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process development for scale-up 
production of a therapeutic 
L-asparaginase by Streptomyces 
brollosae NEAE-115 from shake 
flasks to bioreactor
noura el-Ahmady el-naggar  1, Hassan Moawad2, nancy M. el-Shweihy1, Sara M. el-ewasy1, 
islam A. elsehemy3 & nayera A. M. Abdelwahed  3

L-asparaginase is a promising enzyme that has a wide range of significant applications including cancer 
therapy and starchy food industries. The statistical design of Plackett–Burman and face centered central 
composite design were employed to optimize L-asparaginase production by Streptomyces brollosae 
NEAE-115. As a result, a medium of the following formula is the optimum for producing L-asparaginase 
in the culture filtrate of Streptomyces brollosae NEAE-115: Dextrose 2 g, starch 20 g, L-asparagine 10 g, 
Kno3 1 g, K2Hpo4 1 g, MgSO4.7H2O 0.5 g, NaCl 0.1 g, pH 7, fermentation period 7 days, temperature 
30 °C, inoculum size 4%, v/v, agitation speed 150 rpm and inoculum age 48 h. The kinetics of cell growth, 
carbohydrates consumption and L- asparaginase production were studied in 7-L stirred tank bioreactor 
under different cultivation conditions. A significant increase in both cell growth and carbohydrate 
consumption was observed as the stirring speed increased from 200 to 600 rpm under uncontrolled pH. 
The highest L- asparaginase activity of 108.46 U/mL was obtained after 96 h at 400 rpm. On the other 
hand, the specific enzyme production (Yp/x) under uncontrolled pH reached its maximal value of about 
20.3 U/mg cells. Further improvement of enzyme production was attained by controlling pH at 7 using 
the selected stirring speed of 400 rpm. Enzyme production of 162.11 U/mL obtained from the controlled 
pH cultures exceeded this value gained from uncontrolled pH (108.46 U/mL) by about 50%.

L-asparaginase (L-asparagine amino hydrolase, EC3.5.1.1) is an enzyme of high therapeutic value due to its use 
in certain types of cancer therapy mainly in acute lymphoblastic leukemia (ALL)1. It is a tetrameric enzyme 
that catalyses the hydrolysis of L-asparagine to L-aspartic acid and ammonia2. The anti-neoplastic activity of 
L-asparaginase depends on the fact that neoplastic cells require a large amount of L-asparagine as amino acid to 
keep up with their rapid malignant growth. The neoplastic cells are deficient in L-asparagine synthetase and are 
unable to synthesize the needed asparagine-dependent proteins. Therefore, they are dependent on the external 
sources “consumed in the diet, absorbed in the body and available in the serum” to obtain L-asparagine3 for their 
survival and propagation. Conversely, normal healthy cells are able to synthesize L-asparagine and are therefore 
protected from L-asparagine-starvation4. Therefore, the injection of L-asparaginase intravenously, drastically 
reduces the level of free L-asparagine in the blood stream and leading to the neoplastic cells are selectively killed 
due to the absence of L-asparagine5. Moreover, L-asparaginase is also used in several industrial fields such as food 
processing to convert L-asparagine to aspartic acid. Before frying or baking, pretreatment of starchy foods with 
L-asparaginase reduces acrylamide formation (a carcinogenic toxicant)6.

Microbial L-asparaginases have been particularly studied for their applications as a chemotherapeutic agent 
in the treatment of human cancer7. L-asparaginase is produced from a variety of microbial sources including 
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fungi, yeast, bacteria and actinomycetes by the process of submerged fermentation8. Currently, L-asparaginases 
derived from two bacterial sources, Erwinia chrysanthemi and E. coli, are in clinical use for the treatment of ALL9. 
Few actinomycetes were reported to produce extracellular L-asparaginase, while cell bound L-asparaginase was 
reported in few actinomycetes like Streptomyces karnatakensis and Streptomyces albidoflavus10. Stirred tank bio-
reactors have been applied for the production of enzymes in large scale batch fermentation11.

The aim of the present work targeted the optimization of different process parameters for L-asparaginase pro-
duction by Streptomyces brollosae NEAE-115 using submerged fermentation in the shake flasks and to optimize 
the cultivation parameters for large scale production in 7-L stirred tank bioreactor.

Results and Discussion
Extracellular L-asparaginase production by Streptomyces brollosae NEAE-115 was detected by plate assay method. 
The color change in the medium from yellow to pink zone surrounding the colony indicated that the organism is 
a potent producer of L-asparaginase (Fig. 1). In our previous study12; L-asparaginase production was performed 
using submerged fermentation. The enzyme was fractionated by ammonium sulphate precipitation and the puri-
fied enzyme was obtained using the ion exchange column of DEAE-Sepharose CL-6B. The purity and molecular 
weight of the purified enzyme was determined by SDS-PAGE separation, which revealed only one distinctive 
band with a molecular weight of 67 kDa. The purified L-asparaginase was widely active in pH ranging from 4.5 to 
10.5 with maximum activity at pH 8.5. Also, it was widely active at a temperature of 25 to 60 °C with maximum 
activity at 37 °C at incubation time of 50 min and optimal substrate concentration of 7 mM. The enzyme is free 
of glutaminase activity. Maximum stability of purified L-asparaginase was observed at 40 °C. The enzyme was 
more stable in alkaline pH (pH 8.5) than acidic. In addition, mice treated with Streptomyces brollosae NEAE-115 
L-asparaginase inhibited Ehrlich Ascites Carcinoma cells growth in female Swiss albino mice by 79% with higher 
cytotoxicity than commercial L-asparaginase. Therefore, in this study, optimization of the various process varia-
bles affecting production of L-asparaginase by Streptomyces brollosae NEAE-115 was performed using submerged 
fermentation in shake flasks and 7-L stirred tank bioreactor.

Evaluation of variables affecting L-asparaginase production by Streptomyces brollosae NEAE-115 
using Plackett–Burman design. In order to evaluate the effects of 15 different independent variables and to 
determine the most significant ones for the maximum production of L-asparaginase, the Plackett-Burman design 
was applied (Table 1). Dummy variables (D1, D2, D3 and D4) were used to calculate the standard errors of the exper-
iment in data analysis. Table 2 shows the Plackett-Burman design matrix selected to screen the significant variables 
for L-asparaginase production along with the corresponding experimental and predicted L-asparaginase production. 
The mycelial growth has developed as large spherical pellets during production of L-asparaginase in shake flasks that 
can improve the L-asparaginase production than free filament growth (Fig. 2). The variation in L-asparaginase activity 
shown in various Plackett-Burman design runs was markedly wide (6.604 to 79.935 U/mL) and reflected the signif-
icance of the optimization process to maximize L-asparaginase production. The maximum L-asparaginase activity 
(79.935 U/mL) was achieved in the run number 8 when highest levels of incubation time, inoculum size, agitation 
speed, L-asparagine and lowest levels of inoculum age, initial pH, K2HPO4, NaCl were used. While the minimum 
L-asparaginase activity (6.604 U/mL) was obtained in the run number 10 when minimal levels of incubation time, 
inoculum size, agitation speed, L-asparagine and maximal levels of inoculum age, initial pH, K2HPO4, NaCl were used.

