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Lineage specific conservation of cis-
regulatory elements in Cytokinin 
Response Factors
Rachel V. Powell, Cipher R. Willett, Leslie R. Goertzen & Aaron M. Rashotte  

Expression patterns of genes are controlled by short regions of DNA in promoter regions known as cis-
regulatory elements. How expression patterns change due to alterations in cis-regulatory elements 
in the context of gene duplication are not well studied in plants. Over 300 promoter sequences from a 
small, well-conserved family of plant transcription factors known as Cytokinin Response Factors (CRFs) 
were examined for conserved motifs across several known clades present in Angiosperms. General 
CRF and lineage specific motifs were identified. Once identified, significantly enriched motifs were 
then compared to known transcription factor binding sites to elucidate potential functional roles. 
Additionally, presence of similar motifs shows that levels of conservation exist between different CRFs 
across land plants, likely occurring through processes of neo- or sub-functionalization. Furthermore, 
significant patterns of motif conservation are seen within and between CRF clades suggesting cis-
regulatory regions have been conserved throughout CRF evolution.

As master regulators, transcription factor (TF) proteins can bind to many different gene targets allowing plants to 
spatiotemporally control gene expression as well as entire regulatory cascades. This regulatory control serves to 
help plants adapt to their environment1. TF proteins function by binding to specific short DNA base pair patterns 
called motifs or cis-regulatory elements (CREs) in upstream, intron, or downstream regions of target genes. In 
order to physically bind TFs, a chemical interaction between the amino acid side chain of TF proteins and the 
CREs occurs, causing binding and subsequent effects of the TF2. In many instances, a particular DNA motif is able 
bind more than one TF, with differing responses3.

Plant CREs are incredibly specific allowing for distinct and differential control of gene expression dependent 
upon the life stage, location, and environmental conditions. Regulation of transcription is dependent upon both 
presence of TFs and number, location, and specific combinations of CREs present in the promoter region of any 
specific gene4. Additionally, TF binding is dependent upon cell type and combinatorial effects of additional TFs, 
co-factors, and chromatin state2,5. Every upstream promoter sequence contains three main regions: the core, 
proximal, and distal promoters. The core promoter contains the well-known TATA box, but a TF can bind hun-
dreds to thousands of bp away from the TSS, in the proximal or distal regions, and still influence transcription.

Since the discovery of CREs, there has been much debate about whether the linear order of CREs in the pro-
moter plays a critical role in affecting gene function. Additionally, the location or distance of CREs relative to the 
gene they are regulating can also be a defining characteristic for transcript regulation. When binding sites are in 
close proximity, TFs can work in conjunction with other bound TFs to bolster affects2. However, there are many 
differing opinions on whether CREs position and orientation is more important than the simple presence of all 
the necessary binding sites4,6,7. Regardless, a majority (86%) of all A. thaliana TF binding sites were found to be 
located from 1000 bp upstream of the TSS to 200 bp downstream from the end of the coding region8.

As organisms evolve, their genomes are not static. Instead, genes and even whole genomes are known to 
duplicate, particularly in plants. When genes duplicate, there are four different potential fates for the protein 
created from coding sequences: neofunctionalization, subfunctionalization, pseudogene, and conservation of 
original function. However, the level of conservation within cis-regulatory regions remain unclear. Alterations in 
exonic gene coding sequences can have severe effects, such as a premature stop codon, but alterations in promoter 
sequences tend to be less severe in nature, but can lead to different spatiotemporal expression between these 
duplicated genes, which is described as the first step in functional differentiation8,9. As mutations accumulate, 
phenotypic changes appear between the once identical duplicated genes leading to neo- or sub-functionalization, 
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allowing genes to become unique and function during certain life stages or plant tissues9. Therefore, a primary 
driver of evolution is the alteration of CREs, resulting in expression divergence between duplicated genes10–12.

