 9–46d (left) 48 7PC (left) 72 s32 (left)

Table 1. List of the 72 brain areas selected for the analysis. The reader can refer to Supplementary 
Neuroanatomical Results by Glasser et al.20 for anatomical and functional details about the areas listed here.
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What we observe, by using an approach based on the analysis of distributions similar to that discussed by 
Bialek et al.38, is that the dependence appears to be a power–law of the kind W ∼ dγ, where W is the time scale 
of observability and d is the geometric distance. The exponent γ takes on values ranging from 0.2 to 0.7. Lower 
values of γ corresponds to higher levels of connectivity, as explained in the following.

The quantity W measures the time scale at which the cross–correlation between time series generated by two 
nodes becomes significantly visible. The source of cross–correlation are typically peak–like17 events that occur 
in both nodes at the same time. This process is countered by noise, which tends to wash out cross–correlation. 
If nodes are directly connected by physical links, and if the propagation speed of signals between nodes is much 
faster than the time scale of observability of cross–correlation – as it is the case of neural signals, which propagate 
in ms, whereas W is at least of order 1 s – the time scale of observability of links is not expected to depend on 
their length. In this case, γ is expected to be ∼ 0. On the other hand, if no direct link between two nodes exists, a 
working link has to rely on intemediate nodes that act as relay hubs. The relay process possibly introduces a noise 
component, which leads to a progressive signal degradation as distance increases. Consequently, the larger the 
distance d, the less frequent a peak–like co–activating process occurs, and thus the longer is the time window W 
required to observe peak–like events that occur at the same time.

On the basis of the large variety of neural connections occurring in the human brain, it is possible that differ-
ent mechanisms like the two ones mentioned above simultaneously contribute to the observed power–law behav-
iour. In addition, different behaviours can be expected if particular sets of nodes, for example making up a 
subnetwork (like the default mode network39,40), are considered, as well as if correlation between the activity of 
nodes is not due to a direct information link but it is rather the manifestation of simultaneous responses to a 
common stimulation. The approach presented in this paper can be used to identify sets of nodes that form a sub-
network, for example by characterizing them on the basis of a specific behaviour in the W( , )0 γ  parameter space.

The exact identification and quantification of these mechanisms is beyond the scope of the present work. One 
possible way of tackling this issue is to study the complexity of neurophysiological signals41 and its influence on 
the time scale of observability when pairs of signals are analyzed. This approach requires analytical techniques 
and observables typical of nonlinear time series analysis like embedding42,43, correlation dimension44, maximum 
Lyapunov exponent45,46 and permutation entropy47.

In conclusion, we found that the the link strength, in terms of time scale of observability, significantly depends 
on the geometric link length. The method discussed in this work can be used to highlight the presence of an 
underlying subnetwork structure between subsets of nodes.

Methods
observability of a link inferred out of zero–delay cross–correlation analysis of the constitu-
ent nodes. In this work the assessment of connectivity between brain regions is carried out by applying a 
recently–introduced zero–delay cross–correlation method17. The aim of the algorithm48 is to assess the existence 
of links between nodes of a possible subnetwork structure out of time series recorded at each node and to provide 
an estimate of the time scale on which an existing link is observable.

The input of the analysis is a pair of time series, each associated to one of the two nodes. The first step to pro-
vide an evidence of a link between the two nodes consists of evaluating the zero–delay cross–correlation between 
the two time series. Cross–correlation is computed as the sample Pearson correlation coefficient over moving 
time windows of different widths. Therefore, correlation coefficients turn out to depend on both the window 
position and width, as displayed by means of two–dimensional correlation diagrams shown in Fig. 4 (left). In the 
present work, the window width was set to span a time interval from 400 ms to 48 s.

To assess the significance of the correlation coefficients, i.e. to associate a p–value to each correlation coef-
ficient, a surrogate–based approach is followed49. Surrogate time series are generated according to an iterative 
algorithm that preserves both the distribution of amplitudes and, approximately, the autocorrelation function of 
the original sequence. Given the pair of original time series, a set of 200 pairs of surrogate time series are gener-
ated. For each surrogate pair, a correlation coefficient diagram similar to the one shown in Fig. 4 is computed. The 
p–value of the point corresponding to a given window width and window position is then computed by ranking 
the correlation coefficient of the original time series within the set of 200 surrogate values, and finally normalizing 
the rank by 200. For each pair of nodes, the analysis provides a p–value diagram that depends on the window 
position and width. Figure 4 (right) shows the p–value diagram corresponding to the correlation diagram dis-
played in Fig. 4 (left).

