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first-principles investigation 
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Using first-principles calculations, we investigated the electronic properties and band alignment of 
monolayered group III monochalcogenides. First, we calculated the structural and electronic properties 
of six group iii monochalcogenides (GaS, GaSe, Gate, inS, inSe, and inte). We then investigated 
their band alignment and analysed the possibilities of forming type-i and type-ii heterostructures by 
combining these compounds with recently developed two-dimensional (2D) semiconducting materials, 
as well as forming Schottky contacts by combining the compounds with 2D Dirac materials. We aim 
to provide solid theoretical support for the future application of group iii monochalcogenides in 
nanoelectronics, photocatalysis, and photovoltaics.

Group III monochalcogenides (MIIIXs, where MIII represents a group III element and X represents a chalcogen), a 
family of monolayered semiconducting materials, have attracted much research interest in recent years1–8. MIIIXs 
are semiconductors with moderate bandgaps which are sensitive to the number of layers in the material9. Their 
suitability for use as transistors10, sensors11, and photodetectors12–16 has been addressed in a number of stud-
ies. For example, Lei et al.13 fabricated an ultrathin InSe-based photodetector whose overall performance sur-
passed those of similar devices. Many researchers also investigated the effects of doping17, defects18, applied elastic 
strain19, and an external electric field20 on the electronic and optical properties of MIIIXs. More importantly, many 
types of MIIIX have been synthesized21. All these investigations demonstrate that MIIIXs can be an important cat-
egory of 2D semiconductor materials for application in many fields.

In this paper, we report the results of our comprehensive investigation on the electronic properties and band 
alignment of MIIIXs (MIII = Ga or In, X = S, Se, or Te; including GaS, GaSe, GaTe, InS, InSe, and InTe). More spe-
cifically, the structural parameters, band structures, and band edges were calculated for each material. We then 
explored the possibility of these materials forming type I, II, and III heterostructures with popular 2D semicon-
ducting materials, including MoS2, MoSe2, WS2, WSe2, black phosphorene, blue phosphorene, arsenene, h-BN, 
g-GaN, and germanane; the results are reported here. In addition, we also report our analysis of the possibility to 
form Schottky contacts between MIIIXs and 2D Dirac materials such as graphene and silicene. Our results will not 
only provide basic information on the properties of MIIIXs, but also fundamental guidelines for future application 
of MIIIXs.

Calculation Details
We used density-functional theory with the Perdew−Burke−Ernzerhof functional22 and projector-augmented 
waves23,24 to treat the valence electrons as implemented in the Vienna Ab Initio Simulation Package (VASP)25,26. 
The hybrid Heyd−Scuseria−Ernzerhof (HSE06) functional25 was also selected to compute the electronic prop-
erties. The mixing parameter was set to 0.25, while the screening parameter was set to 0.2 Å-1. The zero-damping 
vdW-D3 correction proposed by Grimme26 was used to describe the long-range interaction. The energy cutoff for 
plane-wave expansion was set to 550 eV. A 21 × 21 × 1 k-point mesh with Monkhorst–Pack27 scheme was used to 
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sample the first Brillouin zone. The tetrahedron methodology with Blöchl corrections28 was used for all the cal-
culations, only except the Gaussian smearing methodology29 with a smearing of 0.01 eV was employed for band 
structure calculations. To avoid interaction between adjacent images, a relatively large vacuum space of 20 Å was 
inserted in the normal direction. After the fully relaxation, the force on each atom was less than 0.01 V/Å. All the 
calculations were performed in a spin-restricted manner.

Results and Discussions
The crystal structure of MIIIX is shown in Fig. 1. A MIIIX monolayer is formed by four covalently bonded atomic 
planes in an X–MIII–MIII–X sequence. The relaxed lattice constants of GaS, GaSe, GaTe, InS, InSe, and InTe are 
3.62, 3.80, 4.12, 3.91, 4.06, and 4.36 Å, respectively. Meanwhile, the thicknesses of GaS, GaSe, GaTe, InS, InSe, and 
InTe are 4.65, 4.80, 4.99, 5.19, 5.37, and 5.56 Å, respectively.