The duplication-divergence-complementation (DDC) model explains sub-functionalization of two duplicated 
genes by assuming there is complementary degradation of CREs (Fig. 1). After a gene duplicates, both new gene 
copies start with identical CREs from the ancestral gene. Over time, these copies will relax conservation of spe-
cific CREs and those promoter regions will become selectively neutral. One of the duplicate genes will maintain 
the conservation of each CRE to ensure required functional regulation of this gene. Therefore, between the two 
duplicated copies, all original ancestral CREs are present shared between the duplicated copies. Therefore, the 
more rounds of duplication, the fewer shared CREs between all duplicated genes13. However, this is just one of the 
possible fates for duplicated genes.

Cytokinin Response Factors (CRFs) are a side branch of the cytokinin signaling pathway and part of the 
AP2/ERF TF family, which control a variety of developmental and environmental stress responses within all 
land plants14,15. All genes categorized as CRFs have a conserved CRF domain at the N-terminal and a centralized 
AP2/ERF DNA binding domain, as well as a CRF clade specific C-terminal region15,16. Phylogenetic analysis has 
indicated that CRFs should be placed into five evolutionarily diverged groups, or clades (I, II, III, IV, V) within 
the Angiosperms (Supplemental Fig. 1), each with unique functions, as outlined in Table 1 16,17. The division of 
CRFs into five clades arose through gene duplications, from which Clade V is placed as sister to Clades I through 
IV. Throughout the evolution of Angiosperms, duplications within individual clades resulted in one or two genes 
in each of Clade I, II, III, and IV per species, and Clade V having upwards of four or more CRF genes per clade16. 
Within each species, there are additional independent CRF duplications, causing variation in number of CRFs per 
species15. A few CRF genes cannot clearly be placed into any one of the five clades, due to the lack of a C-terminal 
protein region. One example of this is seen in Brassicaceae, where there are several copies of a truncated CRF 
gene, (labeled as “Uncladed Brassica CRFs”).

General examination of CRF expression in A. thaliana and Solanum lycopersicum (Sl) indicated that most 
CRFs are expressed in several tissues throughout the plant14,17,18. Later experiments using transgenic promoter::-
GUS lines narrowed down CRF expression to primarily vascular tissue within these same tissues19–22. An initial 
cursory cis-regulatory analysis was previously conducted to elucidate possible regulatory mechanisms that con-
trol all CRF vascular expression. A highly conserved (CT)n motif was found multiple times within every upstream 
CRF sequence, which has been linked to vascular expression when found in gene promoters16,23. Nearly all direct 
experimental examination of CRFs has been limited to Arabidopsis (AtCRFs or often simply noted as CRFs) and 
tomato (SlCRFs), summarized later in this work.

Figure 1. The DDC (divergence-deletion-complementation) model of cis-regulatory element CRE evolution. 
After a gene duplicates, the two copies have complementary deletions so as to maintain all CREs of the ancestral 
gene. However, the removal of CREs leads to a sub-functionalization as CREs are critical to the spatiotemporal 
expression and regulation of genes.

Clade
Cytokinin 
Induced? Regulations and Roles

I Yes, strongly Salt, cold, lateral root 
development, cytokinin17,18,20,28

II No Cold, auxin, nitrogen, lateral 
root development18,22,37

III Yes, strongly Salt, oxidative stress, delayed 
senescence, cytokinin15,19,21

IV Yes Salt, ethylene, disease resistance, 
cytokinin20,38–40

V Yes Root and shoot growth 
(unpublished)

Uncladed 
Brassica CRFs No Root development, phosphate 

starvation response41

Table 1. An overview of previous research conducted on Cytokinin Response Factors, including if they can 
be induced by cytokinin and elucidated functions for each clade with citations. Brassicaceae lacks Clade IV 
sequences, but instead has a group of “uncladed” sequences, seen in their own row above.
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Research conducted in this manuscript was done to broaden our understanding of CRFs in land plants rang-
ing from Bryophytes to Brassicaceae, by performing a detailed analysis of cis-regulatory regions for each CRF 
clade and provide insight into specific clade function. This in silico approach allowed more plant species to be 
examined than could easily be analyzed in the laboratory. Motif analyses of 1000 bp upstream sequences revealed 
novel roles and key CREs for individual CRF clades and helps in understanding the evolution of CREs in CRFs.