A p–value diagram is then further processed to assess the existence of a link between the two nodes. This 
step requires the evaluation of the efficiency η corresponding to a window width w, i.e. of the function η = η(w): 
given the p–value diagram for the pair of nodes, and given a value w of the window width, the efficiency η(w) is 
defined as the fraction of the running windows of width w that exhibit a p–value smaller than a given significance 
threshold. In this work, this significance threshold is set to 5%. Efficiency is typically a growing function of w17. 
A link between two nodes is deemed to exist at a time scale W if the efficiency at the window width W overcomes 
a second threshold that is here set to 0.5. If the efficiency fails to overcome the threshold, no link is attributed to 
the pair of nodes.

The window width W defines the minimum time scale at which a link starts to be observable: hereafter, the 
link is supposed to exist for any time scale larger than W, at least up to the maximum window width of 48 s. It 
should be noted that observability eventually fades out – so that the corresponding link disappears – once the 
observation window becomes so wide that the noisy contributions to the time series become dominant again17.

The time scale of observability of a link is a measure of the minimum observation window such that two nodes 
are deemed to be correlated. For example, in the case of two nodes showing an identical activity over time, the 
minimum time scale of observability is zero. More realistically, the activity of two nodes turns out to be co–acti-
vated only for short periods of time, for example if a subnetwork structure is established for a given purpose and 

https://doi.org/10.1038/s41598-019-50106-2


6Scientific RepoRtS |         (2019) 9:13412  | https://doi.org/10.1038/s41598-019-50106-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

then reallocated after the purpose is accomplished. In this case, correlation is observed only if a sufficiently large 
window is used, and the time scale of observability turns out to correspond to the repetition time of this co–acti-
vation. The value W thus provides an estimate of the time scale of the process underlying the activation of links. 
These time scales are not necessarily related to the information transfer speed across the subnetwork: in the case 
of brain networks, information transfer occurs at the millisecond scale while the activation of links spans time 
intervals of second or tens of seconds17,40,50.

Given a number N of candidate nodes of a possible subnetwork structure, there are −N N( 1)/2 possible links, 
each corresponding to a node pair. The analysis described above has then to be carried on each of these pairs, and 
the results further processed in order to assess the possible presence of an underlying subnetwork structure17.

Dataset and preprocessing. The dataset used in this work consists of MEG resting state recordings of 20 
healthy subjects (age between 22 and 35, 16 males, 4 females) blindly extracted from the public database of the 
Human Connectome Project (HCP)18,19. The HCP provides the required ethical approval and consent needed for 
study and dissemination. Procedures for subject recruitment, including informed consent forms and consent to 
share de–identified data, were approved by the Institutional Review Board of the Washington University in St. 
Louis. All experimental procedures were performed under the guidelines of the HCP, which adhered to the rele-
vant IRB processes related to that project.

In brief, for each subject, three MEG resting state sessions of about 5 minutes each are available. Data were 
recorded with participants lying in supine position in a whole–head 248 magnetometers MAGNES 3600 scanner 
(4D Neuroimaging, San Diego, CA). Participants were instructed to rest with open eyes and maintain fixation on 
a projected red crosshair on a dark background. MEG sensor data, sampled at 2035 Hz, were cleaned by exclud-
ing bad channels and other artifacts and removing ocular/cardiac/myogenic activity by means of independent 
component analysis. The public HCP database provides single–shell volume conduction models51 computed out 
of a brain–enclosing surface mesh with 5000 points, as well as surface reconstructions of the mid–thickness 
cortical mantle, both segmented from individual anatomical T1–weighted MRI scan (Siemens Trio 3 T - Siemens 
Healthcare GmbH, Erlangen, Germany). All meshes coordinates are standardized to the MNI space and co–reg-
istered to the sensor array. Further details can be found on the HPC website (MEG connectome pipeline version 
3.0)19. Cortical activity was reconstructed by means of a minimum norm algorithm52 with unconstrained dipole 
orientations. We used an 8004 points cortical mesh as a source model, resulting in a grid resolution of approxi-
mately 5 mm. Noise covariance was estimated from the available empty–room recordings and no regularization 
was applied. Preprocessing and source reconstruction were carried out by means of FieldTrip routines53. After the 
reconstruction process, the time series were resampled from 2035 Hz down to 250 Hz. In order to get equally–
long time series of 300 s duration (75000 samples), the first 4 seconds of each time series as well as a final segment 
of variable length were discarded.