The band structures of the MIIIXs are shown in Fig. 2. All of the MIIIX monolayers are indirect-bandgap 
semiconductors. For each MIIIX monolayer, the valence-band maximum (VBM) is located between the Γ and 
M points; however, the positions of their conduction-band minimum (CBM) are slightly different. For GaS and 
GaTe, their CBM are located at their respective M points. Meanwhile, for GaSe, InS, InSe, and InTe, their CBM are 
located at their respective Γ points. Using the HSE06 functional, the calculated gap values for GaS, GaSe, GaTe, 
InS, InSe, and InTe monolayer are 3.29, 2.77, 2.13, 2.63, 2.30, and 2.07 eV, respectively.

We observed an interesting feature in the band structures of these MIIIXs – band convergence. For all of the 
MIIIX monolayers, in addition to the VBM located at the Γ–M high-symmetry line, there is another valley in the 
valence band along the K–Γ high-symmetry line. The difference between the energies of these two valleys is only 
4, 25, 34, 18, 18, and 3 meV for the GaS, GaSe, GaTe, InS, InSe, and InTe monolayers, respectively, which are all 
much lower than 52 meV (2kBT300K, i.e. twice the thermal energy at room temperature). This means that band 
convergence may occur in the valence band of GaS, GaSe, GaTe, InS, InSe, and InTe. When both valleys contrib-
ute to the total electrical conductivity (σ), the power factor (P = S2σ, where S presents the Seebeck coefficient) is 
considerably increased. Since the Seebeck coefficient is one of the main factors of a material’s ability to efficiently 
produce thermoelectric power, the band convergence in the GaS, GaSe, GaTe, InS, InSe, and InTe monolayers 
may allow them to be used as thermoelectric materials, as previously shown for MoS2

30–32 and phosphorene33. 
Indeed, Tung et al.34 found that the maximum P of a p-type (and n-type) InSe monolayer can reach 0.049 (and 
0.043) W/K2m at 300 K in the armchair direction.

The band alignment of MIIIXs is shown in Fig. 3. The energy levels of CBM and VBM were calculated with 
reference to the

vacuum level, while the vacuum level was determined through the calculation of the planar averaged electro-
static potential. The VBM values of GaS, GaSe, GaTe, InS, InSe, and InTe monolayers are −6.88, −6.40, −5.78, 
−7.02, −6.56, and −5.91 eV, respectively. Meanwhile, the CBM values of GaS, GaSe, GaTe, InS, InSe, and InTe 
monolayers are −3.59, −3.63, −3.65, −4.38, −4.26, and −3.84 eV, respectively. As reported in a previous investi-
gation35, the reduction potential ( +EH /H2

) and oxidation potential (EO O/H2 2
) of water are −4.44 and −5.67 eV, 

respectively. These values lie just within the bandgaps of the GaS, GaSe, GaTe, InS, InSe, and InTe monolayers, 
suggesting that these 2D materials can potentially serve as photocatalysts for water splitting, as previously 
reported by Zhuang et al.2.

Recent studies show that 2D-material-based Schottky contacts have great potential in nanoelectronic 
devices36–38 and sensors39. To explore the opportunities of forming a Schottky contact between each MIIIX mon-
olayer and each 2D Dirac material, we calculated and obtained values of 4.23 and 4.60 eV as the the work func-
tions of graphene and silicene, respectively. Figure 3 shows that graphene can form n-type Schottky contacts 

Figure 1. Crystal structure of MIIIXs examined in this study: GaS, GaSe, GaTe, InS, InSe, and InTe.
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Figure 2. Band structures of (a) GaS, (b) GaSe, (c) GaTe, (d) InS, (e) InSe, and (f) InTe monolayers, obtained 
using the HSE06 functional. The black dashed line denotes the Fermi level.