Results
To conduct the motif analysis, a novel bioinformatics pipeline was created (Fig. 2). 59 plant genomes were exam-
ined revealing a total of 346 CRF sequences (Fig. 2.1–3, Table 2). For each of the five CRF clades, a MEME motif 
analysis identified the five most significantly enriched motifs (Fig. 2.5), which were then compared to known TF 
binding sites, using Tomtom: JASPAR (Fig. 2.6). To extrapolate motif functional roles, UniProt and Panther GO 
analysis were utilized. Separately, the sequences selected for each motif were aligned in Jalview to identify the 
level of conservation at each basepair position (Fig. 2.9). E-values of the identified statistically significant motifs 
ranged from 9.1 × 10−34 to 1.6 × 10−280, while random shuffled sequences all had non-significant E-values above 
8.4 × 106.

Conservation of motifs within each clade. Two types of MEME analyses were used to elucidate motifs: 
those found in every upstream sequence in a given data set or OOPS and those found within most, but not all, 
upstream sequences or ZOOPS. One motif, a (CT)n or (GA)n, was repeatedly found in all clades when analyzing 
CRF clades individually, except for the uncladed Brassicaceae sequences. The examination of Clade I found that 
four of the top five motifs were either (CT)n or (GA)n for OOPS and ZOOPS MEME analyses. The remaining top 
motif for Clade I is similar between OOPS and ZOOPS showing a conserved pattern of “GATCCTATAAA” and a 

Figure 2. Workflow pipeline. (1) Cytokinin Response Factor sequences were collected from Phytozome and 
then checked for the conserved CRF and AP2/ERF domains. (2) 1000 bp upstream for each CRF sequence were 
collected and the amino acid sequences were compared to known A. thaliana CRF sequences (3) to place into 
their respective clade. (4) All upstream sequences for each clade were run through MEME. (5) Resulting motifs 
were searched through Tomtom JASPAR Core plants (6) to find matches to known motifs. For each motif, 
the biological GO terms were collected (7) and PANTHER GO analysis was performed. (8) Additionally, an 
alignment for each motif was created using Jalview to show percent conservation at each position. (9) Images in 
boxes at specific pipeline steps are example output from the workflow.
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noticeable lack of conservation flanking either side. The remaining Clade I OOPS motif has stronger conservation 
across the 25 bp motif, with the main motif pattern of “TCACGTGAC”.

In the examination of Clade II OOPS MEME results, only the second highest of the top five motifs returned 
was (CT)n or (GA)n. The top motif is seen in both Clade II OOPS and ZOOPS, with a strong nucleotide pattern 
of “GATCCTATAA” followed by a degradation of nucleotide conservation. The top motif for Clade II ZOOPS 
has conservation seen throughout the 25 bp motif, with eight nucleotides strongly conserved with no variability, 
“TCACGTGA” and was found in 44 or 85 Clade II sequences examined. Clade II ZOOPS had two other motifs 
with noticeable conservation, one featuring “ATGYGGCG” with significant degradation of conservation flanking 
either side, and the other motif having much stronger conservation and a conserved core of “CTGANTCAGCA”.

Much like in CRF Clade I and II, Clade III OOPS and ZOOPS analyses identified (CT)n or (GA)n motifs 
in the top five motifs. The top motif found in Clade III upstream CRF sequences has weak conservation fol-
lowed by a relatively conserved core of “RARAWGCGGMNAGYCGYY” with a strong E-value. A less con-
served, but still nearly identical, version of the motif is seen in the OOPS analysis, meaning that all Clade III CRF 
upstream sequences have this motif. The next ranked motifs for Clade III OOPS and ZOOPS were also identi-
cal, “TTNCTTGG” followed by several non-conserved nucleotides and “RYCAAG” at the other end. The most 
conserved motif seen in Clade III upstream sequences, “CNTTTTGACTCTTC”, was ranked fifth and is seen in 
65% of Clade III sequences. The fifth ranked motif seen in all Clade III sequences was a run of 16 A’s with lower 
conservation at 3 positions.