Figure 5. Anatomical position of the areas listed in Table 1 on a default anatomy. Colors are consistent with 
those used in the atlas by Glasser et al.20 and are related to the functional group to which each area belongs.
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Table 1 lists the 72 brain areas randomly selected out of the 360 areas defined in the atlas by Glasser et al.20, 
which was built by combining structural, diffusion, functional and resting state MRI data from 210 healthy young 
individuals. The random selection was carried out by the following procedure:

 1. number the areas between 1 and 360;
 2. toss a number between 1 and 360 by means of a uniform random number generator and thus select the first 

area;
 3. toss another number k between 1 and 360;
 4. check whether k is equal to anyone of the previously tossed numbers; if yes, repeat operation 3, otherwise 

jump to the next step;
 5. check whether the new area lies within 1 cm of anyone of the previously selected areas; if yes, repeat opera-

tion 3, otherwise accept the new area and jump to the next step;
 6. check whether the total number of areas is less than 72; if yes, repeat operation 3, otherwise stop.

The MNI coordinates of the centroid of each area provide the locations for the 72 sources that identify the 
respective nodes.

Figure 5 shows the anatomical position of the selected regions. For each of the 72 locations, the analyzed time 
series corresponds to the norm of the current dipole vector reconstructed at that location. For each pair of nodes, 
the geometric distance between the two nodes is computed out of their MNI coordinates.

Assessment of a functional relationship between W and d. Figure 6(a) shows the distribution of 
link lengths evaluated by considering the 20 subjects and the 72 selected nodes for each subject. Two histograms 
are shown: the first one (red line) refers to the whole set of link lengths while the second one (blue line), which is 
more shifted to lower values than the previous one, corresponds to those links for which an assessment of the time 
scale of observability W provided a valid result.

We also analyzed, for each single subject, the matching of the histogram of link lengths d corresponding to 
valid values of W with the histogram of the link length d, also corresponding to valid values of W, assessed on the 
set of all other subjects. The analysis was carried out by using the Kolmogorov–Smirnov test. In all 20 cases, the p–
value turned out to be close to unity. Link length thus follows the same distribution independently of the subject.

Figure 6. Red lines: histograms of the ∼ 50000 available values of link length d (a) and its logarithm 
dlog[ (mm)] (b). The number corresponds to 20 subjects and 2556 node pairs for each subject. Each link length 

actually occurs 3 times, corresponding to the 3 available recordings for each subject. Blue lines: histograms of 
the ∼ 83000 link lengths d (a) and its logarithm dlog[ (mm)] (b) for which a value of W is available.

Figure 7. Histograms of the ∼ 83000 available values of time scale W (a) and its logarithm Wlog[ (s)] (b).
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Figure 7(a) shows the histogram of the ∼ 83000 available values of time scale W. While the shape of the histo-
gram shows a maximum in the center of the range as in Fig. 6(a), the presence of a frequency offset of approxi-
mately 0.013 in the histogram of Fig. 7(a) forbids the formulation of any linear relationship between W and d. On 
the other hand, a linear mapping of the abscissa axes appears to be possible in order to (approximately) overlap 
the histograms of the logarithm of the two variables d and W, as it results from the plots of Figs 6(b) and 7(b), and 
despite W being truncated at 48 s, or equivalently = .Wlog[ (s)] 3 87, because of experimental reasons. It has also 
to be noted that no linear mapping can lead to an overlap between d and Wlog( ) and, viceversa, between dlog( ) 
and W, thus ruling out the possibility of exponential or logarithmic functional relationships between d and W.

Consequently, the dependence of the time scale of observability W on the link length d can be described by 
means of a power–law curve defined by ( )W W d

d0
0

=
γ
, where the two parameters W0 and d0 have the dimension 

of time and distance, respectively, and the exponent γ is dimensionless. To describe the power–law curve, either 
W0 or d0 can be arbitrarily set. The choice was to set d0 to 75 mm, which approximately corresponds to the average 
link length (see Fig. 6).

Data Availability
The authors declare that raw data used in the present work were extracted from the Human Connectome Project 
public database, which can be accessed at https://db.humanconnectome.org/. Processed data are available upon 
direct request.
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