The relationship between L-asparaginase production and the independent variables is determined by 
multiple-regression statistical analysis and the analysis of variance (ANOVA) of the experimental design was 
performed which is shown in Table 3. Table 3 and Fig. 3A show the estimated main effect of each variable on 

Figure 1. L-asparaginase activity of Streptomyces brollosae NEAE-115 detected by plate assay (A) production of 
the enzyme after two days; (B) control plate was prepared without dye.
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L-asparaginase production. With respect to the main effect (Fig. 3A), we can see that seven variables from the 
fifteen named L-asparagine, starch, incubation time, inoculum size, MgSO4.7H2O, agitation speed and inocu-
lum age had positive effect on L-asparaginase production where the other eight variables had negative effect on 
L-asparaginase production (dextrose, K2HPO4, KNO3, yeast extract, NaCl, FeSO4.7H2O, pH and temperature). 
The order of significance of the variables that affect L-asparaginase production is illustrated by the Pareto chart 
(Fig. 3B).

Significance of each coefficient was determined by P-values and student’s t-test, which are listed in Table 3. The 
smaller P-value and larger t-value means the more significant corresponding coefficient13. In the current exper-
iment, variables evidencing P-values of less than 0.1 (confidence levels exceeding 90%) were considered to have 
significant effects on the activity of L-asparaginase. The ANOVA of the Plackett-Burman design demonstrated 
that the model was highly significant as was evident from the Fisher’s F-test value of 23.55 with a very low proba-
bility value (P-value = 0.0038) (Table 3) implies that the terms are significant.

By neglecting the terms that were insignificant (P > 0.1), the first order polynomial equation representing the 
production of L-asparaginase in terms of independent variables was derived:

L

Y 26 50 5 41 incubation time 3 70 inoculum size 7 32 pH

3 37 agitation speed 3 61 dextrose 4 82 starch 7 60

asparagine 5 06 KNO 4 56 yeast extract 6 06 FeSO 7H O (1)

L( asparaginase production)

3 4 2

= . + . × + . × − . ×

+ . × − . × + . × + . ×

− − . × − . × − . × .

−

The adequacy of the model fit. The normal probability plot of the residuals is an important graphical 
method detecting and explaining whether or not a data set is normal or departure from the normality14. Figure 4A 
shows residuals were plotted against the expected normal values of the model. The normal probability plot of the 
residuals shows the points near the diagonal line; so, the residuals are distributed normally. This indicates that 
the expected L-asparaginase production was well fitted with the experimental results. Figure 4B presents the 
plot of predicted values vs. observed values of the response. Points gathered around the diagonal line indicate a 
good correlation between the expected and experimental values. Figure 4C shows the plot of predicted versus the 
residuals, showing an equal distribution of residuals data above and below the x-axis, supporting the adequacy of 
the appropriate model.

In a confirmation experiment, to assess the accuracy of Plackett-Burman design, the conditions that are 
expected to be optimum for maximal production of L-asparaginase were pH 7, temperature 30 °C, inoculum 
size 4%, v/v, inoculum age 48 h, agitation speed 150 rpm/min, incubation time 7 days and medium of the fol-
lowing composition: g/L (dextrose 2, starch 15, L-asparagine 7, KNO3 1, K2HPO4 1, MgSO4.7H2O 0.5 and NaCl 
0.1). Under these conditions, the maximum L-asparaginase activity was 75.151 U/mL which is higher than the 
L-asparaginase activity before applying Plackett Burman design (20.37 U/mL) by 3.69 times.

Erva et al.15 developed a system for optimizing culture conditions and nutritional components in order to 
enhance the production of extracellular antileukemic L-asparaginase by novel Enterobacter aerogenes KCTC2190/
MTCC111. Traditional one variable at a time method was used to find the key culture conditions and nutritional 
components and then response surface methodology was implemented to determine their optimal concentra-
tions. An enzyme activity of 18.35 U/mL was achieved at the optimum process variable values (incubation time 
was at 40 h, pH 6, temperature was maintained at 33 °C, substrate concentration was 1.34%, and inoculum size 
of 2%, V/V).

Code Variables

Levels

−1 +1

X1 Temperature (°C) 30 37

X2 Incubation time (days) 5 7

X3 Inoculum size (%, v/v) 2 4

X4 Inoculum age (h) 24 48

X5 pH 7 9

X6 Agitation speed (rpm/min) 100 150

X7 Dextrose (g/L) 2 4

X8 Starch (g/L) 10 15

X9 L-asparagine (g/L) 4 7

X10 KNO3 (g/L) 1 3

X11 Yeast extract (g/L) 0 1

X12 K2HPO4 (g/L) 1 2

X13 MgSO4.7H2O (g/L) 0.1 0.5

X14 NaCl (g/L) 0.1 0.5

X15 FeSO4. 7H2O (g/L) 0 0.01

Table 1. Experimental independent variables at two levels used for the production of L-asparaginase by 
Streptomyces brollosae NEAE-115 using Plackett–Burman design.
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Baskar and Renganathan16 used the 2-level Plackett-Burman design in 12 experimental run to evalu-
ate the importance of 8 process variables of medium components and operating conditions for the produc-
tion of L-asparaginase by Aspergillus terreus MTCC 1782. The most important factors significantly influenced 
L-asparaginase production were L-asparagine, corn flour, urea and potassium chloride. Shakambari et al.17 used 
the Plackett-Burman design involving 12 trials and two levels of concentrations to evaluate the effect of dif-
ferent culture conditions on glutaminase free L-asparaginase production by Pseudomonas plecoglossicida RS1. 
They reported that, out of seven crucial factors examined, KH2PO4, sugar cane industry effluent as an alternate 
substrate to L-asparagine and pH were the most significant factors and the maximum L-asparaginase produc-
tion was 3.63 U mL−1 in the optimized medium. As well, Kumar et al.18 used the Plackett-Burman design to 
evaluate the importance of 23 fermentation variables for L-asparaginase production by Streptomyces radiopug-
nans MS1. The most important variables were Tapioca effluent, corn steep liquor, L-asparagine and aeration. 
On the other hand, Venil et al.19 optimized the medium for production of L-asparaginase by Serratia marcescens 
SB08. They found that, out of 11 fermentation variables screened by Plackett-Burman design experiments, 
four variables, sucrose, peptone, KH2PO4 and incubation time, were the best for production of L-asparaginase. 
Moreover, Rajamanickam et al.20 used 12 runs Plackett-Burman design to screen the influence of eleven factors 

Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 Dummy 1 Dummy 2 Dummy 3 Dummy 4

L-asparaginase activity 
(U/mL)