Clade V motifs had the strongest E-values among clades including the highly conserved (CT)n or (GA)n motif 
seen in all clades. Interestingly, the motifs called for both OOPS and ZOOPS were identical.

When looking exclusively at the upstream sequences of the Brassicaceae, uncladed CRFs had motifs with 
E-values that were overall weaker than Clades I-V. The motifs and patterns within Brassicaceae are rather unique 
compared to other clades and are discussed in more detail in subsequent sections.

Conservation of motifs shared between CRF clades. Examinations of all plant samples revealed three 
instances where identical motifs were independently identified in two different clades, indicating they have been 
conserved from duplication events from which CRFs in distinct clades arose (Fig. 3). Two of the motifs were seen 
in every Clades I and II sequence. This is shown in more detail in Fig. 3A for the second most statistically signifi-
cant motif for both Clade I and Clade II results. Additionally, Clade II sequences have a higher level of conserva-
tion flanking either side of the motif (Fig. 3A,B). Furthermore almost all sequences feature a “GC” at position 30 
and 31, except for the Clade II Brassicaceae sequences (Fig. 3C), which are uniquely derived with many distinct 
motifs compared to the rest of the plant taxa within an individual clade noted below.

Distinct motif conservation within Brassicaceae. A majority of work conducted on CRFs has been 
on A. thaliana, creating difficulties when extrapolating results onto other plants. In order to analyze the dif-
ferences in cis-regulatory regions between all plant taxa and just Brassicaceae, to which A. thaliana is a mem-
ber, Brassicaceae sequences alone were analyzed using the pipeline (Fig. 2). While the conservation of CREs 
seen within and between clades for all land plants is significant, the conservation of CREs seen exclusively in 
Brassicaceae species is considerably greater. Motifs found from evaluations forcing each plant species to have 
every motif present (OOPS), typically results in having a few nucleotides of strong conservation surrounded by 
regions of large nucleotide variation (Fig. 4). The Clade I OOPS motifs for all plant species MEME analysis were 

Amaranthus hypochondriacus Citrus sinensis Panicum hallii

Amborella trichopod Cucumis sativus Panicum virgatum

Anacardium occidentale Daucus carota Phaseolus vulgaris

Ananas comosus Eucalyptus grandis Physcomitrella patens

Aquilegia coerulea Eutrema salsugineum Populus trichocarpa

Arabidopsis halleri Fragaria vesca Prunus persica

Arabidopsis lyrata Glycine max Ricinus communis

Arabidopsis thaliana Gossypium raimondii Salix purpurea

Asparagus officinalis Hordeum vulgare Setaria italica

Boechera stricta Kalanchoe fedtschenkoi Setaria viridis

Brachypodium distachyon Kalanchoe laxiflora Solanum lycopersicum

Brachypodium stacei Linum usitatissimum Solanum tuberosum

Brassica oleracea capitata Malus domestica Sorgum bicolor

Brassica rapa Manihot esculenta Sphagnum fallax

Capsella grandiflora Marchantia polymorpha Spirodela polyrhiza

Capsella rubella Medicago truncatula Theobroma cacao

Carica papaya Mimulus guttatus Trifolium pratense

Chenopodium quinoa Olea europaea Zea mays

Cicer arientinum Oryza sativa Zostera marina

Citrus clementina

Table 2. Plants used to isolate CRF sequences and their respective upstream sequences for this study from 
Phytozome.
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primarily TCTC repeats. However, when just Brassicaceae were analyzed, only one of the top five motifs was a 
TCTC repeat, indicating more complex patterns are being conserved. CREs found using exclusively Brassicaceae 
upstream sequences are characterized by stronger nucleotide conservation at each site with significantly less 
wobble or nucleotide variation seen compared to all plants. Clades I, II, III and V CRF upstream sequences all 
have regions of considerable nucleotide conservation (Fig. 4). Additionally, the identified motifs illustrate the 
differences between Clade IV and the uncladed Brassicaceae CRFs.