Figure 3. Band alignment of GaS, GaSe, GaTe, InS, InSe, and InTe monolayers. The energy of the vacuum level 
was set to zero. The work functions of graphene and silicene, as well as those of elemental Y, Al, Cu, Ag, Au, and 
Pt are also shown; the work functions of Y, Al, Cu, Ag, Au, and Pt were obtained from experimental data in43.
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with GaS, GaSe, GaTe, and InTe, and n-type Ohmic contacts with InS and InSe. These predictions are in good 
agreement with results of recent studies40,41. Meanwhile, silicene can form n-type Schottky contacts with GaS, 
GaSe, GaTe, InS, InSe, and InTe. Overall, our findings are expected to be useful to the design of Schottky devices 
with dedicated Schottky barrier height.

In addition, p–n junctions are fimportant for building nanoelectronic devices. Control of the carrier type 
in 2D semiconducting materials is a fundamental requirement for the application of nanoelectronic devices in 
various fields. Peng et al.42 developed a method for direct inject the carrier into a nanochannel by using a metal 
electrode with proper work function. That is a p-type (or n-type) device channel can be obtained by chosing a 
metal electrode with higher (or lower) work function than that in the channel. Figure 3 shows the band alignment 
of GaS, GaSe, GaTe, InS, InSe, and InTe. The work functions of widely used metals for electrode like Y, Al, Cu, 
Ag, Au, and Pt are also shown for comparison43. Obviously, when Al and Ag are used as the electrode material, 
both the Al/InS and Ag/InS interfaces may form an Ohmic contact. Furthermore, when Y is used as the electrode 
material, all of the Y/MIIIX interfaces are highly probably form an Ohmic contacts, inducing effective carrier 
injection as well as enhancement of contact performance.

The main obstacle to the application of a material in photocatalysis is the short life time of photo-generated 
carriers. Generally, forming a van der Waals (vdW) heterostructure with type-II band alignment can significantly 
extend the life time of photo-generated carriers44–51. We systematically investigated the possibility of forming 
type-II heterostructures by combining MIIIXs with other popular 2D semiconducting materials, including MoS2, 
MoSe2, WS2, WSe2, black phosphorene (BlackP), blue phosphorene (BlueP), arsenene, h-BN, g-GaN, and ger-
manane; the results are presented in Fig. 4. In brief, GaS can form type-II heterostructures with WSe2, h-BN, and 
g-GaN; GaSe can form type-II heterostructures with WSe2, BlackP, BlueP, and arsenene; GaTe can form type-II 
heterostructures with MoS2, WS2, WSe2, BlackP, and BlueP; InS can form type-II heterostructures with all of 
the 2D semiconducting materials examined in our study; InSe can form type-II heterostructures with MoS2, 
MoSe2, WS2, WSe2, BlackP, arsenene, and germanane; and InTe can form type-II heterostructures with MoS2, 
MoSe2, WSe2, BlackP, BlueP, arsenene, and germanane. These results can provide useful guidelines for designing 
high-efficiency MIIIX-based photocatalysts for water splitting.

Using first-principles calculations, we systematically investigated the electronic properties and band align-
ment of a family of 2D semiconducting materials–group III monochalcogenides (GaS, GaSe, GaTe, InS, InSe, and 
InTe). We found that all six MIIIX materials are indirect-bandgap semiconducting materials (the bandgaps of GaS, 
GaSe, GaTe, InS, InSe, and InTe are 3.29, 2.77, 2.13, 2.63, 2.30, and 2.07 eV, respectively). Interestingly, we discov-
ered band convergence in all of the MIIIX materials, indicating their potential for thermoelectric applications. The 
calculated results for band alignment of the MIIIXs indicate that all of the MIIIX monolayers are potential photo-
catalysts for water splitting. Moreover, the MIIIX monolayers can form type-II heterostructures with other popular 
2D semiconducting materials, which is a critical requirement for photocatalyst and photovoltaic applications. We 
also found that most MIIIX monolayers can form n-type Schottky contacts with graphene and silicene. In addi-
tion, when elemental Y is used as the electrode material, all of the Y/MIIIX interfaces may form Ohmic contacts. 
We believe our findings can help to extend the application of group III monochalcogenides in thermoelectrics, 
photocatalysis, photovoltaics, and nanoelectronics.
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