ResidualsExperimental Predicted

1 1 −1 1 −1 −1 −1 −1 1 1 −1 1 1 −1 −1 1 1 1 1 −1 44.095 47.339 −3.244

2 −1 1 1 −1 1 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 34.371 38.262 −3.891

3 1 −1 −1 −1 −1 1 1 −1 1 1 −1 −1 1 1 1 1 −1 1 −1 21.179 22.755 −1.576

4 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 1 1 −1 −1 72.033 77.592 −5.559

5 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 1 1 −1 −1 1 1 1 17.080 −3.891 3.891

6 −1 −1 −1 −1 1 1 −1 1 1 −1 −1 1 1 1 1 −1 1 −1 1 40.025 38.449 1.576

7 1 1 −1 1 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 25.108 24.606 0.502

8 −1 1 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 79.935 74.376 5.559

9 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 1 1 −1 −1 1 1 42.587 37.028 5.559

10 −1 −1 −1 1 1 −1 1 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 6.604 8.180 −1.576

11 −1 −1 1 1 −1 1 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 8.198 9.365 −1.166

12 1 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 28.752 27.603 1.149

13 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 34.331 33.829 0.502

14 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 1 1 −1 33.648 32.499 1.149

15 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 1 22.944 25.761 −2.817

16 −1 1 −1 −1 −1 −1 1 1 −1 1 1 −1 −1 1 1 1 1 −1 1 7.515 10.332 −2.817

17 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 1 1 20.325 19.159 1.166

18 1 −1 1 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 51.411 48.167 3.244

19 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 1 1 −1 −1 1 14.518 15.667 −1.149

20 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 1 1 −1 −1 1 1 1 1 56.479 56.981 −0.502

Table 2. Twenty-trial Plackett–Burman experimental design for evaluation of fifteen independent variables 
with coded values along with the observed L-asparaginase activity. The “−1” sign correspond to the minimum 
value and the “+1” sign correspond to the maximum value of the input parameter range.

Figure 2. Streptomyces brollosae NEAE-115 growth in large spherical pellets during L-asparaginase production 
in shake flasks.
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Variables Coefficients Main effect t -Stat P-value Confidence level (%)

Intercept 26.50 53.00 29.32 0.0000 100.00

Temperature (°C) −0.29 −0.58 −0.32 0.7655 23.45

Incubation time (days) 5.41 10.83 5.99 0.0039 99.61

Inoculum size (%, v/v) 3.70 7.41 4.10 0.0149 98.51

Inoculum age (h) 0.78 1.56 0.86 0.4364 56.36

pH −7.32 −14.63 −8.10 0.0013 99.87

Agitation speed (rpm/min) 3.37 6.73 3.72 0.0204 97.96

Dextrose (g/L) −3.61 −7.21 −3.99 0.0163 98.37

Starch (g/L) 4.82 9.64 5.33 0.0060 99.41

L-asparagine (g/L) 7.60 15.20 8.41 0.0011 99.89

KNO3 (g/L) −5.06 −10.13 −5.60 0.0050 99.50

Yeast extract (g/L) −4.56 −9.12 −5.05 0.0072 99.28

K2HPO4 (g/L) −0.24 −0.49 −0.27 0.8004 19.96

MgSO4.7H2O (g/L) 0.83 1.67 0.92 0.4091 59.09

NaCl (g/L) −1.39 −2.79 −1.54 0.1980 80.20

FeSO4. 7H2O (g/L) −6.06 −12.13 −6.71 0.0026 99.74

Analysis of variance (ANOVA)

Degree of 
freedom

Sum of 
squares

Mean sum 
of squares

F- Fisher’s 
function

Significance F (P-
value)

Regression 15 5769.95 384.66 23.55 0.0038

Residual 4 65.33 16.33

Total 19 5835.27

Table 3. Statistical analysis of Plackett-Burman design showing coefficient values, t-test, P-values and 
confidence level (%) for each variable affecting L-asparaginase production by Streptomyces brollosae NEAE-115. 
Multiple R 0.9943, R Square 0.9888, Adjusted R Square 0.9468.

Figure 3. (A) The main effects of different variables on L-asparaginase production according to the Packett–
Burman experimental results; (B) Pareto chart illustrates the order of significance of each variable.
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on L-asparaginase production by Streptomyces parvulus KUA106. Among the factors screened, four factors with 
the greatest significance effects were asparagine, tryptone, dextrose and NaCl.

Statistical optimization of L-asparaginase production by Streptomyces brollosae NEAE-115 
using face centered central composite design (FCCD). The calculated t-values (Table 3) revealed that, 
incubation time (X2), starch (X8) and L-asparagine (X9) were the most significant factors had positive effects on 
L-asparaginase production by Streptomyces brollosae NEAE-115 and thus were selected for further optimization 
using FCCD. Other factors in this study were maintained at a constant level giving maximum production of 
L-asparagine in Plackett-Burman experiments. A total of 20 experiments with different combination of X2, X8 and 
X9 were performed and the experimental and predicted L-asparaginase production and residuals are presented in 
Table 4. The results showed significant variations in production of L-asparaginase. The maximum L-asparaginase 
activity (80.39 U/mL) was achieved in the center point runs (numbers 9, 10, 13, 14, 18 and 20) when using incu-
bation time of 7 days, 20 g/L starch and 10 g/L L-asparagine. Whereas, the minimum L-asparaginase activity 
(7.52 U/mL) was observed in the run number 12 after 9 days of incubation time when10 g/L starch and 7 g/L 
L-asparagine were used.

Figure 4. (A) The normal probability plot of residuals for L-asparaginase production as determined by the first-
order polynomial equation, (B) correlation between predicted against observed values and (C) Plot of residuals 
against predicted values.
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Multiple regression analysis and AnoVA. Multiple regression analysis was performed to analyze 
the data and the results of the analysis are presented in Table 5. Analysis of variance (ANOVA) is required for 
the quadratic regression model to test its significance and adequacy. The ANOVA (Table 5) demonstrates that 
the model is highly significant, as is evident from the Fisher’s F-test (48.89) and a very low probability value 
(4.33737E-07). The significance of each coefficient was determined by the values of t and P (Table 5).

Trials

Variables L-asparagine activity (U/mL) Residuals

X2 X8 X9 Experimental Predicted

1 1 0 0 36.05 40.71 −4.66

2 0 1 0 70.16 73.08 −2.92

3 1 1 1 15.97 18.43 −2.47

4 0 0 −1 58.93 63.43 −4.49

5 1 1 −1 41.69 37.87 3.81

6 0 −1 0 59.62 66.48 −6.87

7 −1 −1 1 30.14 31.51 −1.37

8 −1 1 1 20.15 16.03 4.13

9 0 0 0 80.39 77.13 3.26

10 0 0 0 80.39 77.13 3.26

11 −1 0 0 34.27 39.40 −5.12

12 1 −1 −1 7.52 9.20 −1.68

13 0 0 0 80.39 77.13 3.26

14 0 0 0 80.39 77.13 3.26

15 −1 −1 −1 13.89 8.98 4.92

16 1 −1 1 21.24 16.24 5.00

17 0 0 1 59.68 64.97 −5.29

18 0 0 0 80.39 77.13 3.26

19 −1 1 −1 17.42 19.97 −2.55

20 0 0 0 80.39 77.13 3.26

Level (days) (g/L) (g/L)

−1 5 10 7

0 7 20 10

1 9 30 15

Table 4. Face-centered central composite design with coded and actual levels of the variables representing 
L-asparaginase activity as influenced by X2 (incubation time), X8 (starch), X9 (L-asparagine) along with the 
predicted L-asparaginase activity and residuals.