Functional roles of identified conserved CRF motifs. Individual clade motifs were further analyzed 
by utilizing Tomtom, Uniprot, and Panther DB to compare to known TF binding sites and any previously deter-
mined experimentally function (Table 2, Supplemental Table 1). TF binding sites general could be placed into six 
functionally-based categories: hormone, development, flowering/leaf senescence, light, transcription regulation, 
or stress response (Fig. 5). The most common functional category for all motifs was hormone-related function 
(Fig. 5). Every motif examined was found as linked to the regulation of transcription, however, that is expected 
given they are transcription factor binding sites.

Figure 3. Alignment illustrating the percent conservation at each site. The darker the shade of blue, the higher 
the level of conservation at each site, with the most common color above representing more than 80% of 
sequences have the same nucleotide at that position. Both (A) and (B) are motifs seen in Clade I (orange) and 
Clade II (green) CRF sequences and are in the top five motifs returned by MEME. (C) is a motif seen in both 
Clade II and Clade III (pink) CRF sequences.
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Additional manual in-depth analysis of Clade motifs indicates that expression of Clade I CRF sequences 
should be responsive to ethylene, abscisic acid, and brassinosteroid hormones. Motifs in this clade were found 
with connections to root and overall plant development, along with flowering time and stomatal movement. Of 
the fifteen motifs analyzed for Clade I, 46% were related to hormones and 23% to development (Fig. 5). Clade 
II similar to Clade I, has 55% of motifs relating to hormones (Fig. 5). Unique to Clades II and III is a motif con-
nected to regulation of root growth and stomatal movement. The only exclusive Clade II motif functions in RNA 

Figure 4. Comparison of motifs between all plants and only Brassicaceae, where every CRF sequence given 
must have every motif MEME finds (OOPS) and allowing for some sequences not to have every motif found 
(ZOOPS). The level of conservation varies drastically between the two different groups, as noted by the 
decreased frequency where a position can wobble between nucleotides at that given site.
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splicing and processing, DNA repair, regulation of cell cycle and differentiation, along with response to auxin, 
bacteria, fungus, and nematodes. Nearly a quarter of all motifs (22%) for Clade II aid with stress response, the 
highest among clades (Fig. 5). Clade III motifs are connected to several hormones: cytokinin, ethylene, auxin, 
and abscisic acid. Additionally, Clade III motifs show a major linkage (46%) to influencing development (Fig. 5). 
Clade IV motifs had no motifs found as related to light or stress response. Of all Clade IV motifs, 66% were 
hormone-related and 40% influenced development (Fig. 5). Ethylene was the primary (75%) hormone motif, 
with abscisic acid and auxin composing the remaining 25%. Clade V motifs were uniquely connected to the 
hormone gibberellic acid (GA), as well as having their largest connection to development, making up the top 
percentage of categories at 53% (Fig. 5). Leaves/flowering related motifs are present in 42% of Clade V results, 
which is the highest percentage for leaves/flowering compared to Clades I-IV (Fig. 5). Clade V tied with Clade 
I for lowest percentage of hormone-related motifs among Clades I-V, with only 46%. Motifs seen in Clade V are 
non-overlapping with other clades, except for the top motif seen in all CRF sequences, which is expected given it 
is sister to the other CRF clades.

When all CRF upstream sequences were examined together, 54% of motifs related to hormone regulation, 
slightly below the overall average of 58%. Development was seen in 27% of motifs, while flowering/leaf senes-
cence, light, and stress response were all only seen in 9% of potential TF roles. Ethylene is overwhelmingly the 
most commonly seen hormone regulated across all Clades, with cytokinin seen once, and no other plant hor-
mones seen in resulting TF binding site matches (Fig. 5).