Variables Coefficients Main effect t – student’s test P-Value

Intercept 77.13 154.26 40.06 0.0000

X2 0.66 1.31 0.37 0.7185

X8 3.30 6.60 1.86 0.0921

X9 0.77 1.55 0.44 0.6718

X2X8 4.42 8.84 2.23 0.0497

X2X9 −3.87 −7.75 −1.96 0.0790

X8X9 −6.62 −13.24 −3.34 0.0075

X2X2 −37.08 −74.15 −10.98 0.0000

X8X8 −7.35 −14.69 −2.18 0.0547

X9X9 −12.93 −25.85 −3.83 0.0033

Analysis of variance (ANOVA)

Degree of 
freedom

Sum of 
squares

Mean sum of 
squares

F- Fisher’s 
function

Significance F 
(P-value)

Regression 9 13804.60 1533.844 48.89 4.33737E-07

Residual 10 313.73 31.37

Total 19 14118.32

Table 5. Statistical analysis of face-centered central composite design showing coefficient values, main effect, t-
test and P-values. X2 the coded value of incubation time, X8 the coded value of starch and X9 the coded value of 
L-asparagine. Multiple R 0.9888, R Square 0.9777, Adjusted R Square 0.957.
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In order to evaluate the relationship between L-asparaginase production and incubation time (X2), starch 
(X8) and L-asparagine (X9) and to calculate the maximum L-asparaginase production corresponding to the opti-
mum levels of these variables, a second-order polynomial model equation was proposed to define the predicted 
response (Y) in terms of the independent variables (X2, X8 and X9):

Y 77 13 0 66 X 3 30 X 0 77 X 4 42 X X 3 87 X X 6 62 X X

37 08 X 7 35 X 12 93 X (2)

L( asparaginaseproduction) 2 8 9 2 8 2 9 8 9

2
2

8
2

9
2

= . + . + . + . + . − . − .

− . − . − .

−

where X2, X8 and X9 are the coded values of incubation time, starch and L-asparagine; respectively.

Three dimensional (3D) plots. The interaction effects and optimal levels of the variables were determined 
by plotting the three dimensional response surface curves (Fig. 5A–C) when one of the variables is fixed at opti-
mum level and the other two are allowed to vary. Figure 5A represents the L-asparaginase activity as a function 
of incubation time (X2), starch (X8) by keeping L-asparagine (X9) at optimum value. Results showed that the 
lower and higher incubation time levels supported relatively low levels of L-asparaginase activity. The highest 
level of L-asparaginase activity was obtained with intermediate incubation time and starch concentration value. 
Incubation time has a significant effect on the production of L-asparaginase. The effect of incubation time on 
L-asparaginase production by Streptomyces acrimycini NGP was studied. Initial production of L-asparaginase on 
first day was 1.56 U/mL and increased up to 3.97 U/mL on 7th day of incubation period21. Maximum growth and 
production of L-asparaginase (ranging from 186.37 to 257.06 U/mL) by Serratia marcescens SB08 showed at 51 h 
of incubation period and its growth declines in further extended incubation period. Extended incubation time 
might lead to the enzyme destruction due to interaction with other medium components22. L-asparaginase was 
produced by marine actinomycetes in incubation period of 96 hours23. In another report, L-asparaginase activity 
was increased with time to reach maximum value on the 5th day of incubation24. Varalakshmi and Raju25 reported 
that fermentation after 96 hours showed a decrease in L-asparaginase production, which could be attributed to 
the disruption of the enzyme due to the presence of some kind of proteolytic activity, due to nutrients depletion 
and accumulation of toxic end products.

Carbon sources are used to promote growth and thus result in an increase in enzyme production, which is 
usually observed in the synthesis of primary metabolites, such as enzymes26. Glucose was considered as a cata-
bolic repressor for L-asparaginase production by certain bacterial strains like E. coli. Synthesis of L- asparaginase 
in E. coli is almost completely suppressed if glucose is added at a concentration of 0.5% to the growth medium27. 
In contrast, another literature on L-asparaginase production by Streptomyces spp. reported that glucose followed 
by starch served as good carbon source for maximal production of L-asparaginase by Streptomyces ginsengisoli10. 
Also, the biosynthesis of L-asparaginase by Streptomyces albidoflavus was high when the strain was cultivated 
in basal medium with maltose as carbon source followed by starch, glucose, trehalose and glycerol28. Bacillus 
sp. WF6729, Serratia marcescens30 and Bacillus sp.31 preferred glucose as a carbon source to produce L- aspar-
aginase maximally. Dextrose and starch positively affect the production of glutaminase free L-asparaginase by 
Streptomyces olivaceus NEAE-11932. L-asparagine or the combination of glucose and L-asparagine was found to 
be the best carbon sources for maximization of L-asparaginase production33.

Figure 5B represents the L-asparaginase activity as a function of incubation time (X2) and L-asparagine (X9) 
by keeping starch (X8) at optimum value. L-asparaginase activity was maximized at moderate to high levels of 
L-asparagine and moderate levels of incubation period, and the increase in incubation period resulted in a grad-
ual decrease in L-asparaginase activity.

Venil and Lakshmanaperumalsamy34 reported that the addition of organic nitrogen sources in L-asparagine 
broth medium was found to induce maximum L- asparaginase production. Whereas, inorganic nitrogen sup-
plements reduce L-asparaginase production significantly. L-asparagine works as a sole source of nitrogen and 
as inducer for the production of L-asparaginase. Therefore, its differing concentrations will have some effects on 
enzyme production. The optimum concentration of L-asparagine as a sole nitrogen source was determined to 
be 1% for L-asparaginase production by Streptomyces ABR235. L-asparagine was reported to be the best nitrogen 
source for maximum production of L-asparaginase by Streptomyces venezuelae and Streptomyces karnatakensis36. 
Amena et al.37 reported that 0.5% L-asparagine proved to be the best nitrogen sources for L-asparaginase produc-
tion by Streptomyces gulbargensis. Whereas, enhanced L-asparaginase production by Streptomyces albidoflavus 
was observed by using yeast extract as nitrogen source28.