Evolutionary divergence of duplicated CRF upstream sequences. In order to examine the potential 
change in CRE patterns, duplicated CRF genes from individual species were identified and compared. While 
this type of examination is regularly conducted on motifs or domains of protein sequences, it is rarely done 
for promoter sequences possibly because promoter sequences and intragenic are thought of as less conserved 
as exon coding sequences. Despite this, our analysis of 346 CRF sequences from 59 plant species revealed an 
abundant conservation and divergence of CREs, which fall into four main patterns of duplication events. In two 
of the duplication event patterns, CRF genes have the same top five upstream motifs present: one in the exact 

Figure 5. (A) The six main functional categories for each ZOOPS motif matched to, based upon Tomtom, 
Uniprot, and Panther GO analysis, based upon frequency in the top 15 Tomtom results for each Clade 
sequences. Motifs could be classified into more than one category, as transcription factors often have many roles 
and the top three matches for each motif were examined. (B) A breakdown of which hormones are seen most 
commonly within each clade and overall for both OOPS and ZOOPS.
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same order, with the other different order (Fig. 6B,C). In the third identified pattern, each duplicated promoter 
sequence has a unique motif not seen in the other copy, while remaining motifs are identical. This pattern could 
indicate a sub- or neo-functionalization between duplicated CRF genes, as TF binding sites in the upstream 
sequence play large roles in gene identity. In the fourth identified duplication event pattern, promoter sequences 
have serial or complementary deletions, similar to the DDC model that together make up what is likely the “orig-
inal” motif pattern (Fig. 6A). From these patterns, those having identical sequence motifs (Fig. 6B) or serial dele-
tions of motifs (Fig. 6A) are the most commonly found. In plant species that had more than the average number 
of CRF sequences per clade, more than one pattern was commonly identified, indicating there is not necessarily a 
single evolutionary model at work in cis-regulatory regions. However, regardless of pattern, the statistical signifi-
cance of each motif and the level of pattern conservation between plant species indicates CREs can and should be 
examined for duplication and divergence more broadly.

Discussion
Cis-regulatory elements are evolutionarily conserved in Cytokinin Response Factors. Prior 
to this study, limited research was conducted analyzing the evolutionary conservation of CREs within a highly 
duplicated gene family. Although extensively conducted on protein sequences, the prevailing wisdom that cis-reg-
ulatory regions are not highly conserved combined with the lack of fully sequenced genomes seems to have lim-
ited interest in conducting such efforts. However, this study shows that CRE motif analyses should be conducted 
in a widespread manner, as it provides valuable information regarding regulation of genes. Furthermore, the 
importance of motifs found using this research pipeline provides novel avenues for investigation of CRF gene 
function (Fig. 2). Finally, the level of conservation identified from examination of duplication and divergence of 
CREs indicates the need for broader research focused on cis-regulatory regions of duplicated genes from many 
different gene families.

Duplications of CRF genes has spanned across evolutionary time originating with an ancestral CRF found 
in species after the emergence of plants on land and becoming widespread within Angiosperms. This expansion 
has also occurred through individual gene duplications within a species, which lend cis-regulatory regions to 
higher levels of mutation and divergence, since intragenic regions are not as highly conserved as genetic cod-
ing sequences. The identification of five evolutionary preserved motifs of up to 25 bp shows a level of promoter 
sequence conservation in CRFs similar to that found in coding regions.

Even more potentially noteworthy are the motifs which have been conserved between Clades I and II and 
Clades II and III (Fig. 3). These duplications have occurred in the evolutionary timeframe from the origin of 
Angiosperms to present day and illustrate the level of conservation seen within the CREs found in this study. 
Analyzing these differing motifs present within each of these clade pairings, the divergence of CREs between 
two clades after their duplication can be elucidated. This pipeline created for this study of CRFs could easily be 
adapted and applied to the upstream and downstream cis-regulatory regions of other groups of conserved dupli-
cated genes to analyze CREs across an evolutionary landscape.