Figure 5C showes that the maximum L-asparaginase production was attained beyond middle levels of starch 
(X8). Highest value of L-asparaginase production was obtained beyond high L-asparagine concentration (X9); 
lower and higher levels of L-asparagine resulted in a gradual decrease in L-asparaginase production.

Verification of the model. To validate the accuracy of the model and to verify the result, an experiment was 
conducted under optimal conditions obtained from the face-centered central composite design and compared to 
the predicted data. The measured L-asparaginase activity obtained was 80.39 U/mL is close to the predicted one 
77.13 U/mL revealing that a high degree of accuracy (95.94%).

Kumar et al.18 reported that the optimal levels of the four selected factors for maximum L-asparaginase pro-
duction (19.5 U/mL) as obtained from Box-Behnken design were Tapioca effluent, 5% (v/v); L-asparagine, 0.003% 
(w/v); corn steep liquor, 2% (w/v); aeration, 0.7 vvm. Meena et al.38 used a Box-Behnken design based optimiza-
tion to investigate the correlation between four variables (pH, starch, yeast extract and L-asparagine) and extra-
cellular L-asparaginase production by marine actinobacteria, Streptomyces griseus NIOT-VKMA29. The optimal 
values of variables for the highest L-asparaginase production were determined to be: L-asparagine concentration 
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1.53%, starch concentration 1.48%, yeast extract concentration 2.04% and pH 8.04. Box-Behnken guided design 
of experiments resulted in a maximum L-asparaginase production of 56.50 (U/mL).

Shakambari et al.17 used central composite design (CCD) to optimize the levels and analyze the combined 
effect of KH2PO4, effluent and pH that were significant for L-asparaginase production by Pseudomonas plecoglos-
sicida using the optimized medium inoculated with 2% (v/v) inoculum, incubated at 37 °C for 48 h in static 
conditions. The optimum levels of KH2PO4, effluent and pH for the highest L-asparaginase production (3.25 U/
mL) were determined to be KH2PO4 (0.2 g/L), effluent (0.8 mL) and pH (6.5). RSM guided design of experiments 

Figure 5. (A–C) Three-dimensional response surface plots showing the effect of incubation time (X2), starch 
(X8) and L-asparagine (X9) and their interactions effects on the production of L-asparaginase by Streptomyces 
brollosae NEAE-115.
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resulted in a maximum L-asparaginase production of 3.25 U/mL with a 4.5 fold increase in enzyme activity com-
pared to that obtained in the unoptimized medium (enzyme activity 0.73 U/mL).

Optimization of process variables using central composite design was performed to find out the optimum val-
ues of four fermentation variables. The maximum production of 257.55 U/mL L-asparaginase was achieved under 
flask conditions using the optimal levels for sucrose, peptone, KH2PO4 and incubation time were determined 
as 12.50 g/L, 4.5 g/L, 4.0 g/L and 51 h19. Morales-Gonzalez et al.39 used central composite design to optimize 
the levels and to study the effects of nutritional and growth factors that improve L-asparaginase production by 
Kitasatospora atroaurantiaca, Streptomyces panaciradicis and Streptomyces griseoluteus. The maximum experi-
mental L-asparaginase production by Kitasatospora atroaurantiaca (28.18 U/mg protein) was obtained at the 
optimal levels for lactose concentration (1% w/v), L-asparagine + malt extract concentration (1% w/v), temper-
ature (35 °C) and pH (7). The maximum experimental L-asparaginase production by Streptomyces panaciradicis 
(31.20 U/mg protein) was achieved at optimal levels of process variables (lactose concentration was 1% w/v, 
L-asparagine + malt extract concentration was 1% w/v, pH was 7, temperature was maintained at 35 °C). On the 
other hand, The CCD results for L-asparaginase production by Streptomyces griseoluteus identified the optimal 
values for lactose, L-asparagine + malt extract concentrations, temperature and pH were 0.5% w/v, 0.5% w/v, 
27.5 °C, 6.5; respectively and the maximum predicted L-asparaginase activity was 30.72 U/mg protein.

Four factors with the greatest significant effects on L-asparaginase production by Streptomyces parvulus 
KUA106 were selected for optimization of process using central composite design to find out the optimum levels 
and to examine the combined effects of these factors. The optimal levels of the four selected factors for maxi-
mum L-asparaginase production (135 U/mL) as obtained using CCD were asparagine (0.05%), tryptone (0.5%), 
dextrose (5%) and NaCl (0.05%)20. Mangamuri et al.40 used one factor at a time and CCD to evaluate the effect 
of various physico-chemical factors on L-asparaginase production by Streptomyces labedae VSM-6. Maximum 
L-asparaginase production (8.92 U/mL) by Streptomyces labedae VSM-6 using conventional one factor at a time 
optimization was found after 6th day of incubation in production medium supplemented with 1% L-asparagine, 
1.5% starch, 1% yeast extract at initial pH 8 after 144 h of incubation. The optimized levels of the nutritional and 
cultural conditions for maximum L-asparaginase production (10.17 U/mL) by Streptomyces labedae VSM-6 were 
found to be pH (8), temperature 30 °C, incubation time (6 days), concentrations of yeast extract, starch, and 
L-asparagine 1, 1.5, 1%; respectively as determined by using central composite design.

Effect of different stirring speeds on L-asparaginase production under uncontrolled pH con-
dition. To optimize the stirring speeds in the 7-L stirred tank bioreactor, three stirring speeds of 200, 400 
and 600 rpm were adjusted before fermentation in the batch cultivation. The relations between cell growth, 
enzyme production and substrate consumption as a function of different stirring speeds were studied. As shown 
in Fig. 6A, the results indicate that the cell growth increased with the time in all cultures until reached a highest 
value then decreased slightly until the end of the fermentation period. In case of 200 rpm, cells grew exponentially 
for longer time up to 96 h at a rate [dx/dt] of 0.045 g/h−1 until reached [Xmax] 4.3 g/L. The specific growth rate [in 
h−1] which was calculated based on the exponential part of the growth phase was about 0.0225 h−1. Increasing 
the stirring speeds to 400 rpm resulted in an increase in cell growth rate recorded 0.067 g/h−1 until reached max-
imum value of 5.6  g/L at  76 h with specific growth rate of about 0.0343 h−1 (Table 6). On the other hand, in case 
of 600 rpm agitated culture, the maximal cell growth 7.2 g/L was detected after about 66 h of cultivation at a rate 
of 0.0864 g/h−1with specific growth rate of about 0.0383 h−1 (Fig. 6A). It was clearly observed that the specific 
growth rate increased with increasing the stirring speed. On the other hand, the time of the active growth of cells 
was shortened. During the exponential growth of cells in all cultures, carbohydrates were consumed gradually 
until depletion when maximum cell growth was recorded (Fig. 6B). In 200 rpm stirring speed, consumption rate 
of carbohydrates [Qs] was 0.1 g/h−1which is less than consumption rate of carbohydrates at 400 and 600 rpm (0.13 
and 0.141 g/h−1; respectively).

In culture under 200 rpm stirring speed, enzyme production rate [Qp] of about 0.431 U/mL/h was observed 
during 80 h of cultivation after which a degradation in this rate with time by 0.366 U/mL/h until the end of the fer-
mentation time was recorded. However, a longer production phase of the enzyme in 400 rpm reaching its highest 
value at 104 h with a production rate of 1.1 U/mL/h, after this time a decrease in enzyme production until 120 h as 
cells entered a stationary phase was detected. Despite the highest biomass in fermentation culture under higher 
stirring speed 600 rpm compared to 200 and 400 rpm, a moderate L-asparaginase amount attained its highest 
value of [Pmax] 89.7 U/mL at about 90 h (Fig. 6C) with a production rate of 0.98 U/mL/h which was calculated at 
the beginning of fermentation period. It was observed that maximal specific activity of the enzyme 157.9 (U/mg 
protein) at 112 h was recorded in culture of 400 rpm compared to other speed under study (Fig. 6D).

The data also revealed differences between the depletion in the dissolved oxygen which was significant at 
200 rpm. During first 16 h of the course of fermentation, a fast and gradual decline of the DO% level was observed 
from 100% at the starting to 1.2% till reached 0% at 24 h whereas a reduction to 4% after 60 h at 400 rpm was 
noticed. In contrast, the depletion was insignificant at higher agitation rate (600 rpm). In all fermentation cultures 
under study, during the growth phase, the DO% decreased and reached a minimal value and then increased grad-
ually thereafter as a function of the cell-growth termination when the carbohydrates were completely consumed 
(Fig. 6B,E).

It was also noticed that the pH of all cultures increased gradually after inoculation parallel to L-asparaginase 
production, reached its highest value of 8.3 at 120 h in case of stirring speed 200 rpm and 9 in case of 400 and 
600 rpm at 112 h and 104 h; respectively (Fig. 6F). Since L-asparaginase converts L-asparagine to L-aspartic acid 
and ammonia which shifts the pH towards alkaline and the enzyme as noticed through the results obtained from 
stirred tank bioreactor at different stirring effect was growth linked and increasing the stirring speeds from 200 
to 600 resulted in an increase in cell growth rate. On the other hand, the time of the active growth of cells was 
shortened. As it was reported before that maximum biomass production could also be correlated with high levels 
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of L-asparaginase production. L-asparaginase formation showed a firm link to the active cell growth (Savitri et 
al.)5, so, at 200 rpm the time of active cell growth was longer than in higher speed, production of the enzyme was 
slower and conversion of all the L-asparagine in the medium was delayed and alkaline pH due to ammonia was 
weak contrary to the other higher stirring speeds.

To clarify the cell performance toward L-asparaginase production in all cultures, the yield coefficients includ-
ing Yp/x (L-asparaginase produced/biomass of cells produced), Yp/s (L-asparaginase produced/mass of carbohy-
drates consumed) and Yx/s (biomass of cells produced/mass of carbohydrates consumed) were also calculated 
(Fig. 7). It was observed that the maximal value of the production yield coefficient Yp/x 20.3 U/mg cells was in 
case of stirring speed 400 whereas lower values of Yp/x (12.63 U/mg and 7.93 U/mg) were obtained at 600 and 
200 rpm respectively. On the other hand, the highest Yp/s of 10.23 U/mg carbohydrates value was obtained in case 
of 400 rpm followed by 3.5 and 8.46 U/mg carbohydrates in case of 200 and 600 rpm. These results indicated that 
in batch cultivation at 400 rpm the produced cells were more active towards enzyme production as the production 

Figure 6. Time-course profile of (A) cell growth; (B) carbohydrates consumption; (C) L-asparaginase 
production; (D) specific activity; (E) dissolved oxygen and (F) final pH during batch cultivation of Streptomyces 
brollosae NEAE-115 in 7 L stirred tank bioreactor under different stirring speeds and uncontrolled pH.

https://doi.org/10.1038/s41598-019-49709-6


1 2Scientific RepoRtS |         (2019) 9:13571  | https://doi.org/10.1038/s41598-019-49709-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

yield coefficient was the highest compared to cultures under stirring at 200 and 600 rpm. Calculated coefficient 
biomass yield over substrate Yx/s was the highest at the stirring speed of 600 rpm, i.e. 0.7 g biomass produced per 
g carbohydrates which was depleted after 66 h of cultivation whereas 0.54 and 0.44 g biomass produced per g 
carbohydrates were recorded in 400 and 200 rpm; respectively accompanied by carbohydrates depletion after 76 
and 112 h. From these results, the enzyme activity at 400 rpm was the highest and obtained later by almost 8 h 
compared to the other speeds. Besides, the production yield coefficient was the highest hence, a stirring speed of 
400 rpm is chosen as the optimal one for maximum biosynthesis of L-asparaginase.

One of the important factors that can affect microbial productions in scale-up is the agitation which influence 
directly on oxygen transfer rate in different scales. In this context, the effect of stirring speed and pH control on cell 
growth, L-asparaginase production and other parameter such as DO% was determined during the course of the sub-
merged fermentation in batch cultivation of the producer microorganism Streptomyces brollosae NEAE-115 in 7-L 
stirred tank bioreactor. Due to the scarce specific literature available, comparison of our results with those of other 
scientists is difficult. The low cell biomass and enzyme activity at lower stirring speed (200 rpm) could be attributed 
to the shortage of oxygen being experienced by the organism due to the insufficient mixing. This agree with the 
results obtained by Priya et al.41, who reported that a positive correlation between L-asparaginase production by 
Streptomyces sp. (TA22) and cell mass over a time period of 24–120 hours. The microorganism at 600 rpm grew faster 
and got sheared more easily led to the access of maximum cell biomass earlier; at the same time it enhances shearing 
of cells which badly affect enzyme synthesis. In addition, the shear forces could partially inactivate the enzyme, 
already released in the cultural broth. In this study, low enzyme activity at low stirring speed at 200 rpm and stirring 
speed at 600 rpm could be related to catalytic dysfunctions due to conformational changes carried out by mechanical 
forces42. It was observed that as the stirring speed increased, cell biomass increased too because more oxygen was 
incorporated into the medium and lead to progressive accompanied by an acceleration of carbohydrates consump-
tion. Once carbohydrates were depleted in the culture, a significant decrease in cell dry weight was observed. This 
reduction was a function of cell lysis under the combined effect of carbohydrates limitation and shear stress effect in 
the culture43. L-asparaginase production was higher in 400 rpm batch culture than in 200 stirring speed, this may be 
attributed to the dispersion of macromolecules in the medium and increase amount of dissolved oxygen. It might, 
therefore, contribute to the greater growth and extracellular protein value. A correlation between agitation speed 
and enzyme production has been reported by researches who worked on Streptomyces gulbargensis44. Results also 
showed that during all batch cultivations, cell growth is associated with large increase in oxygen uptake. In this study, 
during the active growth phase, the DO% in culture at 200 rpm dropped significantly after 24 h. In previous studies, 
it has been reported that DO% was gradually increased until the end of cultivation time when the cells entered the 
stationary phase45. On the other hand, during the fermentation time, it was noticed that pH of the medium increased 
gradually from the beginning of the fermentation time parallel to L-asparaginase production in all batch cultures 
reached 9 at higher agitation speed and 8.5 at 200 rpm.