Differing motifs within all plants compared to the Brassicaceae alone. While the conservation 
of CREs across all land plants is significant considering evolutionary forces, an examination specifically focused 
on the Brassicaceae revealed an even stronger level of conservation present in CREs within this group. An inter-
esting dichotomy arises due to the high level of conservation seen in the Brassicaceae, which is not present when 

Figure 6. Pattern of conserved motifs (A) panels illustrate evolutionary divergence in duplicated CRF 
sequences. (B) sequences are duplicated CRF sequences where both copies have retained matching motifs. (C) 
A collection of different plant species, all with matching copies of motifs found for their respective clade. (Right) 
A summary of functions found for each motif, represented by a symbol. Functions were broken down into 
“regulates”, “response to”, and “development of ” categories. An *indicates that motif is present in both OOPS 
and ZOOPS MEME runs, meaning all sequences in that respective clade has that motif.
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comparing the Brassica-specific elements to those in other plant families. As such, this is potentially problem-
atic when trying to extrapolate research results from well-studied members of the Brassicaceae, specifically A. 
thaliana, to plants from other families.

In fact, interesting differences were found when examining functional roles attributed to specific CRF clades 
from solely Brassicaceae sequences versus all plant species (Fig. 5 and Supplemental Fig. 2). This could be specif-
ically seen within functional attributed roles to distinct hormones. When attributing a functional role to a clade 
for the plant hormone ethylene from analysis of all plant sequences (Fig. 5), this was found for Clades II and 
IV sequences but not in Clade V sequences. However, a similar examination using just Brassicaceae sequences 
identified ethylene as most common attribute in Clade V sequences. Likewise, for the hormone ABA, Clade 
II sequences lacked such motifs, yet in Brassicaceae only sequence analysis, Clade II had the highest number 
of motifs relating to ABA. However, these results were based on presence or absence of motifs in the five most 
highly ranked sequences, so a deeper analysis could still show such conservation. While such differences may be 
expected due to evolutionary selection forces unique to the Brassicaceae among plants, this difference suggests the 
need for researchers to be mindful of experimental studies focused solely on one plant system.

Hormone-related motif roles. Previous experimental research has shown CRF Clades I, III, IV, and V 
genes are transcriptionally regulated by cytokinin and identification of cytokinin-related CREs here supports 
these results14,17,19,21. Within the top five motifs found, both Clade III and Clade V sequences have motifs that 
indicate cytokinin-related TFs can bind. Although not in the five motifs for Clade I, there was a motif in the top 
ten motifs with similarity to the canonical GCC box, falling into the AP2/ERF TF family, which and is known to 
aid with the response to cytokinin (Supplemental Fig. 3)14,24,25. Not every motif found by MEME is necessarily a 
TF binding site and motifs not within the top five MEME results are still worth looking at for matching motifs to 
connect to previously conducted experimental results (Supplemental Figs 3–7).

Other plant hormones, such as auxin, ethylene, abscisic acid (ABA), gibberellic acid (GA), and jasmonic acid 
(JA), support a pattern of intricate and complicated regulation. CRFs are a side branch of the cytokinin signaling 
pathway and it is expected they would share an equally complex interaction with the other plant hormones. Only 
auxin-related elements were found in MEME analysis, both OOPS and ZOOPS, in every Clade and the uncladed 
Brassicaceae CRF sequences. Auxin and cytokinin are antitheses, working in conjunction to regulate many plant 
processes. Specifically for CRFs, research has been conducted linking CRFs with auxin transporters26.

Other hormones-related motifs were found in all clades except for Clade V ZOOPS and Clade II ZOOPS, lack-
ing ethylene and ABA motifs respectively. Importantly, by design ZOOPS does not require all upstream sequences 
to have each motif, while OOPS does. Therefore, Clade V ZOOPS and Clade II ZOOPS MEME analysis lacking 
ethylene and ABA-related motifs, respectively, is not significant as Clade V OOPS and Clade II OOPS both having 
these motifs. Experiment based analysis are still required to fully verify these predicted functional roles for CRFs.