Batch cultivation for L-asparaginase production under controlled pH. The kinetic data of cell growth, 
carbohydrates consumption, enzyme activity and DO% during batch cultivation with a controlled pH 7 at 400 rpm was 
presented in Table 6 and Figs 8, 9. During the growth phase, cells grew exponentially with rate higher than in batch 
fermentation at 200 and 400 rpm under uncontrolled pH and almost the same as 600 rpm while the specific growth rate 

Kinetic Parameters Stirring speed, 400

Streptomyces brollosae 
NEAE-115 growth Uncontrolled pH Controlled pH

X max-biomass (g/L) 5.6 7.78

X max-time (h) 76 76

dx/dt (g/h−1) 0.067 0.0855

μ (h−1) 0.0343 0.0316

L-asparaginase production

Pmax-vol (U/mL) 108.46 162.11

Pmax-time (h) 104 82

Qp (U/mL/h) 1.1 1.99

Yp/x (U/mg cells) 20.3 21

Specific activity (U/mg 
protein) 157.9 220.6

Carbohydrates utilization

Qs(g/L/h) −0.1324 −0.16

Yx/s (g cells/g) 0.54 0.73

Yp/s(U/g cells) 10.23 15.3

Table 6. Kinetic parameters for cell growth, L-asparaginase production, carbohydrates consumption during 
Streptomyces brollosae NEAE-115 growth in 7-L stirred tank bioreactor under stirring speed of 400 rpm.  
“X max-biomass, maximal cell dry weight; dx/dt, cell growth rate; Pmax-vol maximal L-asparaginase production; 
Pmax-time, time of maximal L-asparaginase production; Qp, L-asparaginase production rate; Yp/x, coefficient 
production yield over biomass; Qs,carbohydrates consumption rate; Yx/s coefficient biomass yield over 
substrate;Yp/s, coefficient production yield over substrate”.
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was 0.0316 h−1 and the cell biomass reached its highest value of 7.78 g/L at 76 h (Table 6). On the other hand, carbohy-
drates were consumed at a rate of 0.16 g/L/h. L-asparaginase production started from the first hours of fermentation 
time with a production rate of 1.99 U/mL/h and recorded its maximal activity of 162.11  U/mL at 82 h then a decrease 
in production was detected by a degradation rate of 3.3 U/mL/h until the end of fermentation time. Whereas, dissolved 
oxygen level falls rapidly when cell grows enter in the exponential phase. To clarify the difference in growth and pro-
duction kinetics between cultures at 400 rpm in case of uncontrolled and controlled pH, kinetic parameters related to 
cell growth and enzyme activity were compared (Table 6).

Figure 7. Time profile of yield coefficients: (A) (Yp/x) unit of L-asparaginase per mg biomass; (B) (Yp/s) unit of 
L-asparaginase per mg carbohydrates; (C) (Yx/s) g cells per g carbohydrates in batch cultivation under different 
stirring speeds in 7-L stirred tank bioreactor.
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The presented data of cells cultivation under uncontrolled and controlled pH condition revealed that in both 
cultures, the dissolved oxygen levels were started with 100% and reached its minimum percentage at 76 h parallel 
to maximum cell growth. It is apparent that, cell grew exponentially in both cultivations in which there was no lag 
phase with different rates. However, controlled pH condition was more favorable for L-asparaginase and cell mass 
production than uncontrolled pH bioreactor. These differences in growth rate and cells yield are linked to the rate 
of carbohydrates consumption, which also reflects the cell physiology status activity.

When controlling the pH at 7 during cultivation, the cell mass increased about 1.4-fold when compared with 
that from the uncontrolled bioreactor cultures. The specific growth rate [μ] for the controlled bioreactor culture 
was also higher. A maximum L-asparaginase production (162.11 U/mL) by Streptomyces brollosae NEAE-115 
was reached in pH controlled culture at 400 rpm which is not reported for any other actinomycete strain so far.

Materials and Methods
Microorganism and cultivation conditions. The new isolate previously isolated and identified as 
Streptomyces brollosae NEAE-11546 is a potent L-asparaginase-producing strain; cultured and maintained on 
plates containing starch nitrate agar medium; the inoculated plates were incubated at 30 °C for 7 days12.

Detection of L-asparaginase production by plate assay. Detection of the potential production of 
L-asparaginase by Streptomyces brollosae NEAE-115 was performed according to the method of El-Naggar et al.12 
with the use of asparagine dextrose salts agar (ADS agar) medium47.

Inoculum preparation for submerged fermentation in shake flasks. Inoculums for submerged fer-
mentation in shake flasks were prepared according to the procedure used by El-Naggar et al.12.

L-asparaginase production by Streptomyces brollosae NEAE-115 using submerged fermenta-
tion in shake flasks. Streptomyces brollosae NEAE-115 was cultured in 250 mL Erlenmeyer conical flasks 
containing fifty mL of asparagine dextrose salts broth medium (at a specified pH). The inoculated flasks were 
incubated at 30–37 °C with shaking at 100–150 rpm on a rotatory shaker incubator. After the specified incubation 

Figure 8. Time-course profile of cell growth; L-asparaginase production; carbohydrates consumption; specific 
activity and dissolved oxygen during batch cultivation of Streptomyces brollosae NEAE-115 in 7-L stirred tank 
bioreactor at stirring speed of 400 rpm and controlled pH 7.
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period for each set of experimental trials, the mycelial growth of Streptomyces brollosae NEAE-115 was collected 
using cooling Centrifuge for 20 min at 5000 × g and 4 °C.

impact of some carbon sources on L-asparaginase production. A preliminary study was conducted 
to determine the impact of some carbon sources on L-asparaginase production by Streptomyces brollosae NEAE-
115. Asparagine dextrose salt broth47 supplemented with different carbon sources such as dextrose, maltose, 
starch, sucrose and glycerol was used.

Assay of L-asparaginase activity. The activity of L-asparaginase was determined by the direct nesslerization 
method by measuring the quantity of released ammonia48. The reaction mixture containing 0.5 mL of L-asparaginase 
and 1.5 mL of 0.04 M L-asparagine (prepared in 0.05 M Tris-HCl buffer, pH 8.6). The reaction mixture tubes were incu-
bated in a water bath shaker at 37 °C for 30 minutes. 0.5 mL of 1.5 M Trichloroacetic acid (TCA) was used to stop the 
reaction. The blank was prepared by adding the enzyme after addition of TCA, one blank has been conducted for each 
sample tested. By centrifugation at 10,000 × g for 10 min, the precipitated proteins were separated. The released ammo-
nia in the supernatant was colorimetrically determined by direct nesslerization by adding 1 mL of Nessler’s reagent to 
tubes containing 0.5 mL of clear supernatant diluted with 7 mL of distilled water and incubated at room temperature for 
20 min. The yellow color formation indicates the presence of ammonia and was measured with UV-visible spectropho-
tometer (Optizen Pop–UV/Vis spectrophotometer) at 480 nm. The quantity of ammonia released was calculated using 
the standard curve of ammonium chloride. One unit (U) of L-asparaginase is defined as the amount of L-asparaginase 
that has catalyzed the formation of 1 µmole of ammonia from L-asparagine per minute under the standard assay condi-
tions. The activity of the enzyme has been expressed as units per gram of dry fermented substrate (U/gds).

Selection of significant variables influencing L-asparaginase production by Plackett–Burman 
design. The Plackett–Burman statistical experimental design49 is a two factorial design, which identifies differ-
ent process variables that had a significant effect, either positively or negatively on L-asparaginase production during 

Figure 9. Microscopic observation of Streptomyces brollosae NEAE-115 cells at (A) early fermentation time 
showing mycelia clump, (B) dispersed mycelia at middle fermentation time and (C) freely dispersed mycelia 
and spores at late fermentation time of batch cultivations in 7-L stirred tank bioreactor.

https://doi.org/10.1038/s41598-019-49709-6


1 6Scientific RepoRtS |         (2019) 9:13571  | https://doi.org/10.1038/s41598-019-49709-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

submerged fermentation in shake flasks with respect to their main effects50. Different process variables influencing 
L-asparaginase production by Streptomyces NEAE-115 were identified using Plackett–Burman experimental design. 
Total of fifteen variables (assigned) (dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4.7H2O, NaCl 
and FeSO4. 7H2O, pH, incubation time, temperature, inoculum age, inoculum size and agitation speed) (Table 1) and 
four dummy (unassigned) variables were selected for this study in 20 trials (Table 2). Each variable is represented at 
high (+) and low (−) levels. The design of the Plackett-Burman depends on the first order model:

∑β β= +Y X (3)i i0

where, Y is the predicted L-asparaginase production, Xi is independent variable level, βi is the linear coefficient 
and β0 is the model intercept. All runs were conducted in duplicate and the average of L-asparaginase activity was 
used as responses.

optimization of L-asparaginase production using face centered central composite design 
(FCCD). The FCCD was used to determine the optimal levels of the three most significant positive independ-
ent variables affecting the production of the enzyme (incubation time, starch and L-asparagine) and to study 
the individual and mutual interactions among the tested variables on L-asparaginase production. The FCCD is 
a statistical experimental design in which each variable is varies on three different levels, low (−1), medium (0), 
high (+1) and the center point was repeated six times, resulting in a total of 20 runs. Given all linear, quadratic 
and interaction coefficients, the regression model can be illustrated using the following second-degree polyno-
mial equation:

∑ ∑ ∑β β β β= + + +Y X X X
(4)i

i i
ii

ii i
ij

ij j0

In which Y is the predicted response, β0 is the regression coefficients, βi is the linear coefficient, βii is the quad-
ratic coefficients, βij is the interaction coefficients), and Xi is the coded level of independent variable.

Statistical analysis. The obtained experimental results were subjected to multiple regression analysis using 
Microsoft Excel, 2007 and the STATISTICA software “Version 8.0, StatSoft Inc., Tulsa, USA” was used to plot the 
three-dimensional surface plots.

Inoculum preparation for 7-L stirred tank bioreactor. A first-stage seed culture was grown by inoc-
ulating a 250 mL shake flask (50 mL working volume) containing production medium composed of (g/L): (dex-
trose 1, soluble starch 5, KNO3 1, yeast extract 1, K2HPO4 2, MgSO4. 7H2O 0.5, NaCl 0.5 and FeSO4. 7H2O 0.01 
with a single vial of frozen stock culture. The flask was incubated at 30 °C in a temperature controlled shaking 
incubator operating at 150 rpm for 48 h. A second stage of seed growth is required to prepares the microorgan-
ism for enzyme production. From the first-stage culture 5% (v/v) inoculum was transferred to a 1-L shake flask 
(250 mL working volume) containing the previously mentioned production medium, then incubated at 30 °C and 
150 rpm for 48 h.

Submerged fermentation using 7-L stirred tank bioreactor. Batch fermentations were inoculated by 
transferring around 10% (v/v) of the second stage flask culture directly to the 7-L stirred tank bioreactor (bioflow 
310; New Brunswick Scientific, Edison, NJ, U.S.A.) containing the previously mentioned production medium 
(pH 7). The useful volume used in the fermentations was 5-L. The bioreactor is equipped with digitally controlled 
pH electrode, temperature probe, polarographic DO electrode “Ingold, Mittler-Toledo, Switzerland) and two 
six-blade Rushton turbine impellers (5.2 cm diameter)”, fixed on the agitator shaft above 3.2 cm air sparger. The 
pH electrode was calibrated by using standard buffers (Fluka) at pH 7 and 9 prior to the sterilization of bioreactor 
(121 °C for 20 min). However, the calibration of DO electrode was conducted after sterilization by the air until 
100% saturation was achieved. The foam was manually controlled by adding a few drops of silicon -based anti-
foam (Sigma) at foam time.

The temperature in the 7-L vessel was controlled at 30 °C. The airflow rate was set at (0.5 vvm) using fil-
tered sterile air and stirring speed was allowed by varying the stirring speed rate in the bioreactor (200, 400 and 
600 rpm) for the comparison between different stirring speeds on the enzyme production without pH control. 
The suitability of the stirring speed was determined on the basis of the results obtained. The enzyme production 
was then studied by controlling the pH of the culture at 7.0 with sodium hydroxide 2 M or 2 M hydrochloric acid 
during the whole fermentation process.

Sample preparation and determination of cells dry weight. 10 mL of broth samples were collected 
at different time’s intervals during the fermentation process in pre-weighed, 15 mL sterile falcon tubes and centri-
fuged at 1865 RCF for 15 min. A small fraction of the supernatant was frozen at −20 °C for carbohydrates, protein 
and L-asparaginase activity determinations. Whereas, the pellets containing cell debris were washed twice with 
distilled water, centrifuged and then the washed pellets were dried to constant weight at 70 °C for determination 
of cells dry weight.

estimation of total protein. Total protein in culture filtrate was determined using bovine serum albumin 
as standard according to the method of Lowry et al.51.

estimation of total carbohydrates. The total carbohydrates were determined spectrophotometrically 
according to the method of Dubois et al.52.
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conclusion
As a conclusion, maximum L-asparaginase production can be achieved at 400 rpm under controlled pH at 7. The 
fundamental results obtained in this research are beneficial for further development of Streptomyces brollosae 
NEAE-115 cultivation strategy for the overproduction on a pilot scale.
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