Development-related motif roles. Development was the second most frequent identified motif category, 
which is an often-attributed functional role for AP2/ERF TFs27. Several recent studies have analyzed the pheno-
typic effects of both CRF overexpressors and mutants. AtCRF1, AtCRF2, AtCRF3, AtCRF5, and AtCRF6 have 
all been linked to primary and lateral root and shoot growth, embryo development, leaf senescence, hypocotyl 
elongation, and rosette size21,26,28,29, indicating that proper spatiotemporal expression of CRF genes are critical 
for normal plant development. The TFs that bind to the upstream regions of the CRF sequences analyzed in this 
study play a key role in maintaining spatiotemporal expression of each CRF, and therefore, helping to regulate 
normal development.

Conclusions and future directions. Through the creation of this novel pipeline, promoter regions can be 
analyzed for CREs to indicate potential functions of a gene and reveal conservation or divergence of CREs. Over 
300 promoter regions for CRF genes were collected and analyzed with MEME Suite to find numerous conserved 
CREs. The motifs for each individual CRF clade showed strong patterns of conservation, suggesting sub-, or 
neo-functionalization. Many of the previously conducted experiments on CRFs support the motifs that were 
elucidated though this novel pipeline, bolstering their significance. The conservation of motifs within each CRF 
clade, even when using wide-ranging Angiosperms species, is considerable, especially given its long been thought 
that cis-regulatory regions are not conserved in a manner similar to coding regions. However, validation of what 
TFs are binding to each motif should still be conducted using a combination of both serial deletion of promoter 
regions and bioinformatic techniques to capture TFs binding to cis-regulatory regions. By using a variety of 
Angiosperms, the evolutionary changes of cis-regulatory regions can continue to be understood and later applied 
broadly to other plant families. Outside of the CRF TF family, this innovative pipeline can be applied to upstream, 
downstream, or intron regions of gene for families within plants or families outside of plants.

Methods
Collection of sequences and analysis for presence of common motifs. Cytokinin Response Factors 
(CRF) sequences were identified via tBLASTn on Phytozome (https://phytozome.jgi.doe.gov) (Supplemental 
Fig. 8) using known A. thaliana CRF sequences (Fig. 2). Sequences were verified as CRFs by checking for the 
presence of previously identified conserved CRF domain15 and AP2/ERF domain within the coding sequence27,30, 
after which 1000 bp upstream of the transcriptional start site plus any 5’ untranslated regions and the entire exon 
sequence were collected (Fig. 2.2,3). The collected exon and upstream sequences were sorted into the five dis-
tinct groupings (“clades”) by searching the exon sequence on NCBI BLAST and comparing to known CRF genes 
(Fig. 2.4). Varying subsets, including clade and plant family groups, were analyzed using MEME suite tools31 to 
identify common motifs in these sequences. For each subset of upstream sequences, motifs appearing once in all 
sequences (OOPS) or in most, but not all, sequences (ZOOPS) were collected. Motifs were allowed to be from 
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5 to 25 bp in length, with an E-value less than 0.05, the default parameter for MEME (Fig. 2.5). For validation, 
all sequences collected were shuffled and run through MEME using identical parameters, which kept the same 
sequence composition as the upstream sequences analyzed in this study.

Functional categorization of identified common motifs. Collected motifs were run through 
TomTom32, a part of MEME Suite, via the JASPAR Core Plants (2018) database33 using default parameters 
(Fig. 2.6). For the top three results from TomTom, Uniprot IDs were collected, with a p-value significance cut off 
value of 0.01 (Fig. 2.7). These Uniprot IDs were then used to collect biological GO terms for analysis of potential 
functions for each motif and for analysis of each of the CRF groups. PANTHER34 was used to analyze GO terms 
for statistically significant overrepresentation for each clade using default parameters (Fig. 2.8).

Motif conservation alignment. For every plant containing a specific significant motif, the 5 to 25 base pair 
motif plus 10 bp on either side were loaded into Jalview35. Sequences were then aligned using Clustal36, within 
Jalview, using default parameters. Color settings were changed to highlight based on percent identity, which illus-
trates level of conservation based upon sequences provided for each alignment (Fig. 2.9).

Data Availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information Files).
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